

Design situations

There are four types of design situation:
 persistent, corresponding to normal use;
 transient, temporary conditions e.g. during construction, refurbishment or repair
 accidental, exceptional conditions such as fire, explosion or earthquake.

• Seismic: conditions that are applicable to the structure during a seismic event.

✓ - <u>Permanent actions (G, g): (Dead loads)</u> (EN1991- 1-1)

TYPES OF ACTIONS

The self-weight of the structural and non-structural elements. (weights of floor slabs, roofs, walls, ceilings, partitions, finishes, services and self-weight of steel).

Loads due to prestressing, shrinkage of concrete

Permanent actions are represented (and specified) by a characteristic value, G_k . **'Characteristic'** implies a defined fractile of an assumed statistical distribution of the action, modelled as a random variable. For permanent loads, it is usually the mean value (50% fractile).

TYPES OF ACTIONS A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions (Q, q) 'actions for which the variation
 A - Variable actions
 A - Variable
 in magnitude with time is neither negligible nor monotonic' Imposed floor & roof loads 20 Snow loads Wind loads Dead load Traffi Live load Bridge Moving live load Snow Wind . Building Dead load

Dr-Ghayath-Hallak-

Variable actions are sub-divided into : **TYPES OF ACTIONS**

<u>1-Leading variable actions</u> These are variable actions which when acting on a structure cause the most significant structural effects. 2- Accompanying variable actions (non-leading) These are variable actions that act on a structure at the same time as the leading variable action.

Variable actions have four representative values:
characteristic (Q_k), normally the upper 5% fractile
combination (ψ₀Q_k), for use where the action is assumed to accompany the design ultimate value of another variable action, which is the 'leading action';
frequent (ψ₁Q_k), for example, occurring at least once a week

• quasi-permanent ($\psi_2 Q_k$).

Imposed floor loads BS EN 1991-1-1 identifies four categories of use: A areas for domestic and residential activities B office areas C areas where people may congregate D shopping areas.

All categories have additional sub-categories - the UK NA provides a large number of sub-categories with examples. For each category of loaded area, imposed loads are given both as a point load, Qk and a uniformly distributed load, q k . For most design purposes, the point load has little effect other than for local checking. The uniformly distributed load will be used for general design.

'On roofs (particularly for category H roofs), imposed loads, need not be applied in combination with either snow loads and/or wind actions.' The intent is that:

(a) imposed roof loads and wind should not be combined(b) imposed roof loads and snow should not be combined(c) that snow loads and wind loads should be combined.

Category of los	aded area		A Q.
500		kN/m ^g (C)	kn A
Category A	A1	1,5	2,0
0	A2	1,5	2,0
	A3	2,0	2,0 2,0 0
12	A4	2,0	2,7
22	A5	2,5	2,0
	A6	Same as the rooms to which they give access but with a minimum of 3,0	2,0 (concentrated at the outer edge)
т	A7	Same as the rooms to which they give access but with a minimum of 4,0	2,0 (concentrated at the outer edge)
Category B	B1	2,5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2,7 🔊
12.3	B2	3,0	2,7,5
Category C	C11	2,0	3,0
and a start	C12	2,5	4,0
22	C13	3,0	3,0
	C21	4,0 (5) (5)	3,6
)*	C22	3,0	2,7

FYPES	OF A	CTIONS	loors, balconies and	stairs in building	(8
Category of los	aded area	k)	a de la contra de	A C R	A A
, ,	C31	3,0		4,5	323
^	<u>C</u> 32	3,0		4,0	E.
L	C33	4,0		4,5	9
1. The	C34	5,0	1911 - 19	4,5	
200	C35	4,0	14	4,0	
(7) ×	C36	3,0 ^\;	275	2,0	
and a start	C37	5,0	Sec.	3,6	10 ⁻⁷
2	C38	7,5 🔗 🔗	S	Q 4,5 A	
	C39	4,0	~	4,5	
N	C41	5,0		3,6	\sim
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C42	5,0	200 200	7,0	A.
14	C51	5,0		3,6	12
22	C52	7,5		4,5	200
ategory D	D1/D2	4,0		3,6	AN IN
To a local de la companya	No.	See See	St.		

#### Table NA.5 - Imposed floor loads due to storage

N-

Category of loaded area	₹kN/m²	Q. kin
E11	2,0 200 200 200	1,8
E12	4,0	4,5
E13	2,4 per metre of storage height	7,0
E14 🖉	5,0	4,5
E15	2,4 per metre of storage height but with a minimum of 6,5	7,0
E16	4,0 per metre of storage height	9,0
E17	4,8 per metre of storage height but with a minimum of 9,6	7,0
E18	4,8 per metre of storage height but with a minimum of 15,0	7,0
E19	5,0 per metre of storage height but with a minimum of 15,0	A 9,0

NOTE E13 is a general category, however, designers are encouraged to liaise with clients to determine more specific load values than the lower bound value given in this table.

TYPES OF ACTIONS Table NA.6 — Imposed	l loads on garag	es and vehicle traffic area	s
Categories of traffic areas	gk kN/m ²	AN KN	
Category F (gross vehicle weight ≤ 30 kN)	2,5	10,0	12
Category G ∠ (30 kN < gross vehicle weight ≤ 160 kN)	5,0	To be determined for specific	use
NOTE $q_k$ and $Q_k$ should not be applied simultaneo	usly.		2
able NA.7 — Imposed loads on roofs	not accessible e	except for normal maintens	ance and repair

No.	Roof slope, α	E.S.	gk gk	S	S <b>Q</b>	2
►	degrees	-50°	kN/m ²	~	<u>k</u> N	
$\alpha < 30^{\circ}$		~	0,6	$\sim$	0,9	2
$30^{\circ} \leq \alpha$	< 60°	2.	0,6[(60 – α)/30]	. 2		Control of the second s
$\alpha \geq 60^{\circ}$			0		E P	12

NOTE 1 All roof slopes  $\alpha$  are measured from the horizontal and all loads should be applied vertically.

NOTE 2 In evaluating Table NA.7 for curved roofs the roofs should be divided into not less than five equal segments and the mean slope of each segment considered to be equivalent to the roof slope,  $\alpha$ .

NOTE 3 BS EN 1991-1-1:2002, Note 3 to Table 6.10 states that  $q_k$  may be assumed to act on an area A. It is recommended that the value of A should be the whole area of the roof.

✓ - Accidental actions (A) are caused by events that usually have a short duration but have a significant effect. It is considered that such events have a low probability of occurrence during the design working life of a structure. (fire, impact and explosion).

**BASIS OF DESIGN** 'Effect of actions' The effects of actions are the responses of the structure to the actions: stresses, strains, deformations, crack widths, etc., as well as bending moments, shear forces, etc.  $E_{d} = E(F_{d})$ function *E* represents the process of structural analysis. Where the effect is an internal force or moment.  $F_{d} = \gamma_{F} F_{k}$  Design values of actions e.g.  $G_{\rm d} = \gamma_{\rm G} G_{\rm k}$  $Q_{\rm d} = \gamma_{\rm Q} Q_{\rm k}$  or  $Q_{\rm d} = \gamma_{\rm Q} \psi_{\rm i} Q_{\rm k}$ **Characteristic loads** ( $G_k$ ,  $Q_k$ ,  $A_k$ ) are those loads which have an acceptably small probability of not being exceeded during the lifetime of the structure. Ghayath-Hallak-

#### **BASIS OF DESIGN**

**The design (or factored) load** (G_d, Q_d, A_d) is the characteristic (working) load multiplied by the relevant partial safety factor.

M_{Rd}

 $\leq$ 

□- Verification for an *ultimate limit state* consists of checking that  $F_{\text{Ed}} \leq Rd$ 

1_{Ed}

design *effect from structural* analysis M, V, N (internal)

e.g.

design resistance from section Resistance

Dr-Ghayath-Hallak-

applied ultimate bending moment (an 'action effect' or 'effect of action')

bending resistanc

BASIS OF DESIGN

 $\mathsf{Ed} \leq \mathsf{Rd}$ 

The design effect = a load or characteristic action X various partial factors (usually to increase it for the design situation)

 $E_{\rm d} = \gamma_{\rm f} \psi F_{\rm k}$ 

 $\begin{array}{c} \textbf{E}_{d} \text{ is the design value of the load} \\ \textbf{F}_{k} \text{ is the characteristic value of the action} \\ \textbf{\psi} & \text{factor that converts} \\ \textbf{the characteristic value to a representative value} \\ \textbf{\gamma}_{f} & \text{Partial load factor} \end{array}$ 

The design resistance = the characteristic strength of the material(s) being designed 🛶 some partial factor (usually to reduce it for the design situation)  $R_{\rm d} = R_{\rm k}/\gamma_{\rm m}$ R_d is the design value of the material's resistance or strength R_k is the characteristic value used in design  $\gamma_{\rm m}$  A partial material factor is applied to the material strength Ghayath-Hallak-





**Combination of actions and design resistance** Four ultimate limit states are identified in BS EN 1990: EQU, which should be verified when considering overturning or sliding STR, which concerns strength of the structure **GEO**, covering strength of the ground and is used in foundation design
 **FAT**, covering fatigue failure. For ultimate limit states, the principles of combination are: permanent actions are present in all combinations; - each variable action is chosen in turn to be the 'leading' action (i.e., to have its full design value) and is combined with lower 'combination' values of other variable actions that may co-exist with it; the design action effect is the most unfavourable of those found by this process. -Dr-Ghayath-Hallak-



a	rtial factors for actions for u	Itimate Limi	t states $\gamma_0$	Q,G,W
	action	unfavourable effect	favourable effect	Eller,
3	permanent actions $\gamma_{G}$ (EQU)	1,10	0,9	\$3.
	permanent actions $\gamma_{G}$ (STR)	1,35	1,0	
	variable action $\gamma_Q$ (imposed loads on buildings acc. to EN 1991-1)	1,5	0	
23	wind loads (EN 1991-4)	1,5	0	
-	snow loads (EN 1991-3)	1,5	0	~L
	climatic temperature effects (EN 1991-5)	1,5	0	EU (2)-3
2	Shrinkage	1,0	1,0	
5	prestressing by controlled imposed deformations (EN 1994-1-1)	1,0	1,0	

## Combination factor values for actions acc to EN 1990

	action	Ψο	Ψ1	Ψ2
category	imposed loads on buildings acc. to EN 1991-1			
А	domestic, residential areas	0,7	0,5	0,3
В	office areas	0,7	0,5	0,3
С	congregation areas	0,7	0,7	0,6
D	shopping areas	0,7	0,7	0,6
E	storage areas	1,0	0,9	0,8
F	traffic area (vehicle weight ≤ 30 kN)	0,7	0,7	0,6
G	traffic area (vehicle weight 30kN <q td="" ≤160kn<=""><td>0,7</td><td>0,5</td><td>0,3</td></q>	0,7	0,5	0,3
н	roofs	0	0	0
<b>snow load</b> 1991-3)	Is for sites located at altidude $H \le 1000m$ (EN	0,5	0,2	0
wind load	<b>s</b> on buildings (EN 1991-4)	0,6*	0,2	0
climatic te	mperature effects in buildings (EN 1991-5)	0,6	0,5	0
* 0.5 i	s UK NA value, 0.6 is the unmodi	fied E	C value	
		Dr	Ghayat	Falak

#### Combination of actions and design resistance

# Equations 6.10a and 6.10b – use less favourable result:

 $\sum_{\mathbf{j} \geq 1} \gamma_{\mathbf{G},\mathbf{j}} \mathbf{G}_{\mathbf{k},\mathbf{j}} + \gamma_{\mathbf{P}} \mathbf{P} + \gamma_{\mathbf{Q},1} \psi_{\mathbf{0},1} \mathbf{Q}_{\mathbf{k},1} + \sum_{\mathbf{j} \geq 1} \sum_{\mathbf{j} \geq 1} \gamma_{\mathbf{Q},\mathbf{j}} \psi_{\mathbf{0},\mathbf{j}} \mathbf{Q}_{\mathbf{k},\mathbf{j}}$ 

 $\underbrace{\chi_{\mathsf{G},j}}_{\mathsf{G},j}\mathbf{G}_{\mathsf{k},j} "+ "\gamma_{\mathsf{P}}\mathsf{P} "+ "\gamma_{\mathsf{Q},1}\mathbf{Q}_{\mathsf{k},1} "+ "\sum_{\gamma_{\mathsf{Q},i}\psi_{0,i}}\mathbf{Q}_{\mathsf{k},i}$ 

Unfavourable dead load reduction factor (i.e. not applied when  $\gamma_{\rm G}$  = 1),  $\xi$  = 0.925 in UK NA (0.85 is the unmodified EC value)

#### Equilibrium check (EQU): For checking sliding or overturning of the structure as a rigid body, only Eq. 6.10 may be used.

Dr-Ghayath-Hallak-



#### Combination of actions and design resistance

Table 14.4. Typical STR combinations of actions arising from equations (6.10a) and (6.10b) of EN 1990

Combination	Load factor $\gamma$				
	Dead $\gamma_{\rm G}$	Imposed $\gamma_{\rm Q}$	Wind $\gamma_{\rm Q}$		
Permanent + imposed: equation (6.10a)	1.35	1.05	-		
Permanent + imposed + wind: equation (6.10a)	1.35	1.05	0.75		
Permanent + imposed: equation (6.10b)	1.25	1.5	-		
Permanent + wind (uplift): equation (6.10b)	1.0	-	1.5		
Permanent + imposed + wind (imposed leading): equation (6.10b)	1.25	1.5	0.75		
Permanent + imposed + wind (wind leading): equation (6.10b)	1.25	0.75	1.5		

 $\gamma_{\rm G} = 1.35$  $\xi \gamma_{\rm G} = 0.925 \times 1.35 = 1.25$ =1.5 Leading (imposed or wind)  $\gamma_{Q2}\psi_{0,2} = 1.5x0.7 = 1.05 \text{ non-leading (imposed)}$  $\gamma_{Q2}\psi_{0,2} = 1.5 \times 0.5 = 0.75$  non-leading (Wind)

#### Combination of actions and design resistance

The use of the expression 6.10 and the pair of expressions 6.10a and 6.10b

The table assumes the permanent action is 3.5kN/m²; the imposed floor load is 5kN/m² and the snow load is 0.8kN/m².

Expression	Leading variable action	Permanent action	Leading variable action	Other variable action	Total
			Factored loads (I	«N/m²)	
6.10	imposed floor load	d 4.73	7.50	0.60	12.83
6.10	snow load	4.73	1.20	5.25	11.18
6.10a 6.10a	imposed floor load snow load	d 4.73 4.73	5.25 0.60	0.60 5.25	10.58 10.58
6.10b	imposed floor load	d 4.37	7.50	0.60	12.47
6.10b	snow load	4.37	1.20	5.25	10.92
6.10	7	2	6.10.a	245	3
$1.35 \times G$ "+" $1.5$	$5 \times Q_{\rm f}$ "+ " 1.5 × 0.5 >	$\langle Q_{\rm s} \rangle$	$1.35 \times G$ "+" 1.	$5 \times 0.7 \times Q_{\rm f}$ "+" 1.5	$\times 0.5 \times Q_{\rm s}$
1.35× <i>G</i> "+ " 1.5	5×Qs "+" 1.5×0.7>	¢Qt	$1.35 \times G$ "+" 1.	$5 \times 0.5 \times Q_{\rm s}$ "+" 1.52	$\times 0.7 \times Q_{\rm f}$
-05- -57-	6.10.b	$0.925 \times 1.35 \times G$	"+" $1.5 \times Q_{\rm f}$ "+" 1.	$5 \times 0.5 \times Q_s$	
ĩ	$\sqrt{2}$	$0.925 \times 1.35 \times G$	"+" $1.5 \times Q_{\rm s}$ "+" $1.5$	$5 \times 0.7 \times Q_{\rm f}$	
			10		6 6 6 6 6



## Partial safety factors for material (recommended values)

#### ultimate limit states (STR)

	desig situati	in on	structural steel reinforcement co		concre	te	e shear connec (headed stud							
	persisten transie	t and ent	γ _{a,mo} = γ _{a,m1} =	= 1,0 = 1,0 γ _s = 1		,15	γ _c = 1,50		5 γ _c = 1,50		r	v _v = 1,25		
	accider	ntal	γ _{a,} =	1,0	$\gamma_s = 1$	,00	γ _c = 1,20		.20 γ _V = 1,00					
fa	tigue (F	TAF)												
			structu	ral stee	I									
		l conse of f	ow equence ailure	h conse of fa	igh equence ailure	reinforcement		con	crete	shear connection				
	damage tolerant	$\gamma_{f,a}$	= 1,00	γ _{f,a} :	= 1,15	ar - 1.15		w _ 1.15		w _ 1.15		w _ 1.15 _ w _ 1		γ = 1.00
	safe life	$\gamma_{f,a}$	= 1,15	$\gamma_{f,a}$ :	= 1,35	/f,s	_ 1,10	lf,c⁻	-1,00	7 _{f,V} = 1,00				

 $\gamma_a$  =1.25 for structural steel subjected to direct tension, bolts, plates and welds

Dr-Ghayath-Hallak-

### **Partial safety factors for material**

## $\gamma_{\mathbf{M}}$ account for material and modelling uncertainties:

(V)			
Pa	artial factor $\gamma_M$	EC 3 value (UK NA value)	Application
	Υ _{MO}	1.00 (1.00)	Cross-sections
de la	Υ _{M1}	1.00 (1.00)	Member buckling
2	Υ _{M2}	1.25 (1.10)	Fracture
Charles Charles	T. Charles C. C.		The second secon
			-DrGhayath-Halla



#### Serviceability limit state

The UK NA states that the **characteristic combination** of actions should be used at SLS. The characteristic combination of actions is given as expression 6.14b in BS EN 1990:  $\bigotimes \sum G_{\mathbf{k},\mathbf{j}} \texttt{"+"} \mathcal{Q}_{k,1} \texttt{"+"} \sum \psi_{0,i} \mathcal{Q}_{k,i}$ 

(6.14b)

-Dr-Ghayath-Hallak-

The UK National Annex states that serviceability deflections should be **based on unfactored variable actions**, and that **permanent actions need not be included**. In the UK therefore, expression 6.14b reduces to:  $Q_{k,1}$ "+"  $\sum \psi_{0,i}Q_{k,i}$ 

The calculated deflections should compared with certain deflection limits for members provides by the UK NA. Vertical deflection limits are given in the previous lecture.

### STRUCTURAL INSTABILITY

□ When structural or mechanical systems are designed, the three factors that must always be considered are:

- Stiffness: If a structural or mechanical system deflects or deforms too much under expected design loads, then it is not acceptable. In this case the system does not have sufficient stiffness.
  - Strength: if the yield or failure stress in any member in the structure is exceeded, the structure does not have sufficient strength.

**Stability**: Compression loads in long slender structural members can cause buckling behavior which is unstable.





## <u> 2- Torsional-fluxeral Buckling</u>

Combination of Flexural and Torsional Buckling Only with unsymmetrical cross section (channels, structural Tee, double angles, equal and unequal single leg angles

before

after







Twisting about longitudinal axis of member. Only with doubly symmetrical cross section with slender cross-sectional elements. Standard Hot-Rolled shape are Not susceptible.

- Torsional buckling

