Steel structures I

INTRODUCTION

Steel structures

Structural elements

Structural design

Design methods

Euro code

Chapter 2 LIMIT STATE DESIGN

Limit state design principles

Limit states for steel design

Working and factored loads

Stability limit states

Structural integrity

Serviceability limit state deflection

Design strength of materials

Design methods for buildings

-Dr.-Ghayath-Hallak

Steel structures I

Chapter 3 MATERIALS

Structural steel properties

Design considerations

Steel sections

Section properties

Chapter 4 BEAMS

Types and uses

Beam loads

Classification of beam cross-sections

Bending stresses and moment capacity

Lateral torsional buckling

Shear in beams

Deflection of beams

Beam connections

Steel structures I

Chapter 5 COMPRESSION MEMBERS

Types and uses

Loads on compression members

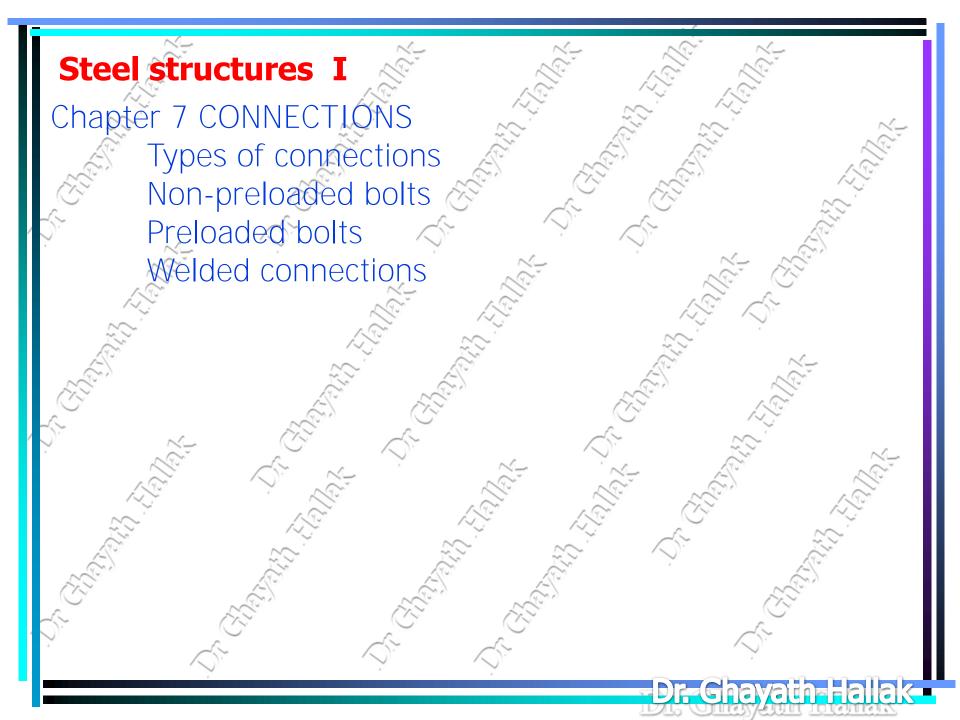
Classification of cross-sections

Axially loaded compression members

Beam columns <

Eccentrically loaded columns in buildings

Chapter 6 TENSION MEMBERS


Uses, types and design considerations

End connections

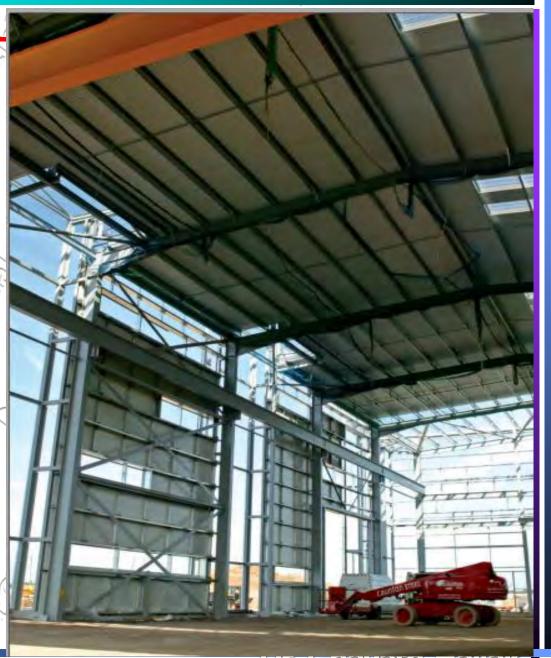
Structural behaviour of tension members

Design of tension members

Design examples

STEEL STRUCTURES I Introduction

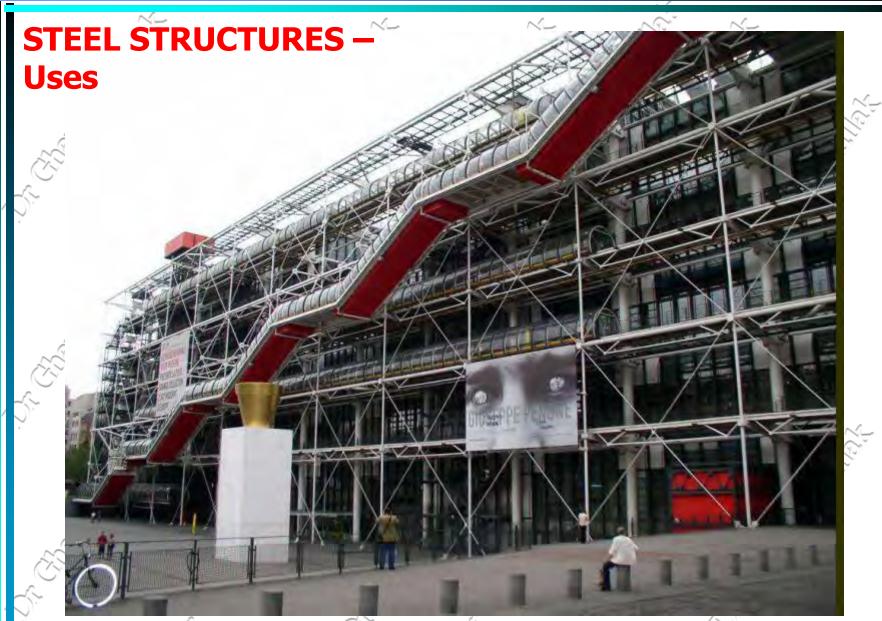
☐- floors,


Steel is most often used for structures where loads and spans are large and therefore is not often used for domestic architecture.

Steel structures	s include:
□- low-rise and	d high-rise buildings,
□- bridges,	
u - towers,	
pylons,	

□- of rigs, etc. and are essentially composed of frames which support the self-weight, dead loads and external imposed loads (wind, snow, traffic, etc.)

STEEL STRUCTURES -


Single story building-Industrial building-Portal frame system

Single story building- Industrial building- Truss system

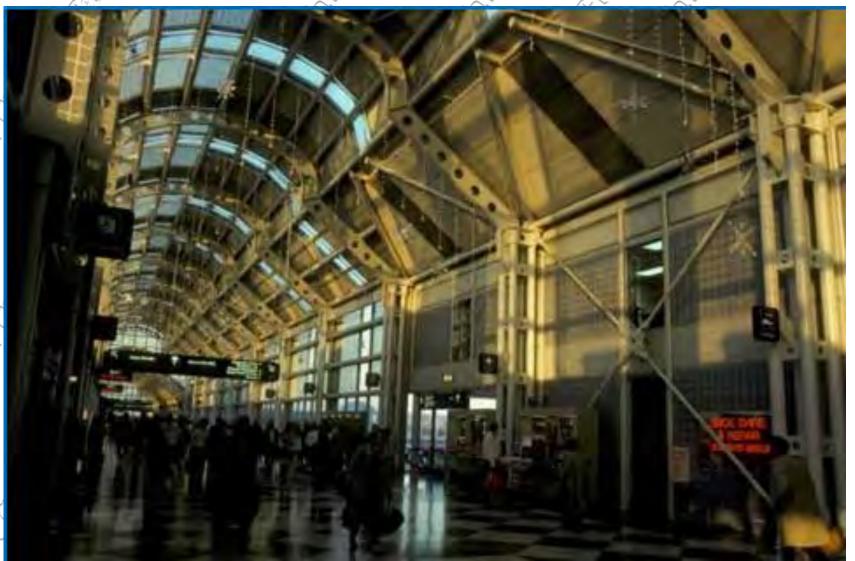
Dr. Ghayath Hallak-

Multi story building: the Pompidou center- Paris

-Dr.-Ghayath-Hallak--

STEEL STRUCTURES - Uses

Precast hollow core concrete planks are the floor system in this steel structure



Dr-Gnayaun-fallak-

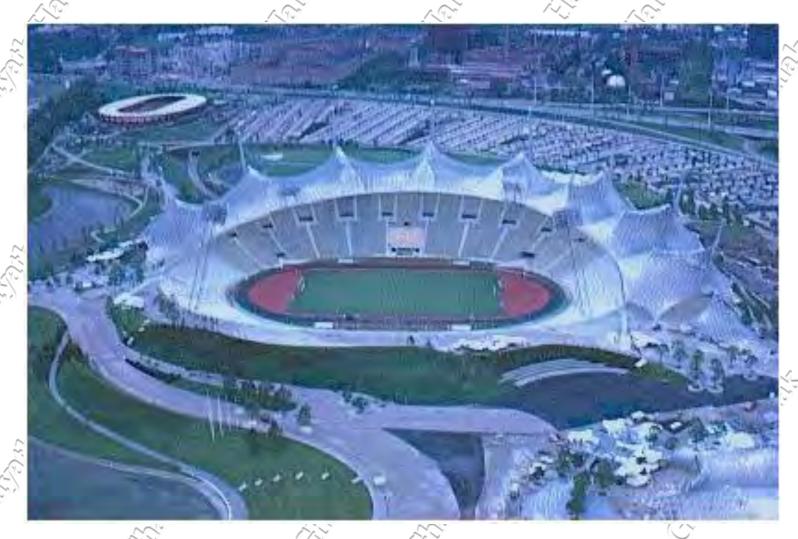
-Dr.-Ghayath-Hallak-

STEEL STRUCTURES — Uses

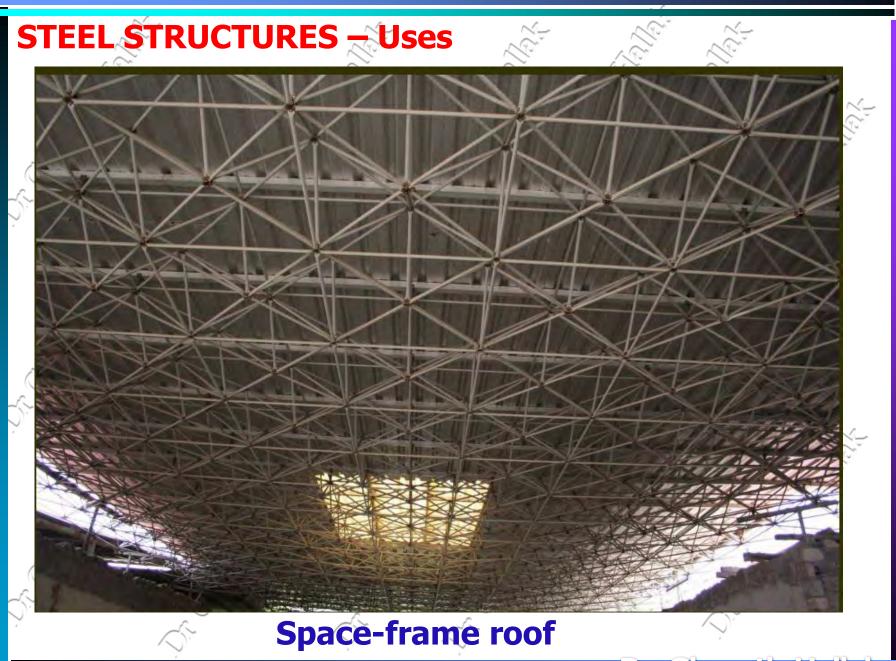
Chicago airport terminal building.

-Dr.-Ghayath-Hallak-

STEEL STRUCTURES — Uses


Open corner entrance to this office building was met by the use of two-story-high trusses.

-Dr.-Ghayath-Hallak--



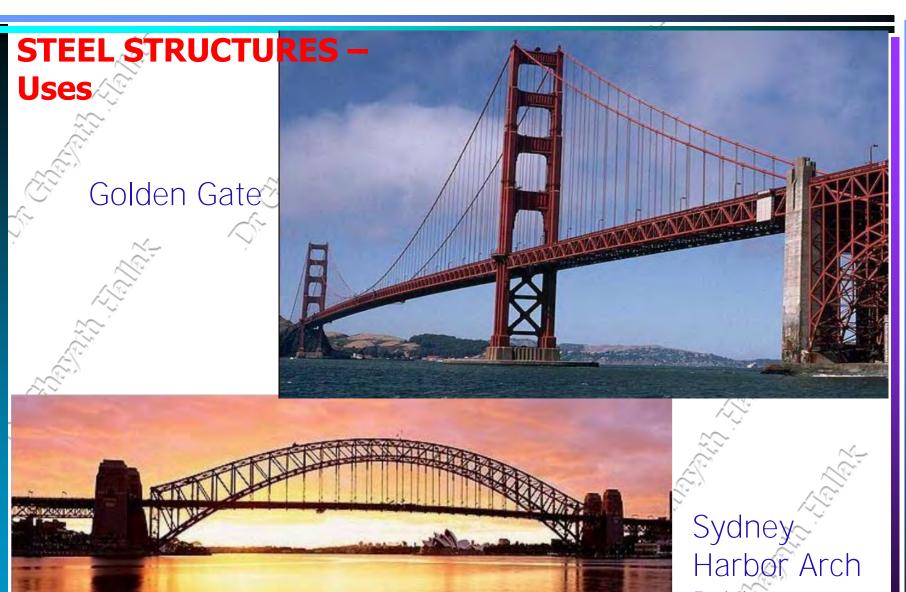
-Dr-Ghayath-Hallak-

STEEL STRUCTURES — Uses

Olympic Stadium, Munich, Germany

STEEL STRUCTURES Uses

The Forth Bridge-Scotland



Pont du Normandie (River Seine, Le Harve, France)

-Dr.-Ghayath-Hallak-

Bridge

Dr.-Ghayath-Hallak-

STEEL STRUCTURES — Uses North Sea Oil Platform

-Dr.-Ghayath-Hallak-

STEEL STRUCTURES — Uses

Strengthening works

STEEL STRUCTURES Introduction

The advantages

1- speed of construction:

Steel provides unbeatable speed of construction and off-site fabrication, there by reducing the financial risks associated with site-dependent delays.

2- high strength, high stiffness and good ductility:

steel construction, with its high strength to weight ratio, maximizes the useable area of a structure and minimizes self-weight, again resulting in cost savings.

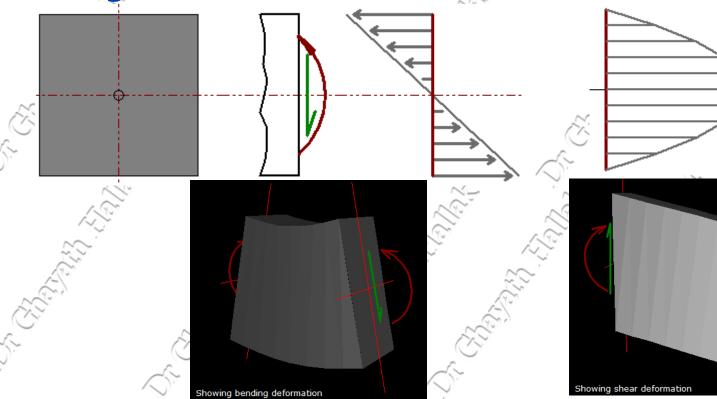
3- Recycling

Recycling and reuse of steel also mean that steel construction is well-placed to contribute towards reduction of the environmental impacts of the construction sector.

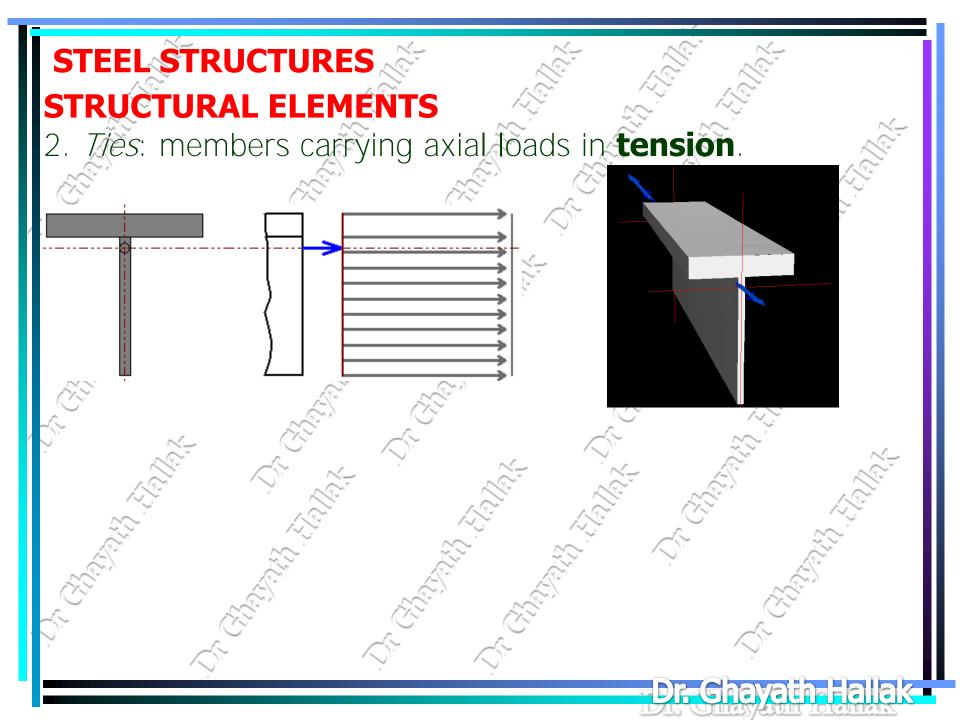
4- high accuracy

-Dr-Gnayam-Fallak

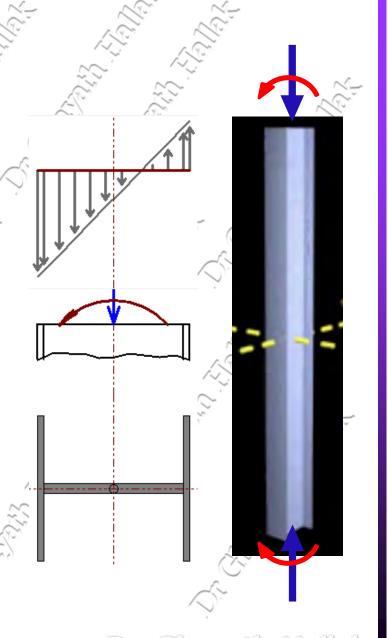
STEEL STRUCTURES Truction Introduction


Disadvantages

- 1- low fire resistance
- 2- needs of higher educated personal



As mentioned earlier, steel Structures are composed of distinct elements:


1. Beams and girders: members carrying lateral loads in **bending** and **shear**.

-Dr-Ghayath-Hallak-

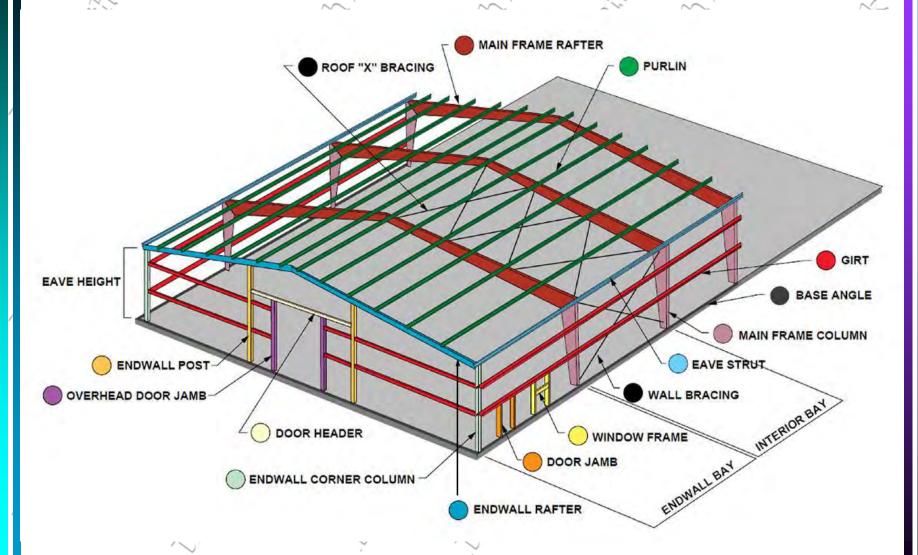
3. Struts, columns or stanchions: members carrying axial loads in compression. These members are often subjected to **bending** as well as **compression**.

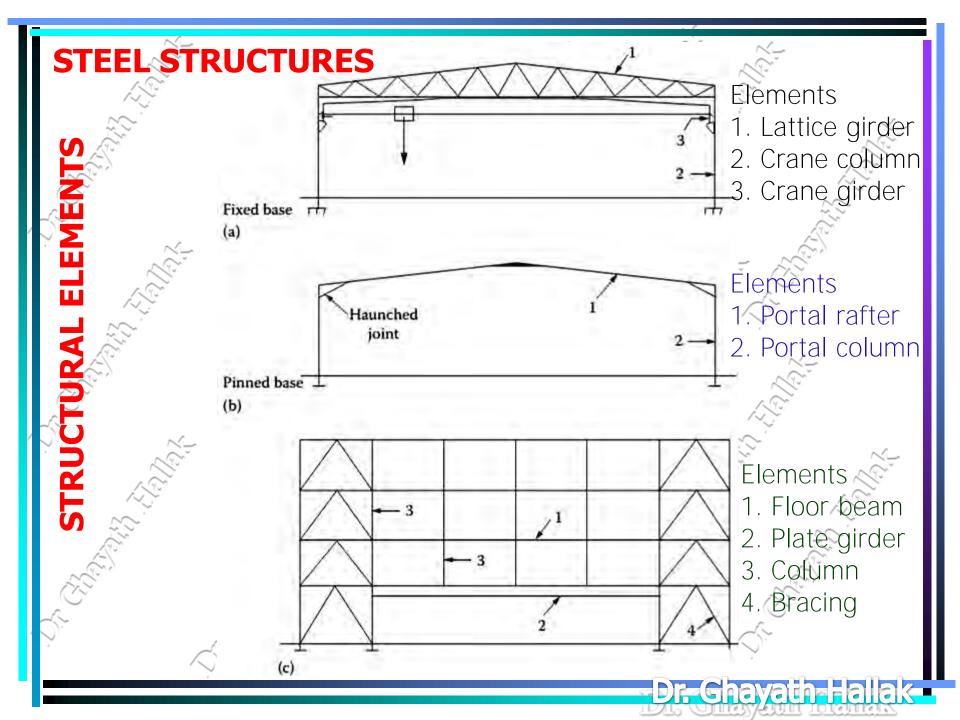
4. Trusses and lattice girders: framed members carrying lateral loads. These are composed of struts and ties.

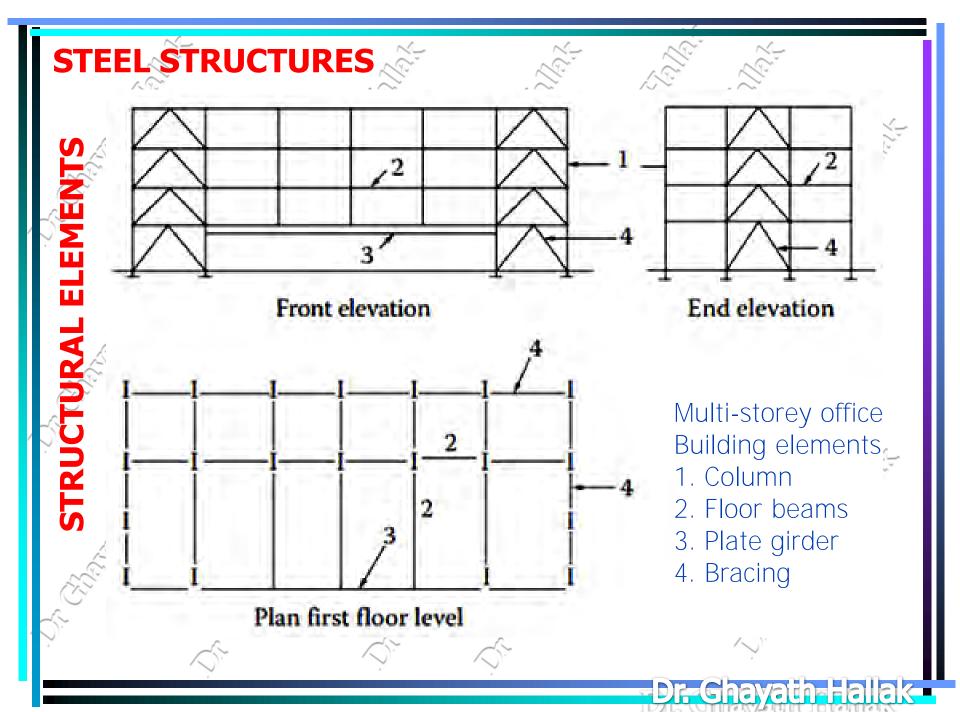
5. Purlins: beam members carrying roof sheeting.

6. Sheeting rails: beam members supporting wall cladding.

7. Bracing: diagonal struts and ties that, with columns and roof trusses, form vertical and horizontal trusses to resist wind loads and hence provided the stability of the building.




Joints connect members together such as the joints in trusses, joints between **floor** beams and columns or other **floor** beams. Bases transmit the loads from the columns to the foundations.



Dr.-Ghayath-Hallak-

Factory Building elements STEEL STRUCTURES 3 1. Lattice girder 2. Column 3. Purlins and sheeting rails 4. Crane girder ⁵ 6. Lower chord bracing 7. Wall bracing 8. Eaves tie Roof plan 9. Ties 5. Roof bracing 10. Gable column Lower chord bracing Section Side elevation Gable framing Dr.-Ghayath-Hallak-

STEEL STRUCTURES STRUCTURAL DESIGN

For a given framing arrangement, the problem in structural design consists of:

- 1. Estimation of loading
- 2. Analysis of main frames, trusses or lattice girders, floor systems, bracing and connections to determine axial loads, shears and moments at critical points in all members
- 3. Design of the elements and connections using design data from step 2.
- 4. Production of arrangement and detail drawings from the designer's sketches.

STEEL STRUCTURES DESIGN METHODS

Steel design may be based on three design theories:

- 1. Elastic design (Working stress design)
- 2. Plastic design (*Ultimate load design)*
- 3. Limit-state design

1-Elastic design (*Working stress design*) is the traditional method and is still commonly used in the United States. Steel is almost perfectly elastic up to the yield point, and elastic theory is a very good method on which the method is based. Structures are analysed by elastic theory, and sections are sized so that the *permissible stresses* are not exceeded.

(yielding or ultimate) stress

Working $stress \leq permissible stress \approx \frac{\text{yielding}}{\text{yielding}}$

 γ_e

 $\gamma_e \approx 1.7$ Elastic Safty Factore

STEEL STRUCTURES DESIGN METHODS

The working stress methods of design required that the stresses calculated from the most adverse combination of loads must not exceed the specified permissible stresses. **2- Plastic theory** (*Ultimate load*) developed to take account of behaviour past the yield point is based on finding the load that causes the structure to collapse. Then the working load is the collapse load divided by a load factor γ_p . The ultimate load methods of designing steel structures required that the calculated ultimate load-carrying capacity of the complete structure must not exceed the most adverse combination of the loads obtained by multiplying the working loads by the appropriate load factors γ_p . Thus Σ (Working load $\times \gamma_n$) \leq Ultimate load

 $\gamma_p \approx 1.7$ Load Factor

Dr.-Ghayath-Hallak-

STEEL STRUCTURES DESIGN METHODS

2- Plastic theory (Ultimate load)

This approach is based on plastic analysis in which the loads required to cause the structure to collapse are calculated (Ultimate loads). The reasoning behind this method is that, in most steel structures, particularly redundant ones, the loads required to cause the structure to collapse are somewhat larger than the ones which cause yielding. Design, based on this method, calculates the loading required to cause complete collapse and then ensures that this load (Ultimate loads) is greater than the applied loading (working loads); the ratio of collapse load to the maximum applied load (working loads) is called the *load*

factor γ_p

Ultimate load / Working load = γ_p

STEEL STRUCTURES

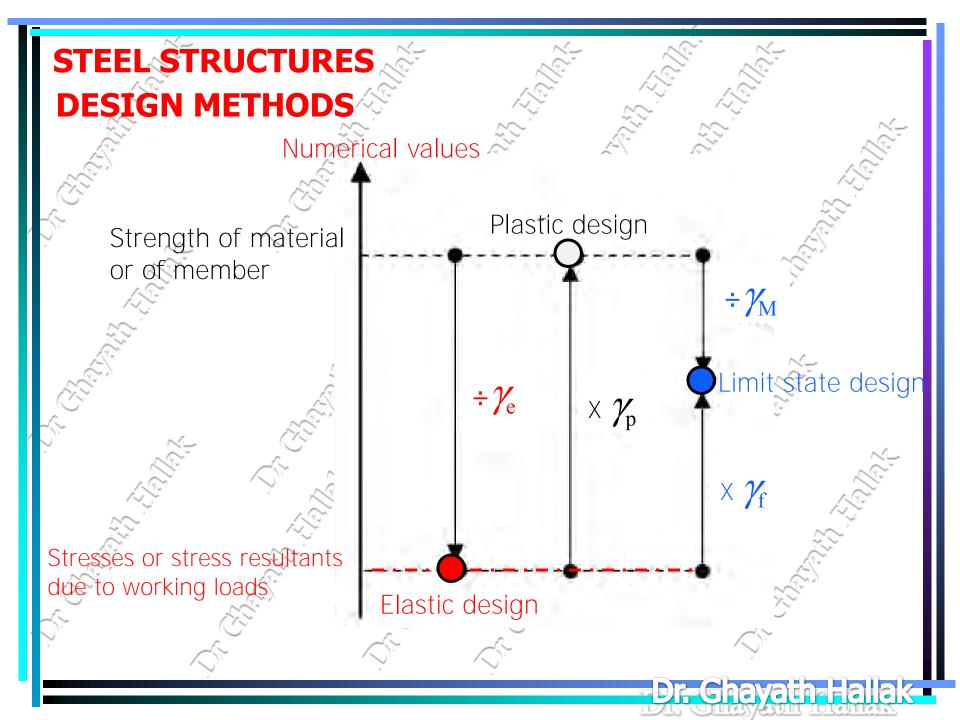
DESIGN METHODS

3- Limit-state design has been developed to take account of all conditions that can make the structure become unfit for use. The design is based on the actual behaviour of materials and structures in use and is in accordance with EN1993.

A structure should not during its lifetime become 'unserviceable', that is, it should be free from risk of collapse, rapid deterioration, fire, cracking, excessive deflection, etc.

Thus for limit states design, the structure is deemed to be satisfactory if Design load effect ≤ Design resistance

 $\Sigma \gamma_f \times$ (effect of specified loads) \leq (specified resistance γ_M)


partial load factors γ_G , γ_Q

internal forces
(axial, shear,
bending moment)

 $E_d \leq R_d$

material partial factors

-Dr.-Ghayath-Hallak

Eurocode program

EN 1990: Basis of structural design

EN 1991-1 Eurocode 1: Actions on structures

Part 1: General actions

Part 1-1: Densities, self weight and imposed loads for buildings

Part 1-3: Snow loads

Part 1-4: Wind actions

Part 1-5: Thermal actions

Part 1-6: Actions during Execution

Part 1-7: Accidental actions from impact and explosions

Part 2: General actions

Traffic loads on Bridges

Eurocode 2

EN 1992 - Design of concrete structures

Eurocode 3

EN 1993: Design of steel structures

Eurocode 4

EN 1994: Design of composite steel and

concrete structures

Eurocode 5

EN 1995: Design of timber structures

Eurocode 6

EN 1996: Design of masonry structures

Eurocode 7

EN 1997: Geotechnical design

Eurocode 8

EN 1998: Design of structures for earthquake

resistance Eurocode 9

EN 1999: Design of aluminium structures

EN 1993 is broken into 6 parts. Part 1 has 12 sub-parts:

V424	
EN 1993-1-1	Eurocode 3: Design of Steel Structures - Part 1-1: General
	rules and rules for buildings
EN 1993-1-2	Eurocode 3: Design of Steel Structures - Part 1-2: General
	rules – structural fire design
EN 1993-1-3	Eurocode 3: Design of Steel Structures - Part 1-3: General
	rules - cold formed thin gauge members and sheeting
	Eurocode 3: Design of Steel Structures - Part 1-4: General
	rules – structures in stainless steel
•	Eurocode 3: Design of Steel Structures - Part 1-5: General
	rules - strength and stability of planar plated structures
	without transverse loading
EN 1993-1-6	Eurocode 3: Design of Steel Structures - Part 1-6: General
	rules - strength and stability of shell structures
EN 1993-1-7	Eurocode 3: Design of Steel Structures - Part 1-7: General
	rules - design values for plated structures subjected to
	out of plane loading
	Eurocode 3: Design of Steel Structures - Part 1-8: General
	rules - design of joints

-Dr-Gnayath-Hallak-

EN 1993 is broken into 6 parts. Part 1 has 12 sub-parts:

Eurocode 3: Design of Steel Structures - Part 1-9: General EN 1993-1-9 rules - fatigue strength EN 1993-1-10 Eurocode 3: Design of Steel Structures - Part 1-10: General rules - material toughness and through thickness assessment EN 1993-1-11 Eurocode 3: Design of Steel Structures - Part 1-11: General rules – design of structures with tension components EN 1993-1-12 Eurocode 3: Design of Steel Structures - Part 1-12: General rules -supplementary rules for high strength steels EN 1993-2 Eurocode 3: Design of Steel Structures - Part 2: Bridges Eurocode 3: Design of Steel Structures - Part 3-1: EN 1993-3-1 Towers, masts and chimneys -towers and masts EN 1993-3-2 Eurocode 3: Design of Steel Structures - Part 3-2: Towers, masts and chimneys - chimneys EN 1993-4-1 Eurocode 3: Design of Steel Structures - Part 4-1: Silos, tanks and pipelines - silos

-Dr-Ghayath-Hallak-

EN 1993 is broken into 6 parts. Part 1 has 12 sub-parts:

A (A (/ / *	4 6 1	
		Structures -	- Part 4	-1: Silos,
Eurocode 3: Design	of Steel	Structures -	- Part 4	-2: Silos,
Eurocode 3: Design	of Steel		- Part 4	-3: Silos,
the state of the s			- Part 5	: Pilina
				0
	17 July 2	192-5- SA	9.37. 1.62.	
	tanks and pipelines Eurocode 3: Design tanks and pipelines Eurocode 3: Design tanks and pipelines Eurocode 3: Design Eurocode 3: Design	tanks and pipelines - silos Eurocode 3: Design of Steel tanks and pipelines -tanks Eurocode 3: Design of Steel tanks and pipelines -pipeline Eurocode 3: Design of Steel	tanks and pipelines - silos Eurocode 3: Design of Steel Structures - tanks and pipelines -tanks Eurocode 3: Design of Steel Structures - tanks and pipelines -pipelines Eurocode 3: Design of Steel Structures - Eurocode 3: Design of Steel Structures -	Eurocode 3: Design of Steel Structures - Part 4 tanks and pipelines -tanks Eurocode 3: Design of Steel Structures - Part 4 tanks and pipelines -pipelines Eurocode 3: Design of Steel Structures - Part 5 Eurocode 3: Design of Steel Structures - Part 6

BS EN 1993: Design of steel structures Part 1-1: General rules and rules for buildings

Chapter 1 General Chapter 2

Basis of Design

Chapter 3 Materials

Chapter 4 Durability

Chapter 5 Structural analysis

Ultimate limit states Chapter 6

Chapter 7 Serviceability limit states

Annex A [informative] - Method 1: Interaction factors kij for interaction

formula in 6.3.3(4)

[informative] - Method 2: Interaction factors kij for interaction Annex B

formula in 6.3.3(4)

Annex AB [informative] - Additional design provisions

Annex BB [informative] — Buckling of components of building structures

STEEL STRUCTURES LIMIT-STATE DESIGN PRINCIPLES

- 1- All separate conditions that make the structure unfit for use {either causing collapse (Yeilding- Buckling...) or Not (Excessive Deflection Vibration....)} are taken into account.
- 2. The design is based on the actual behaviour of materials and performance of structures and members in service. (the strengths are calculated using plastic theory, and post-buckling behaviour is taken into account. The effect of imperfections on design strength is also included.)
- 3- Ideally, design should be based on statistical methods with a small probability of the structure reaching a limit state. Partial factors of safety are introduced to take account of all the uncertainties in loads, materials strengths, approximations are used in design and imperfections in fabrication and erection

Dr. Gnayaun Fallak

DESIGN METHODS LIMIT STATES FOR STEEL DESIGN

~	
Ultimate limit states	Serviceability limit states
 Strength (including general yielding, rupture, buckling and transformation into a mechanism) 	5. Deflection
2. Stability against overturning and sway	6. Vibration (e.g. wind-induced oscillation)
3. Fracture due to fatigue	7. Repairable damage due to fatigue
4. Brittle fracture	8. Corrosion and durability
When the ultimate limit states are exceeded, the whole structure or part of it collapses.	when exceeded, make the structure or part of it unfit for normal use but do not indicate that collapse has occurred.
	DrGhayath-Hallak-

WORKING AND FACTORED LOADS

Working loads

The working loads (specified, characteristic or nominal loads) are the actual loads the structure is designed to carry. These are normally thought of as the maximum loads that will not be exceeded during the life of the structure. In statistical terms, characteristic loads have a 95% probability of not being exceeded.

Factored loads for the ultimate limit states

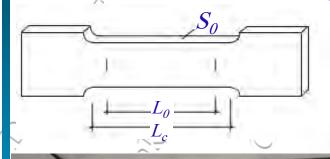
In accordance with EN1990, factored loads are used in design calculations for strength and equilibrium.

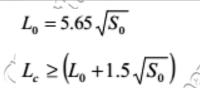
Factored load = working or nominal load \times relevant partial load factor, γ_f

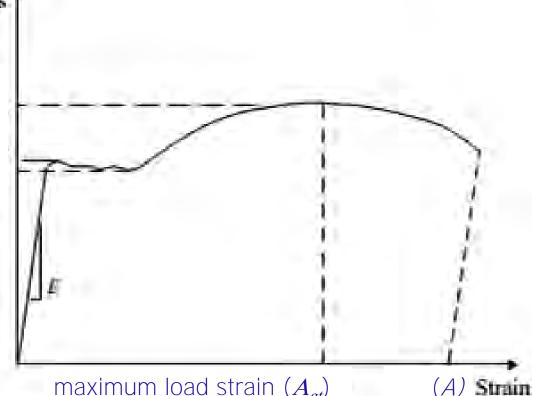
SERVICEABILITY LIMIT-STATE DEFLECTION

Deflection of beams due to unfactored in	mposed loads
Cantilevers	Length/180
Beams carrying plaster or other brittle finish	Span/360`
All other beams (except purlins and sheeting rails)	Span/200
Purlins and sheeting rails	To suit the characteristics of particular cladding
Horizontal deflection of columns due to and wind loads	unfactored imposed
Tops of columns in single-storey buildings except portal frames	Height/300
In each storey of a building with more than one storey	Storey height/300
	~ ~~

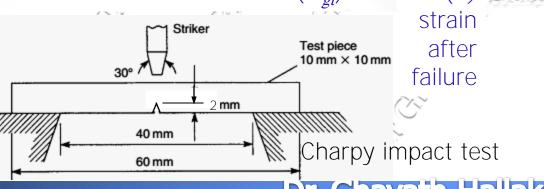
Mechanical Properties of Structural Steel 3.1 STRUCTURAL STEEL PROPERTIES


The steel used in structural engineering is a compound of approximately 98% iron and small percentages of carbon, silicon, manganese, phosphorus, sulphur, niobium and vanadium. Copper and chromium are added to produce the weather-resistant steels that do not require corrosion protection.


Increasing the carbon content increases strength and hardness but reduces ductility and toughness. Carbon content therefore is restricted to between 0,25% and 0,2% to produce a steel that is weldable and not brittle. The niobium and vanadium are introduced to raise the yield strength of the steel; the manganese improves corrosion resistance; and the phosphorus and sulphur are impurities.


Mechanical Properties of Structural Steel

STRUCTURAL Stress. STEEL PROPERTIES


Tensile strength $f_u = R_m$ upper yield stress $f_v = R_{eH}$, lower yield stress R_{eL}

Dr.-Ghayath-Hallak-

Mechanical Properties of Structural Steel STRUCTURAL STEEL PROPERTIES

S Structural steel.

Engineering steel.

235 Minimum yield strength (R_{eH}) in MPa at 16mm

JR Longitudinal Charpy V-notch impacts 27 J

at + 20°C

JO Longitudinal Charpy

V-notch impacts 27 🎵

at 0°C

J2 Longitudinal Charpy

V-notch impacts 27

at - 20°C

K2 Longitudinal Charpy

V-notch impacts 40 J

at - 20°C

Hot-rolled steel grades and qualities according to EN 10025-2

*		~~	. "	-	100	^^.	-		M.				
	N	Minimu	m yiek	d	Tensile	strength	Minim	um per	centage				
Steel		streng	th $R_{\epsilon H}$		R	.m	elor	ngation	after				
grades		(MI	Pa)		(M	Pa)	fracture						
and							$L_o = 5.65 \sqrt{S_0}$						
qualities													
	No	ominal		ess	Nominal		Nom	inal thic	kness				
		(m	m)		(m	m)	(mm)						
		>16	>40	>63		≥3	≥3	>40	>63				
	≤ 16	< 40	≤ 63	≤ 80	< 3	≤ 100	≤40	≤ 63	≤ 100				
S 235JR	235	225	215	215	360 to 510	360 to 510	26	25	24				
S 235J0	235	225	215	215	360 to 510	360 to 510							
S 235J2	235	225	215	215	360 to 510	360 to 510	24	23	22				
S 275JR	275	265	255	245	430 to 580	410 to 560	23	22	21				
S 275J0	275	265	255	245	430 to 580	410 to 560							
S 275J2	275	265	255	245	430 to 580	410 to 560	21	20	19				
S 355JR	355	345	335	325	510 to 680	470 to 630	22	21	20				
S 355J0	355	345	335	325	510 to 680	470 to 630							
S 355J2	355	345	335	325	510 to 680	470 to 630							
S 355K2	335	345	335	325	510 to 680	470 to 630	20	19	18				
S 450J0	450	430	410	390	-	550 to 720	.17	. 17	. 17				
						Ghay			ak				

STRUCTURAL STEEL PROPERTIES

Elastic properties of steel as material

- □- Modulus of elasticity E = 210 GPa;
- \Box The elastic shear modulus G=81000Mpa, G=E/[2(1 + ν)]
- \Box Poisson's ratio in elastic range $\nu = 0.35$
- \Box Coefficient of linear thermal expansion $\alpha = 12x10-6$ /°C;
- \Box Volumetric mass $\rho = 7850 \text{ kg/m}3$.

Ductility requirements

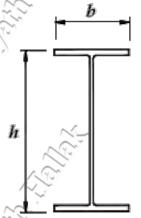
Ductility is the ability of a material to undergo large deformation without breaking.

NA to BS EN 1993-1-1 sets the following requirements:

- 1. Elastic global analysis
 - a $f_u/f_y \ge 1.10$
 - b. Elongation at failure not less than 15% (on a gauge length of $5.65\sqrt{S_0}$, where S_0 is the original cross-sectional area)

STRUCTURAL STEEL PROPERTIES

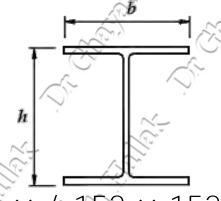
Ductility requirements


- ϵ . $\epsilon_u \ge$ 15 ϵ_y where ϵ_u is the ultimate strain and ϵ_y is the yield strain
- 2. Plastic global analysis

Plastic global analysis should not be used for bridges.

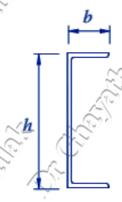
- a. $f_U/f_V \ge 1.15$
- b. Elongation at failure not less than 15% (on a gauge length of $5.65\sqrt{S_0}$, where S_0 is the original crosssectional area)
- c. $\mathbf{\varepsilon}_{u} \ge 20 \, \mathbf{\varepsilon}_{y}$, where $\mathbf{\varepsilon}_{u}$ is the ultimate strain and $\mathbf{\varepsilon}_{y}$ is the yield strain

3.3 STEEL SECTIONS


3.3.1 Rolled and formed sections

h × *b* 127 ×76– 1016 × 305

Universal beam

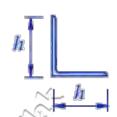

resisting bending moment about the major axis

h × *b* 152 × 152–356 × 406

Universal column

resist axial load $i_v \approx i_z$

h × *b* 100 × 50 – 430 × 100


Parallel angel channel

used for beams, bracing members, truss members, compound members.

Dr.-Ghayath-Hallak

3.3 STEEL SECTIONS

3.3.1 Rolled and formed sections

 $h \times h = 20 \times 20 - 200 \times 200$

Equal angle

used for bracing members, truss members and for purlins, side and sheeting rails.

h × b 30 × 20-200 × 150

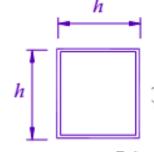
Unequal angle

used for bracing members, truss members and for purlins, side and sheeting rails.

h x b 133 ×102–305 × 457Structural tee cut form UB

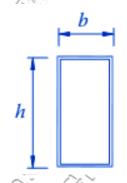
used for truss members, ties and light beams.

3.3 STEEL SECTIONS


3.3.1 Rolled and formed sections

26.9 to 193.7 Hotfinished 7 to 508.0 Coldformed

Circular Hollow Section


compression members 🕾

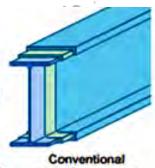
h × h 40 × 40-400 × 400 Hot-finished $h \times h 25 \times 25 -$ 400 × 400 Cold-formed | 500×300Cold-formed

Square Hollow Section

compression members

500×300 Hot-finished h × b 50×25-

Rectangular **Hollow Section**


compression members

Used in roof trusses, lattice girders, building frames and for ourlins, sheeting rails, etc.

3.3 STEEL SECTIONS 3.3.1 Rolled and formed sections

Universal roll for rolling wide-flange beam

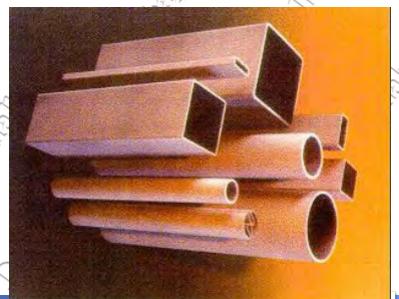
wide-flange beam (Synchronous change of beam depth and width)

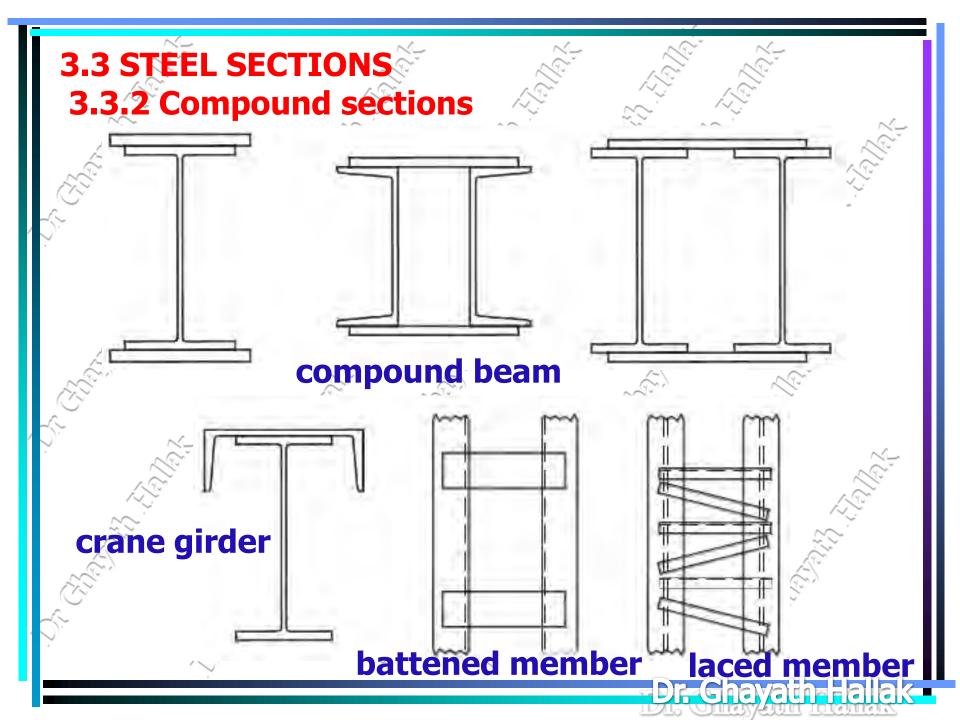
Slab or bloom

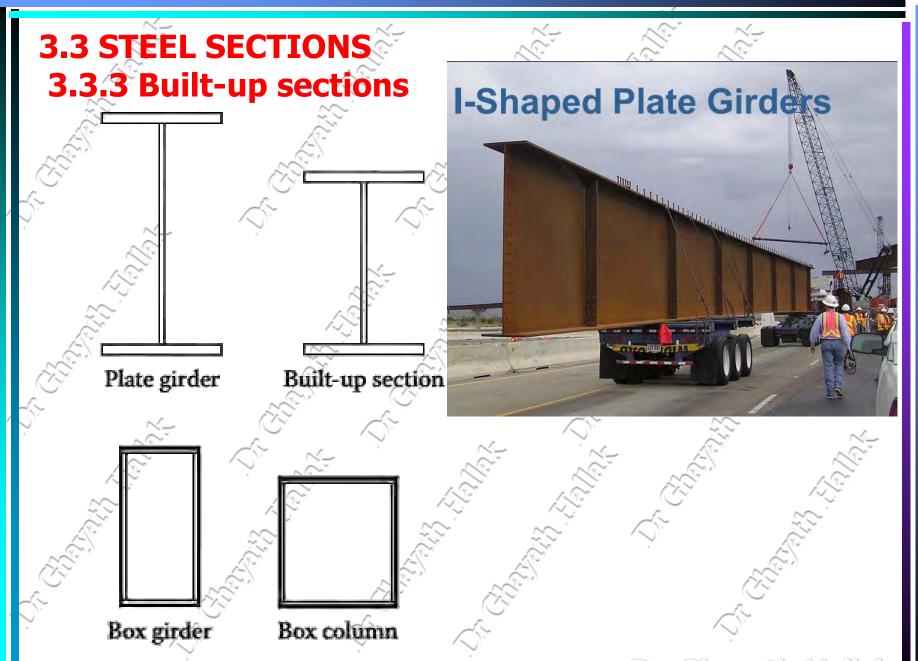
Breakdown mill

Intermediate rolling

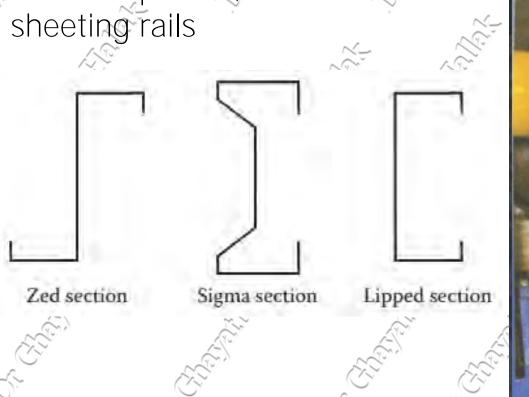
Universal rolling mill

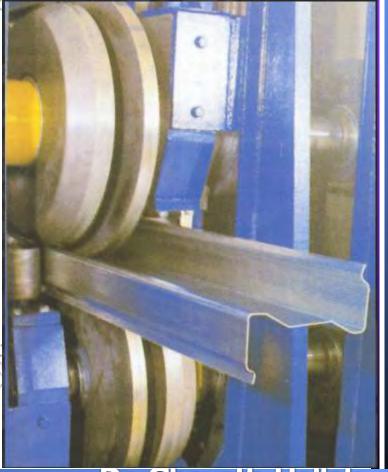

Edging mill


Finish rolling


Universal rolling mill

unayaun nalak-



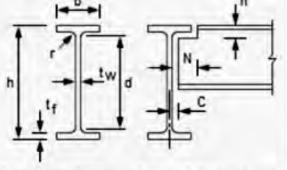

3.3 STEEL SECTIONS 3.3.4 Cold-rolled open sections

Thin steel plates can be formed into a wide range of sections

by cold rolling.

Used for purlins, side and

Dr-Ghayath-Hallak-


BS EN 1993-1-1: 2005 BS 4-1: 2005

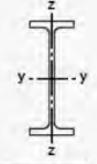
UK

SECTION PROPERTIES UNIVERSAL BEAMS Advance® UKB

DIMENSIONS

B-2

Section Designation	Mass per Metre	Depth of Section	Width of Section	of		Root Radius	The second secon		s for luckling	Dimer De	Surfac	e Area		
	kg/m	J. J		Web	4	r mm	d mm	Flange C ₁ /4	Web c _w /t _w	End Clearance	Notch		Per Metre	Per Tonne
		h	b mm	-W mm						C mm	N mm	n	m ²	m ²
1016 x 305 x 487 +	486.7	1036.3	308.5	30.0	54.1	30.0	868.1	2.02	28.9	17	150	86	3.20	6.58
1016 x 305 x 437 +	437.0	1026.1	305.4	26.9	49.0	30.0	868.1	2.23	32.3	15	150	80	3.17	7.25
1016 x 305 x 393 +	392.7	1015.9	303.0	24.4	43.9	30.0	868.1	2.49	35.6	14	150	74	3.14	8.00
1016 x 305 x 349 +	349.4	1008.1	302.0	21.1	40.0	30.0	868.1	2.76	41.1	13	152	70	3.13	8.96
1016 x 305 x 314 +	314.3	999.9	300.0	19.1	35.9	30.0	868.1	3.08	45.5	12	152	66	3.11	9.89
1016 x 305 x 272 +	272 3	990.1	200	16.5	31.0	30.0	868.1	3.60	776	10	152	62	3.10	11.4
1016 x 305 x 249 +		980.1		16.5	26.0		868.1			10	*	56	3.08	*4
240 205 205										-			1	


BS EN 1993-1-1: 2005 BS 4-1: 2005

UK EUROCODES SECTION PROPERTIES

UNIVERSAL BEAMS

Advance® UKB

PROPERTIES

B-3

Section Designation	Second I of A	Radius of Gyration		Elastic Modulus		Plastic Modulus		Buckling Parameter	Torsional Index	Warping Constant	Torsional Constant	Area of Sectio	
	Axis y-y	Axis z-z	Axis y-y	Axis z-z	Axis y-y cm ³	Axis z-z cm ³	Axis y-y	Axis z-z cm ³	U	x			
	cm ⁴	cm ⁴	cm	cm			cm ³			*	dm ⁶	cm ⁴	cm ²
1016 x 305 x 487 +	1020000	26700	40.6	6.57	19700	1730	23200	2800	0.867	21.1	64.4	4300	620
1016 x 305 x 437 +	910000	23400	40.4	6.49	17700	1540	20800	2470	0.868	23.1	56.0	3190	557
1016 x 305 x 393 +	808000	20500	40.2	6.40	15900	1350	18500	2170	0.868	25.5	48.4	2330	500
1016 x 305 x 349 +	723000	18500	40.3	6.44	14300	1220	16600	1940	0.872	27.9	43.3	1720	445
1016 x 305 x 314 +	644000	16200	40.1	6.37	12900	1080	14800	1710	0.872	30.7	37.7	1260	400
101	554000	1/1		6.35	11200	934	12800	1470	0.872	35.	.35	835	347
	24000			•	9820	784	117		961	3'			3

Poutrelles I européennes (suite)

Dimensions: IPE 80 - 600 conformes à l'Euronorme 19-57; IPE A 80 - 600; IPE O 180 - 600; IPE 750

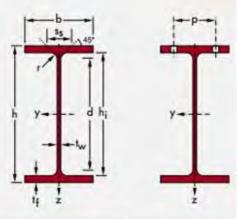
Tolérances: EN 10034: 1993

Etat de surface conforme à EN 10163-3: 1991, classe C, sous-classe 1

European I beams (continued)

Dimensions: IPE 80 - 600 in accordance with Euronorm 19-57; IPE A 80 - 600; IPE O 180 - 600; IPE 750

Tolerances: EN 10034: 1993

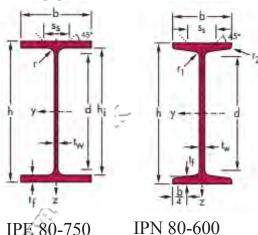

Surface condition according to EN 10163-3:1991, class C, subclass 1

Europäische I-Profile (Fortsetzung)

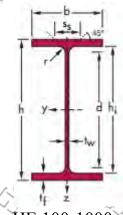
Abmessungen: IPE 80 - 600 gemäß Euronorm 19-57; IPE A 80 - 600; IPE O 180 - 600; IPE 750

Toleranzen: EN 10034: 1993

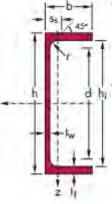
Oberflächenbeschaffenheit gemäß EN 10163-3: 1991, Klasse C, Untergruppe 1


r-Ghayath-Hallak-

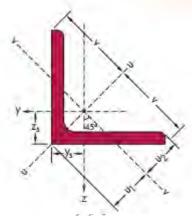
Désign Design Bezeich	ation			imension messung					imension Dimension Konst		detailing		Surf	face Täche
	G kg/m	h	b mm	t _w	t _f	r mm	A mm²	h _i mm	d mm	Ø	P _{min} mm	P _{max} mm	A _L m²/m	A _G m ² /t
	T						x 10 ²							
IPE A 500°	79,4	497	200	8,4	14,5	21	101	468	426	M 24	100	112	1,741	21,94
IPE 500	90,7	500	200	10,2	16	21	116	468	426	M 24	102	112	1,744	19,23
IPE 0 500+	107	506	202	12	19	21	137	468	426	M 24	104	114	1,760	16,40
IPF A 550*	92,1	547	210	•	15,7	24	117	515,6	467,6	M 24	106	122	1,875	20,36
	106	550			7.0	24	134	tir.	1174	M 24	110	122	****	17,78
	122	122				24	1"				***	101		

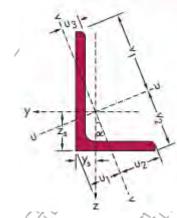


Notations pages 211-215 / Bezeichnungen Seiten 211-215


Désign	ation		Va	leurs sto	atique	/ Sect	tion properties / Statische Kennwerte									Classification					
Designation Bezeichnung			axe fort y-y strong axis y-y starke Achse y-y					weak	ible z-z axis z-z Achse z			pure pure bending yy compression						3.3			
	G kg/m	ly mm²	W _{el.y}	W _{pl.y} +	i _y mm	A _{vz}	l _z mm ⁴	W _{el.z}	W _{pl.z} ↓	i _z mm	S _S	l _f	I _w	235	355	\$ 460	355	9	R	EN 1011	
		x 104	x 10 ³	x 10 ³	× 10	x 10 ²	x 10 ⁴	x 10 ³	x 10 ³	x 10		x 10 ⁴	x 10°	T							
IPE A 500	79,4	42930	1728	1946	20,61	50,41	1939	193,9	301,6	4,38	62,00	62,78	1125	1	1	- 1	4		V	11	
IPE 500	90,7	48200	1928	2194	20,43	59,87	2142	214,2	335,9	4,31	66,80	89,29	1249	1	1	1 3	3 4	4	-	HI HI	
IPE 0 500	107	57780	2284	2613	20,56	70,21	2622	259,6	408,5	4,38	74,60	143,5	1548	1	1	1 2	2 4	4	-	HI HI	
IPEA 550	92,1	59980	2193	2475	22,61	60,30	2432	231,6	361,5	4,55	68,52	86,53	1710	1	1	- 1	1 4				
IPE 550	106	67120	2441	2787	20 25	72,34	2668	254,1	400,5	4,45	73,62	123,2	1884	1	1	1 /	4	4	-	HI HI	
IPE O Ser	23	79160	2847			7.69	3224	304,2	480,5			187,5	2302	1	1	1 2	2 4	4	4	HI HI	
	-	82920					3116	283,3					2/07	,		•					
							3387														

IPE 80-750


HE 100-1000 HL920-1100


UPE 80-400 UAP80-300

UPN 80-400 U 40x20-65x42

 $L20 \times 20 \times 3$ $L\,250\times250\times35$

L 120 x 80 x 8 $L\ 200\times100\times14$

European Sections

Dr.-Ghayath-Hallak-

Area

Moment of inertia y-y axis

Moment of inertia z-z axis

Radius of gyration y-y axis

Radius of gyration z-z axis

Modulus of section y-y axis

Modulus of section z-z axis

 $A = 2bt_f + dt_w$

$$I_{y} = \frac{bh^{3}}{12} - \frac{(b - t_{w})d^{3}}{12}$$


$$I_z = \frac{2t_f b^3}{12} + \frac{dt_w^3}{12}$$

$$i_{y} = \left(\frac{I_{y}}{A}\right)^{0.5}$$

$$i_z = \left(\frac{I_z}{A}\right)^{0.}$$

$$W_{el,y} = \frac{2l_y}{h}$$

$$W_{el,z} = \frac{2I_z}{L}$$

yy Centroidal axis

y₁y₁ Equal area axis

$$W_{pl,y} = \frac{2bt_f(h - t_f)}{2} + \frac{t_w d^2}{4}$$

$$W_{pl,z} = \frac{2t_f b^2}{4} + \frac{dt_w^2}{4}$$

Plastic moduli of section

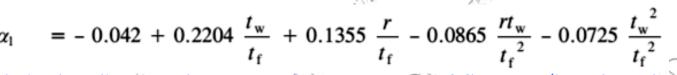
Equal to the algebraic sum of the first moments of area about the equal area axis

Dr. Ghayath Hallak

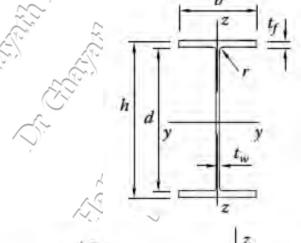
Buckling parameter (
$$U$$
) $U = \left(\frac{W_{\rm pl,y}g}{A}\right)^{0.5} \times \left(\frac{I_{\rm z}}{I_{\rm w}}\right)^{0.25}$

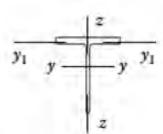
Torsional index (X) $X = \sqrt{\frac{\pi^2 EAI_w}{20GI_TI_T}}$

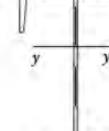
$$X = \sqrt{\frac{\pi^2 EAI_w}{20GI_T I_z}}$$


Warping constant (I_w) $I_w = \frac{I_z h_s^2}{\Lambda}$

Torsional constant (I_7)


$$I_{\rm T} = \frac{2}{3}bt_{\rm f}^3 + \frac{1}{3}(h - 2t_{\rm f})t_{\rm w}^3 + 2\alpha_1D_1^4 - 0.420t_{\rm f}^4$$


$$g = \sqrt{1 - \frac{I_z}{I_y}} / CG = \frac{E}{2(1 + \nu)}$$


$$D_1 = \frac{(t_f + r)^2 + (r + 0.25 t_w) t_w}{2r + t_f}$$

 h_s is the distance between shear centres of flanges (i.e. $h_s = h - t_f$)

yy Centroidal axis

y₁y₁ Equal area axis