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Horizontal motions are of most important for

earthquake engineering
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- Shaking often strongest on horizontal components
- Earthquakes radiate larger S waves than P waves
- Buildings generally are weaker for horizontal shaking
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What are the most useful measures of

ground motion?
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- PGA (peak ground acceleration)
- PGV (peak ground velocity)
- PGD (peak ground displacement)
- Fourier spectrum
- Response spectral acceleration, velocity, displacement at periods
of engineering interest
- Intensity can be related to PGA and PGV
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Peak Ground Acceleration (PGA)
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- Easy to measure because the response of most instruments is
proportional to ground acceleration

- Liked by many engineers because it can be related to the force on
a short-period building.

- Convenient single number to enable rough evaluation of
importance of records and the strength of the ground shaking.

- PGA is a good measure of high-frequency ground motions (5 to 10
Hz).
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Peak Ground Acceleration (PGA)
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- It is controlled by the high frequency content in the ground
motion (i.e., it is not associated with a narrow range of
frequencies).

- Records can show isolated short-duration high amplitude spikes
with little engineering significant.

AU £ ghoaall Glasalls 33V aay (S

MJ;\Y\ﬂ\SMJ\.’J\&JJﬂ\&th)&‘aJM\OJJJ}u -
Al Lalie i e 468l duca )Y ClS jall Cllad g iai 8 -

e ouaid Sl Ll g gall Byl g dadl



Peak Ground Velocity (PGV)
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- It is sensitive to longer periods than PGA (making it potentially
more predictable using deterministic models).

- PGV is indicative of motions at intermediate frequencies (1 to 2
Hz).

- High-frequency structures tend to be sensitive to PGA and low-
frequency structures tend to be more sensitive to PGV.
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Peak Ground Displacement (PGD)
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- The best parameter for displacement-based design.

- It is associated with very-low frequency level of ground motion.
- It is sometimes difficult to determine the peak correctly because
of filtering problems and twice waveform integrations. For that

reason, it is less used comparing to PGA and PGV.
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How to obtain one parameter from another?
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Example of large ground motion
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An example of large Large Recorded Ground Velocities
peak ground velocity

(PGV) recorded during

big destructive R
earthquakes. PGV p PR b v J p ST
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Ground-Motion Velocity from Large Earthquakes
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Fourier Amplitude Spectra
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The Fourier amplitude spectrum of a strong ground motion shows
how the amplitude of the motion is distributed with respect to
frequency. It expresses the frequency content of a motion very

clearly. It expresses as amplitude (c, vs. n/2T) and phase spectrum
(@, vs.n/2T)
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Predominant Period Derived from Fourier Amplitude Spectra
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Predominant period
on rock site at short
period of ~ 0.5s
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Elastic Response Spectra
Sl ety cigh
It describes the maximum response of a single-degree-of-

freedom (SDOF) system to a particular input motion as a function
of the natural period and damping ratio.

NS 4 all da a salal Al 3anas A )l AS jal adael) AlaiuY) Chiay

This system consists of a mass m, moving on a

e . . : TS
frictionless surface, driven by a horizontal ground 1] |
motion with acceleration Uy, with a spring with stift- PN

ness £ and a dashpot with a coefficient of viscous k
damping c.
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Response spectra equation
Llatiy) Cigh Alslas
Let u(7) be the horizontal displacement of the mass

at ttime ¢. Then using Newton’s second law and
resolving forces horizontally gives:

muy, + cu; + ku +mU, =0

Dividing by m and letting wg=k/m and &= c/2wo m
yields the equation of motion:

u[[ "‘ 2500)()”, + (U%u — _U[[

wo= 21/T
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Elastic Response Spectra
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At long periods, oscillator
response proportional to base
displacement
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Elastic Response Spectra
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Damping of response spectra at different damping ratio (h =
0%, 5%, 10%, 20%). It appears that the curves are smoothed
after applying damping
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Convert displacement into velocity and

acceleration spectrum
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convert displacement spectrum into acceleration
spectrum (multiply by (27/T)2). For velocity
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gation 596 (r= 172 km), transverse component

1999 Hector Mine Earthquake (M 7.1)
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Period Response of Structures
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Frequency Response —:ﬁ% o The response of the building differs
of Structures : | according to its stiffness of
E /\ structural system, building mass....
v Short buildings have response at
% \ short-periods, while tall buildings

have response at long-periods.
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Mercalli Seismic Intensity scale
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Many attempts were done to calculate the seismic intensity based on the size of
damage. In 1887, Mercalli introduced a descriptive scale consists of 8 grades. The
intensity scale depends on the distance from epicenter, where regions close to
epicenter recorded larger intensity comparing to far regions. Regions had same seismic
intensity were connected using isoseismal lines.

In 1931, Mercalli updated the scale into 12 grades depending on the local effects,
damage to the buildings, and people feelings, all these effects differ based on the
distance from the epicenter.
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Intensity scale according to Mercalli is divided into 12 grades as follows

II
I11

VI
VII
VIII

IX

XI

XII
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Modified Mercalli Intensity

Barely felt

Felt by only few people

Felt noticeably, standing autos rock slightly

Felt by many, windows and walls creak

Felt by nearly everyone, some dished and windows broken

Felt by all, damaged plaster and chimneys

Damage to poorly constructed buildings

Collapse of poorly constructed buildings,

slight damage to well built structures

Considerable damage to well constructed buildings,
buildings shifted off foundations

Damage to well built wooden structures, some masonry
buildings destroyed, train rails bent, landslides

Few masonry structure remain standing, bridges
destroyed, ground fissures

Damage total
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Japan Meteorological Agency Intensity scale
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It consists of 10 grades, it does not consider a descriptive scale and it can
be calculated from the strong motion records as follows,
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e Filtering 3-component acceleration
e Compute vectorial amplitude
v(f) = X2 (1) + 2 (1) + 22 (1)
e Find a, satisfies;
Td
j w(t,a)dt>0.3  w(t,a)=0,v(t)<a,
0
w(t,a) =1, v(¢t) 2 q,

e Compute /;ya
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Japan Meteorological Agency Intensity scale
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Filters: there are three filters are used to obtain the
seismic intensity

wr(f) =1/ f)"
w, () =(1+0.694y” +0.241y" +0.0557)° +

0.009664y° +0.00134" +0.000155y'%) ™2
w(f) =1 —exp(—(f/0.5)*)"*
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Japan Meteorological Agency Intensity scale
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Scale Explanation
In most buildings, wall tiles and windowpanes
7 are damaged and fall. In some cases,
reinforced concrete-block walls collapse.
In many buildings, wall tiles and windowpanes
6+ | are damaged and fall. Most unreinforced
concrete-block walls collapse.
6 In some buildings, wall tiles and windowpanes
are damaged and fall.
In many cases, unreinforced concrete-block
9+ | walls collapse and tombstones overturn. Many

automobiles stop due to difficulty to drive.
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Japan Meteorological Agency Intensity scale
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Explanation

Most people try to escape from a danger. Some
people find it difficult to move

4 Many people are frightened. Some people try to
escape from a danger. Most sleeping people
awake.

3 Felt by most people in the building. Some
people are frightened.

2 Felt by many people in the building. Some
sleeping people awake.

1 Felt by only some people in the building.

0 Imperceptible to people.




Housner’s Spectrum Intensity (Sl)
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It is calculated from pseudo spectral velocity between periods of T=0.1 - 2.5 sec,
which correspond to natural period of most structures. The damping ratio is set to
h="5 %.
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Husid plot and Arias Intensity (I,)
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A Husid plot is the time history of the Arias intensity
normalized by its maximum value, which defined by the

following equation,
Tq

Iy a®(t)dt T4 isthe duration time
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So the Husid plot is expressed by the following equation

fot a®(t)drt

H(t) = fon a2 (1)dr
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