مثّال 1 عظى التصصيم الزلزالي للجدران الحجرية المسلحة
 Lec. 04
 Seismic Design of Reinforced Masonry Walls (Example1)

د.م. ريم الصحناوي
E-mail: reemsalman_seh@Hotmail.com

Problem 1

Seismic design of a flexural shear wall of limited ductility

Perform the seismic design of a shear wall X_{1}. The wall is four storeys high, with the total height of 14 m , and due to its height must be designed either as a "limited ductility" or a "moderate ductility" shear wall.
The section at the base of the wall is subjected to the total dead load of 1800 kN , the in-plane seismic shear force of 1450 kN , and the overturning moment of 14500 kNm.
Select the wall dimensions (length and thickness) and the reinforcement , seismic design requirements for limited ductility shear walls are satisfied. Due to architectural constraints, the wall length should not exceed 10 m , and a rectangular wall section should be used. Neglect the out-of-plane effects in this design. Use hollow concrete blocks of 20 MPa unit strength and Type S mortar. Consider the wall as solid grouted. Grade 400 steel reinforcement (yield strength $\mathrm{f}_{\mathrm{y}}=400$ MPa) is used for this design.

Solution 1

1. Material properties:

Steel (both reinforcing bars and joint reinforcement):

$$
\phi_{x}=0.85 f_{y}=400 \mathrm{MPa}
$$

Masonry:

$$
\phi_{m}=0.6
$$

20 MPa concrete blocks and Type S mortar: $\boldsymbol{f}^{\prime}{ }_{\mathrm{m}}=\mathbf{1 0 . 0} \mathbf{~ M P a}$ (assume solid grouted masonry)

2. Load analysis:

The section at the base of the wall needs to be designed for:

- $\mathrm{P}_{\mathrm{f}}=1800 \mathrm{kN}$ axial load
- $\mathrm{V}_{\mathrm{f}}=1450 \mathrm{kN}$ seismic shear force

- $\mathrm{M}_{\mathrm{f}}=14500 \mathrm{kNm}$ overturning moment

Solution 1

$$
\begin{aligned}
& \text { 1- تحديد نوع الجدار (على الانعطاف أو جدار قص قصير) } \\
& \text { 2- تحديد سمـاكة الجدار } \\
& \text { 3- تحديد طول الجدار }
\end{aligned}
$$

4- متطلبات التسليح الانيا (مساحات تسليح الانيا أفقي وشاقولي والتباعدات بين القضبان). 5- حساب التسليح الثاقولي.

Solution 1

$\mathrm{h}_{\mathrm{w}}=14000 \mathrm{~mm}$ height, $\mathrm{l}_{\mathrm{w}}=10000 \mathrm{~mm}$ length, Then:

$$
\frac{h_{*}}{l_{*}} \geq \frac{14000}{10000} \geq 1.4>1.0 \quad \Rightarrow \quad \text { flexural shear wall }
$$

seismic design requirements for limited ductility (flexural) shear walls should be followed.

Solution 1

3. Determine the required wall thickness:
based on the height-to-thickness requirements:
limited ductility shear walls:

$$
h(t+10)<18
$$

$\mathrm{h}=5000 \mathrm{~mm}$ (the largest unsupported wall height) So, $\mathrm{t} \geq 18 / \mathrm{h}-10=268 \mathrm{~mm}$

$\mathrm{t}=\mathbf{2 9 0} \mathbf{~ m m}$

Solution 1

4. Determine the wall length:

based on the shear design requirements.
The length can be determined from the maximum shear resistance for the wall section. The shear resistance for flexural walls cannot exceed the following limit:

$$
V_{r} \leq \max V_{r}=0.4 \phi_{r} \sqrt{f_{m}^{\prime}} b_{w} d_{w} \gamma_{g}
$$

$$
V_{r}=V_{f}=1450 \mathrm{kN}
$$

$\gamma_{g}=1.0$ solid grouted wall.
$b_{W}=290 \mathrm{~mm}$ overall wall thickness.
$d_{V} \approx 0.81$ effective wall depth.
$I_{m}>\frac{V_{f}}{0.4 \phi_{m} \sqrt{f_{m}^{*}} b_{w}(0.8) \gamma_{g}}=\frac{1450 * 10^{3}}{0.4 * 0.6 * \sqrt{10} * 290 * 0.8 * 1.0}=8235 \mathrm{~mm}$
$l_{w}=8.4 m$
a minimum wall length of nearly 10 m was required, thus for $1_{w}=10000 \mathrm{~mm}$ which gives max $V r=1760 \mathrm{kN}$

Solution 1

5. Minimum seismic reinforcement requirements

 the seismic hazard index $\mathrm{I}_{\mathrm{E}} \mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{a}}(0.2)$ is 0.95 .$$
I_{E} F_{a} S_{a}(0.2)=0.95>0.35
$$

Thus, it is required to provide minimum seismic reinforcement

- Seismic reinforcement area:
shear walls, shall be reinforced horizontally and vertically with steel having a minimum area of

$$
\mathrm{A}_{\text {smin }}=0.002 \mathrm{~A}_{\mathrm{g}}=0.002 *\left(290 * 10^{3} \mathrm{~mm}^{2} / \mathrm{m}\right)=580 \mathrm{~mm}^{2} / \mathrm{m}
$$

for 290 mm block walls, where: $\mathrm{A}_{\mathrm{g}}=(1000 \mathrm{~mm}) *(290 \mathrm{~mm})=290 * 10^{3} \mathrm{~mm}^{2} / \mathrm{m}$ gross cross-sectional area for a unit wall length of 1 m

Solution 1

Minimum area in each direction (one-third of the total area):

$$
\begin{aligned}
& \quad A_{h \min }^{\prime}=A_{v \min }^{\prime}=0.00067 A_{g}=\frac{A_{s \min }}{3} \\
& \mathrm{~A}_{\mathrm{hmin}}^{\prime}=\mathrm{A}_{\mathrm{v} \min }^{\prime}=580 / 3=193.3 \mathrm{~mm}^{2} / \mathrm{m}
\end{aligned}
$$

Thus the minimum total vertical reinforcement area:
$A_{\text {vmin }}=193.3^{*} 1_{w}=\left(193.3 \mathrm{~mm}^{2} / \mathrm{m}\right)(10 \mathrm{~m})=1933 \mathrm{~mm}^{2}$
In theory, $1 / 3^{\text {rd }}$ of the total amount of reinforcement can be placed in one direction and the remainder in the other direction.

Solution 1

Vertical reinforcement (area and distribution):
spacing of vertical reinforcing bars shall not exceed the lesser of:

- $6(t+10)=6(290+10)=1800 \mathrm{~mm}$
- 1200 mm
- $\mathrm{L}_{\mathrm{w}} / 4=10000 / 4=2500 \mathrm{~mm}$.

Therefore, the maximum permitted spacing of vertical reinforcement is equal to $\mathrm{s}=1200 \mathrm{~mm}$.

Solution 1

Horizontal reinforcement (area and distribution):
the maximum spacing of bond beams is 2400 mm

Solution 1

An approximate method to estimate the wall reinforcement

$$
\begin{aligned}
& T_{r}=\phi_{s} f_{y} A_{s} \\
& a \cong 0.3 l_{w} \\
& T_{r}=\frac{M_{f}-P_{f}\left(l_{w}-a\right) / 2}{\left(l_{w}-a\right) / 2} \\
& A_{s}=T_{r} / \phi_{s} f_{y} \\
& \mathrm{~T}_{\mathrm{r}}=14500-1800(10-0.3(10)) /(10-0.3 * 10) / 2=2342.857 \mathrm{KN} . \\
& \mathrm{A}_{\mathrm{s}}=2342.857 * 10^{3} /(0.85 * 400)=6890.75 \mathrm{~mm}^{2}
\end{aligned}
$$

Solution 1

An approximate method to estimate the wall reinforcement

15 T 25 reinforcing bars can be used

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{v}}=490.87 * 15=7363.05 \mathrm{~mm}^{2}>6890.75 \\
& S \leq \frac{(10000-200)}{14}=700 \mathrm{~mm}>600 \mathrm{~mm} \text { ok }
\end{aligned}
$$

Solution 1

Since the amount of vertical reinforcement is significant, it is required to check the maximum reinforcement area. Since
$\mathrm{S}=670 \mathrm{~mm}<4 \mathrm{t}=4 * 290=1160 \mathrm{~mm}$
$\mathrm{A}_{\text {smax }}=0.02 \mathrm{Ag}=0.02\left(290 * 10^{3}\right)=5800 \mathrm{~mm}^{2} / \mathrm{m}$.
to the total reinforcement area of approximately $58000 \mathrm{~mm}^{2}$ for a 10 m long wall> $7602.65 \mathrm{~mm}^{2}$ (the estimated area of vertical reinforcement).

Solution 1

Moment capacity for rectangular wall sections with distributed vertical reinforcement

$$
M_{r}=0.5 \phi_{s} f_{y} A_{w} l_{*}\left(1+\frac{P_{f}}{\phi_{s} f_{y} A_{u}}\right)\left(1-\frac{c}{l_{v}}\right)
$$

where

$$
\begin{aligned}
& \omega=\frac{\phi_{x} f_{y} A_{w}}{\phi_{m} f_{m}^{\prime} l_{w} t} \\
& \alpha=\frac{P_{f}}{\phi_{m} f_{m}^{\prime} l_{w} t}
\end{aligned}
$$

A_{w} - the total area of distributed vertical reinforcement
c - neutral axis depth

$$
\frac{c}{l_{w}}=\frac{\omega+\alpha}{2 \omega+\alpha_{1} \beta_{1}}
$$

$\alpha_{1}=0.85 \quad \beta_{1}=0.8 \quad \sigma=0.144 \quad \alpha=0.1 \quad c \approx 2520.7 \mathrm{~mm}$
$M_{r}=0.5 \phi_{s} f_{y} A_{v} l_{*}\left(1+\frac{P_{f}}{\phi_{s} f_{y} A_{v}}\right)\left(1-\frac{c}{l_{*}}\right)=0.5 * 0.85 * \frac{400}{1000} * 7363 * \frac{10000}{1000}\left(1+\frac{1800 * 10^{3}}{0.85 * 400 * 7363}\right)\left(1-\frac{2520.7}{10000}\right)$
$\mathrm{M}_{\mathrm{r}}=16093.4 \mathrm{kNm}>\quad M_{f}=14500 \mathrm{kNm} \quad$ OK

Solution 1

Moment capacity for the section with concentrated and distributed
reinforcement

19 T 22 reinforcing bars can be used $\mathrm{A}_{\mathrm{v}}=380.132 * 19=7222.5 \mathrm{~mm}^{2}>6890.75$

3 T 22 in each column (400 mm): $\mathrm{A}_{\mathrm{c}}=1140.4 \mathrm{~mm}^{2}$ 13 T 22 distributed: $\mathrm{Ad}=4941.7 \mathrm{~mm} 2$

$$
S \leq \frac{(10000-400 * 2+200)}{19-6}=723=720 \mathrm{~mm}>600 \text { ok }
$$

Solution 1

Moment capacity for the section with concentrated and distributed reinforcement

a)

- The axial load $\mathrm{P}_{\mathrm{f}}=1800 \mathrm{kN}$.
- The compression zone depth, a , can be determine as follows
$a=\frac{P_{f}+\phi_{s} f_{y} A_{d}}{0.85 \phi_{m} f_{m}^{\prime \prime} t}$

$=\left(1800 * 10^{3}+0.85 * 400 * 4941.7\right) /(0.85 * 0.6 * 10 * 290)=2353.06 \mathrm{~mm}$
$\beta_{1}=0.8$ when $f_{m}^{\prime \prime}<20 \mathrm{MPa}$
The neutral axis depth, $\mathrm{c}: \quad c=a / \beta_{1} \quad \mathrm{c}=2353.06 / 0.8=2941.33 \mathrm{~mm}$

Solution 1

Moment capacity for the section with concentrated and distributed reinforcement

$$
C_{m}=\left(0.85 \phi_{m} f_{m}^{\prime}\right)(t \cdot a)
$$

$\mathrm{C}_{\mathrm{m}}=(0.85 * 0.6 * 10)(290 * 2353.06) * 10^{-3}=3480 \mathrm{kN}$.

Next, the factored moment capacity,

$$
M_{r}=C_{m}\left(l_{w}-a\right) / 2+2\left[\phi_{s} f_{y} A_{c}\left(l_{w} / 2-d^{\prime}\right)\right]
$$

a)

$\mathrm{Mr}=3480 * 10^{3 *}(10000-2353.06) / 2+2[0.85 * 400 * 1140.4(10000 / 2-100)]^{*} 10^{-6}$ $=17105.5 \mathrm{kN} . \mathrm{m}$

Solution 1

7. Ductility check

Design To satisfy the ductility requirements for limited ductility shear walls neutral axis depth ratio $\left(\mathrm{c} / \mathrm{l}_{\mathrm{w}}\right)$ should be less than the following limit:

$$
\mathrm{c} / \mathrm{l}_{\mathrm{w}}<0.2 \text { when } \mathrm{h}_{\mathrm{w}} / \mathrm{l}_{\mathrm{w}}<6
$$

In this case, the neutral axis depth
$\mathrm{c}=2941.33 \mathrm{~mm}$
$\mathrm{c} / \mathrm{l}_{\mathrm{w}}=2941.33 / 10000=0.29>0.2$ not satisfied.

Solution 1

7. Ductility check

1) Find the required wall length such that the c / l_{w} limit ductility criteria is satisfied.

The wall length can be estimated from Table D-2, which provides $\mathrm{c} / \mathrm{l}_{\mathrm{w}}$ ratios for different input parameters (α and ω). By inspection, it can be concluded that $\mathrm{c} / \mathrm{l}_{\mathrm{w}}<0.2$ when $\alpha \leq 0.1$. the wall length based on this criterion.
$\alpha=\frac{1667 * P_{f}}{f^{\prime}{ }_{m} l_{w} t}$

$$
l_{w}=\frac{1667 * P_{f}}{f_{m}^{\prime} * \alpha^{*} t}=\frac{1667 * 1800}{10.0 * 0.09 * 290}=11496 \mathrm{~mm}
$$

set
$\alpha=0.09<0.1$
Therefore, we can select an increased wall length $1_{w}=11600 \mathrm{~mm}$.

Table D-2. c / l_{w} ratio, $f_{y}=400 \mathrm{MPa}$

7. Ductility check

∞	$\underline{\square}$										
	[10) 0	0.025	[050	0.075	[10]	[1.150]	0.201	[1.250	0.300	[08]	0.400
[[1010	0.037	0.074	0.110	0.147	[1.221	0.294	1.368	0.441	0.515	0.608
0.01	[014	0.106	0.068	0.121	0.157	0.229	0.300	10.371	0.443	0.614	0.606
[0.0)	[0.08	0.063	[107	0.132	$\square 1 \square^{\square} 7$	0.236	D. 30.3	10.375	0.444	[1. 514	[1.583
0.0	0.041	0.1074	$\square 108$	0.142	$\square 176$	0.243	[. 311	1.778	0.44E	[1.514	[1.5日1
[104	0.053	0.086	[118	0.151	[184	0.250	D.316	10.38	0.447	0.613	0.579
0.05	[1034	0.096	0.128	0.160	0.192	0.256	0.321	1.388	0.449	0.513	[.577
0.06	0.076	0.106	0.138	0.168	02010	1.263	0.325	10.388	0.460	0.613	0.576
0.07	0.015	0.116	0.146	0.177	0.207	[1.268	0.329	10.390	0.451	0.512	0.573
[0.0]	[0]5	[1.125	0.155	D. $1{ }^{165}$	0.214	0.274	0. 333	10.39	0.452	[. 512	[1.571
$0.0]$	0.105	[1.134	0.163	0.152	0221	0.279	-1. 377	1.795	0.453	$\square .512$	[1.570
$\square 1$	0.114	[1.142	[170	D. 150	$\square 227$	0.284	[.34'	17388	0.456	0611	0.568
0.11	10.122	0.160	0.178	0.206	0.233	0.289	0.344	10.400	0.468	0.611	0.667
[1.12	[130	0.158	0.185	0.212	0.239	0.293	0.343	10.402	0.467	0.611	0.665
[1.13	0.138	0.165	0.191	0.218	0.245	0.298	0.361	10.404	0.467	0.611	0.664
[1.14	[1.14	$\square .172$	[198	0.224	[125]	0.302	[. 354	I. 4 UE	0.458	प.51]	[1.563
0.15	0.153	- . 177	10.204	0.230	-255	0.306	- 0.357	10.408	0.453	प510	-.561
0.16	0.160	[185	$\square \mathrm{IT}$	0.236	$\square 2 \mathrm{E} 0$	0.310	D.360	17.410	D.4ED	[510	0.560
[1.17	[1767	0.197	0.216	0.240	0265	0.314	0.363	10.412	0.461	0.510	0.559
[1.1]	[173	-1.197	0.221	0.246	0269	0.317	0.365	10.413	0.462	0.610	0.658
[1.19	[1.179	0.203	0.226	0.250	0.274	[0.321	0.363	[14. 4	0.462	0.609	[.55]
[12	[10.105	[20]	0.231	0.255	[127日	[. 324	[.. I $^{\circ}$	10.417	D.4E3	[10]	[1.556

Solution 1

8. The diagonal tension shear resistance and capacity design Masonry shear resistance (\dot{V}_{m}):
$b_{w}=290 \mathrm{~mm}$ overall wall thickness
$d_{v} \approx 0.8 l_{w}=8000 \mathrm{~mm}$ effective wall depth
$\gamma_{g}=1.0$ solid grouted wall
$P_{d}=0.9 P_{f}=1620 \mathrm{kN}$
$v_{\mathrm{m}}=0.16\left(2-\frac{M_{f}}{V_{j} d_{v}}\right) \sqrt{f_{m}^{\prime \prime}}=0.51 \mathrm{MPa}$

$$
\begin{aligned}
& \frac{M_{f}}{V_{f} d_{v}}=\frac{14500}{1450 * 8.0}=1.25>1.0 \\
& \text { use } \frac{M_{f}}{V_{f} d_{v}}=1.0
\end{aligned}
$$

$V_{\mathrm{m}}=\phi_{m}\left(v_{m} b_{w} d_{v}+0.25 P_{d}\right) \gamma_{g}=0.6\left(0.51^{*} 290^{*} 8000+0.25^{*} 1620^{*} 10^{3}\right)^{*} 1.0=953 \mathrm{kN}$

Solution 1

8. The diagonal tension shear resistance and capacity design ductile reinforced masonry shear walls should be designed according to the capacity design approach that, the shear capacity should exceed the shear corresponding to the nominal moment resistance as follows:
$M_{n}=\frac{M_{r}}{\phi_{s}}=\frac{17105.5}{0.85}=20124.12 \mathrm{kN} . \mathrm{m} \quad M_{r}=17105.5 \mathrm{kNm} \quad$ the factored moment resistance
Shear force acts at the effective height h_{e},

$$
h_{e}=\frac{M_{f}}{V_{f}}=10.0 \mathrm{~m}
$$

Solution 1

8. The diagonal tension shear resistance and capacity design

The shear force $V_{n t}$ that would cause the overturning moment equal to M_{n} can be found as follows

$$
V_{m b}=\frac{M_{n}}{h_{e}}=\frac{20124.12}{10.0}=2012.4 \mathrm{kN}
$$

$\max V_{r}=0.4 \phi_{m} \sqrt{f_{m}^{\prime}} b_{\mathrm{w}} d_{w} \gamma_{g}=1760 \mathrm{kN}$
Thus the required steel shear resistance is

$$
V_{s}=V_{r}-V_{m}=1760-953=807 \mathrm{kN}
$$

The required amount of reinforcement can be found from the following equation

$$
\frac{A_{v}}{s}=\frac{V_{x}}{0.6 \phi_{s} f_{y} d_{v}}=\frac{807 * 10^{3}}{0.6 * 0.85 * 400 * 8000}=0.49
$$

Solution 1

8. The diagonal tension shear resistance and capacity design

Try 2-15M bond beam reinforcing bars at 800 mm spacing ($A_{v}=400 \mathrm{~mm}^{2}$ and $s=800 \mathrm{~mm}$):

$$
\frac{A_{v}}{s}=\frac{400}{800}=0.5>0.49 \quad \text { OK }
$$

Steel shear resistance V_{s} :

$$
V_{s}=0.6 \phi_{x} A_{v} f_{y} \frac{d_{v}}{s}=0.6 * 0.85 * \frac{400}{1000} * 400 * \frac{8000}{800}=816 \mathrm{kN}
$$

Total diagonal shear resistance:

$$
V_{r}=V_{m}+V_{s}=953+816=1769 \mathrm{kN}
$$

Since
$V_{r}=1769 \mathrm{kN}>V_{f}=1450 \mathrm{kN} \quad O K$
In conclusion, both the shear design requirements and the capacity design requirements have been satisfied.

Solution 1

9. Sliding shear resistance

The factored in-plane sliding shear resistance V_{r} is determined as follows:
$\mu=1.0$ for a masonry-to-masonry or masonry-to-roughened concrete sliding plane
$A_{s}=6000 \mathrm{~mm}^{2}$ total area of vertical wall reinforcement
$T_{y}=\phi_{x} A_{y} f_{y}=0.857222 .5 * 400=2455.65 \mathrm{kN}$.
$P_{d}=0.9 P_{f}=1620 \mathrm{kN}$
$P_{2}=P_{d}+T_{y}=1620+2455.65=4075.65 \mathrm{kN}$
$V_{r}=\phi_{m} \mu P_{2}=0.6 * 1.0 * 4075.65=2445.39 \mathrm{kN}$
$V_{r}=2445.39>V_{f}=1450 \mathrm{kN} \quad$ OK
Also,
$V_{r}=2445.39>V_{n t}=2012.4 \mathrm{kN} \quad$ (capacity design check)

Solution 1

10. seismic detailing requirements for limited ductility walls - plastic hinge region

The required height of the plastic hinge region for limited ductility shear walls (for which special detailing is required) must be greater than:
$l_{p}=l_{v} / 2=10.0 / 2=5.0 \mathrm{~m}$
or
$l_{p}=h_{w} / 6=14.0 / 6=2.3 \mathrm{~m}$
(note that h_{*} denotes the total wall height)
Thus,
$l_{p}=5.0 \mathrm{~m}$ governs

Solution 1

10. seismic detailing requirements for limited ductility walls - plastic hinge region

Reinforcement detailing requirements for the plastic hinge region of limited ductility shear walls are:

1. The wall in the plastic hinge region must be solid grouted.
2. Horizontal reinforcement requirements
a) Reinforcement spacing should not exceed the following limits
$s \leq 1200 \mathrm{~mm}$ or
$s \leq l_{w} / 2=10000 / 2=5000 \mathrm{~m}$
Since the lesser value governs, the maximum permitted spacing is
$\mathrm{s} \leq 1200 \mathrm{~mm}$
According to the design, the horizontal reinforcement consists of 2T15M bars at 800 mm spacing - OK

Solution 1

10. seismic detailing requirements for limited ductility walls - plastic hinge region
b) Detailing requirements:

Horizontal reinforcement shall not be lapped within 600 mm or
$\mathrm{c}=2941.33 \mathrm{~mm}$ (the neutral axis depth)
whichever is greater, from the end of the wall. In this case, the reinforcement should not be
lapped within the distance $\mathrm{c}=2941.33 \mathrm{~mm}$ from the end of the wall. The horizontal reinforcement can be lapped at the wall half-length.
3. Vertical reinforcement requirements

There are no special detailing requirements for vertical reinforcement in limited ductility shear walls.

Solution 1

