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Abstract 

Electromyography is a technique for determining muscle activity levels. When a muscle 

contracts, an action potential is created and propagates across the muscle fibers. 

Electromyography involves the connection of electrodes to the skin and the measurement 

and plotting of the electrical activity of muscles. Since there was not much research 

involving the usage of Python in EMG feature extraction and pattern recognition, the aim 

of this study to the feature extraction of forearm movement from individuals who were 

post-stroke and also healthy individuals was proposed using Python. Next, several 

existing EMG feature extraction methods were proposed; Time Domain features and 

Frequency Domain Features. Time Domain features consist of Variance (VAR), Root 

Mean Square (RMS), Integrated EMG (IEMG), Wavelength (WL), and Zero Crossing 

(ZC). Frequency Domain Feature consists of Mean Frequency (MNF) and Median 

Frequency (MDF). A number of features are robust across different kinds of noise and 

most of the TD and FD features are superfluity and redundancy, thus the reduction of 

computational time caused by redundant features is achieved. 

 

Keywords: Electromyography, Feature Extraction, Post-Stroke 

1 Introduction 
 

Surface electromyography (sEMG) has 

been utilized in research, healthcare, and 

other disciplines such as ergonomics and 

brain-machine interfaces for many years 

[1]. sEMG established itself as a tool for 

measuring, analyzing, diagnosing, and 

controlling muscle contractions (motor) in 

humans. sEMG is one of various 

approaches and technologies accessible to 

scientists and professionals across a range 

of disciplines, including neurology, 

rehabilitation, kinesiology, and 

biomechanics [2]. sEMG electrodes are 

used to record the action potentials of 

muscle fibres in muscle bundles beneath 

the skin. Surface electrodes provide a non-

invasive approach for EMG signal 

extraction. However, because the EMG 

surface signal is stochastic, it is more 

difficult to examine than other well-known 

bio-electrical signals (e.g., 

electrocardiogram, ECG; 

electrooculogram, EOG; and galvanic skin 

reaction, GSR) [3]. The pattern recognition 

process is often based on derived values 

from the initially received data, which are 

referred to as features. These features are 

then utilized to train classifier algorithms, 

which predict the classes of new but 

comparable sets of data. Following the 

selection of the desired features, these 



features are extracted from segmented raw 

EMG data by segmenting the data into 

overlapping windows, and these windows 

are split into training, validation, and 

testing sets. 

2 Literature Review  

 

2.1 History of EMG 

 

Luigi Galvani, an Italian physicist and 

biologist who taught obstetrics at the 

University of Bologna from the 1770s 

onwards, discovered "animal electricity" 

when he hung the fresh body of a dead frog 

on a copper hook with a steel wire during a 

rainstorm and witnessed muscular 

contraction. When his helper touched the 

motor nerve with an electrostatically 

charged scalpel, he saw that an electrostatic 

charge given to a nerve causes muscle 

contraction. Carlo Matteucci replicated 

Galvani's experiment and validated his 

discovery in the 1840s. Later, the 

introduction of the galvanometer resulted 

in the identification of an electric signal 

flowing on the muscle surface during 

contraction, which opened up a new vista 

in a human electrophysiological study [4]. 

 

Guillaume Benjamin Duchenne invented 

electrodes and simulation equipment in the 

1850s and utilised these to discover that 

distinct muscles could be innervated by 

delivering an electric signal to certain 

surface spots [4]. Electromyography 

(EMG) became clinically acceptable after 

the introduction of the string galvanometer, 

the cathode ray tube, and other safety 

devices. The Nobel laureates Joseph 

Erlanger and William Osler found that the 

conduction velocity of nerve fibres is 

proportional to their physical diameter. 

Fritz Buchthal developed microelectrodes 

in the twentieth century to capture the 

action potential of each muscle fibre. 

 

During WWII, Martin Glover Larrabee 

worked at Framingham Hospital, where he 

and his co-workers collected compound 

muscle action potential (cMAP) from the 

muscular surface. Meanwhile, George 

Dawson worked on signal averaging and 

photographic superimposition techniques, 

as well as recording sensory nerve action 

potentials (SNAPs) [4]. Then, Edward 

Lambert established the first 

electromyography (EMG) laboratory at the 

Mayo Clinic in the United States in 1943. 

 

Erik Stålberg later explored the electrical 

signal velocities via muscle fibres. He also 

discovered normative mean jitter values in 

several muscles, which led to the 

electromyography (EMG) of a single fibre, 

making it easier to identify abnormalities in 

neuromuscular transmission. The first 

commercial EMG equipment for 

neuromuscular problem diagnosis was 

invented in 1948 by three scientists named 

James A. Fizzel, James Golseth, and 

Herbert Jasper [5]. 

 

2.2 EMG 

 
Electromyography is abbreviated as EMG. 

It is the examination of electrical impulses 

generated by muscles. EMG has grabbed 

the interest of biological researchers due to 

its potential for identifying EMG patterns 

[6]. Motor unit action potential trains are 

generated as a result of this continuous 

activation. The EMG signals are formed by 

the superposition of these trains from the 

concurrently operating motor units. EMG 

can be detected actively with electrodes 

injected into muscle tissue or indirectly 

with surface electrodes mounted above the 

skin in most cases. 

 

Surface Electromyography (sEMG) is 

widely recognized in the health sector due 

to the ease with which electrodes are 

applied to the patients under examination 

and the short time it takes to assess the 

signals. The sEMG signal may be used to 

determine muscle motor functioning since 

the amplitude and other features of the 

signal obtained are directly connected with 

muscle activity [7]. Because of its ease of 



use and lack of invasiveness, the sEMG is 

more common. The EMG detector, on the 

other hand, collects signals from multiple 

motor units at the same time, particularly if 

it is placed on the skin surface, causing 

various signals to interact. 

 

2.3 Anatomy of the Forearm 

 

Muscle contractions are studied using 

EMG data. In order to perform feature 

extractions in this study, raw EMG data 

from the forearm must be retrieved. As a 

result, the forearm anatomy theory is 

revisited. Humans are divided into three 

categories. There are three types of muscle: 

skeletal, smooth, and cardiac. Skeletal 

muscles are the muscles that allow the 

bones to move. The experiment involving  

forearm movement is carried out in this 

study. As a result, the kind of muscle 

employed in this study will be the Flexor 

carpi radialis and Extensor carpi ulnaris 

muscle of the  

forearm. 

 

 
 
Figure 1: Only two Forearm muscles were used 

in sEMG acquisition (1) Flexor Carpi Radialis 

and (5) Extensor Carpi Ulnaris [8]. 

 

2.4 Feature Extraction 

 

Feature extraction is the process of 

converting raw signal data into a useful 

data structure by filtering out noise and 

emphasizing significant information [9]. 

To improve performance in the 

classification of biological signals, feature 

extraction and dimension reduction are 

necessary. In addition, feature extraction is 

used to extract features from the original 

signal in order to achieve accurate 

classification. The most important element 

of biomedical signal classification is 

feature extraction since if the features aren't 

chosen carefully, the classification 

performance might decrease [10]. 

 

Time-domain feature extraction includes 

Variance (VAR), Integrated 

Electromyography (IEMG), Root Mean 

Square (RMS), Zero Crossing (ZC), and 

Waveform Length (WL). The time domain 

characteristics are assessed as a function of 

time. The time-frequency domain features 

extracted from EMG data are Median 

Frequency (MDF) and Mean Frequency 

(MNF). Frequency domain characteristics 

are commonly utilized to diagnose 

neurological disorders and muscular 

fatigue. Normally, this feature extraction is 

accomplished by the examination of the 

EMG signal spectrum. 

 

2.5 Previous Studies 

 

2.5.1 Individual hand motion 

classification through EMG 

pattern recognition: Supervised 

and unsupervised methods [11]. 

 

(Castiblanco et al. 2016) have stated that 

“In order to detect and categorize hand 

movements, Electromyography (EMG) 

signals are employed in electronic devices 

with biofeedback control. Due to various 

EMG signals between individuals which 

made it. difficult to discern movement in 

these systems, numerous pattern 

recognition approaches have been 

introduced to tackle this difficulty. In 

response to the prior issue, the current 

research analyses the performance of K - 

means and Support Vector Machine 

(SVM) approaches in identifying five 

different hand movements. As a result, two 

classification methods were used: the first 

method consisted of identifying the 

motions separately. The second one 

classified all five motions using a decision  

tree-based technique. In addition, the 

impact of signal normalization on 

classification performance is examined in 



this article. As a result, The SVM classifier 

yielded a success rate of 92% in the bulk of 

the tests in both strategies. K means, on the 

other hand, indicates 55% for the first 

approach and 75% for the second. In both 

tests, the SVM classifier outperformed the 

K means with an error rate of less than 9%. 

When the EMG data are normalized and a 

window size of 0.3 seconds is used, the 

classifier's accuracy improves. 

 

2.5.2 Combined Influence of Forearm 

Orientation and Muscular 

Contraction on EMG Pattern 

Recognition[12].  

 

(Khushaba, 2016 et al.) stated that the 

accuracy of EMG categorization was 

investigated using a variety of 

contemporary time- and frequency-domain 

EMG characteristics. Twelve subjects with 

intact limbs and one participant with 

bilateral transradial (below-elbow) 

amputation were recruited. They 

conducted six different wrist and hand 

movements at three different degrees of 

muscle activity and in three different 

forearm orientations. The results 

demonstrated that a classifier trained on 

features that measure the angle of muscle 

activation patterns, rather than their 

amplitude, outperforms other feature sets 

across a range of contraction intensities and  

forearm orientations. 

 

2.5.3 Featureless EMG pattern 

recognition based on the 

convolutional neural network 

[13]. 

 

(Too, 2019 et al.) the research addressed 

the feature extraction problem by offering 

a featureless EMG pattern recognition 

technique that does not require any 

features. The raw EMG signal was first 

converted to a time-frequency 

representation using (TFR) a spectrogram. 

To categorize the data, the TFRs or 

spectrogram images are instantly loaded 

into a convolutional neural network (CNN) 

for classification. Two CNN models were 

described for automatically extracting 

features from spectrogram images, 

obviating the need for human feature 

extraction. The proposed CNN models  

were evaluated using EMG data from the 

publicly accessible NinaPro database. 

 

2.5.4 A Review on Electromyography 

Decoding and Pattern 

Recognition for Human-Machine 

Interaction [14]. 

 

(Simão, 2019 et al.) the article conducts a 

review of the literature on 

electromyography (EMG) signal pattern 

identification and its applications. The 

EMG technology is introduced, and the 

most critical parts of designing an EMG-

based system, such as signal collection and 

filtering, are addressed. With varying 

degrees of effectiveness, EMG-based 

systems have been used to operate upper- 

and lower-limb prostheses, electrical 

gadgets, and machinery, as well as to 

monitor human behavior. Nonetheless, 

present systems remain insufficient and are 

frequently abandoned by their users, 

necessitating additional study. Apart from 

controlling prostheses, EMG technology 

enables the development of machine 

learning-based devices capable of 

recognizing the intention of able-bodied 

users and so paving the way for novel 

human-machine interaction (HMI) 

modalities. 

 

 

2.5.5 Muscle Activity Distribution 

Features extracted from HD 

sEMG to perform Forearm 

pattern Recognition [15]. 

 

(Nougarou, 2018, et al.) proposed a more 

intuitive control of a robotic arm used by 

some of the disabled by using an efficient 

pattern recognition system based solely on 

forearm surface Electromyographic 



(sEMG) data. HD sEMG, unlike simple 

sEMG, can produce muscle activity 

pictures with different spatial distributions 

depending on forearm movement. The 

recognition method locates nine forearm 

movements with high classification 

accuracy based on these parameters (99.23 

%). The findings show the potential of the 

suggested recognition system and its good 

performance-complexity trade-off in terms 

of a number of learning data, image 

resolutions (spatial filtering), and the 

number of sub-images. 

 

3 Methodology 
 

3.1 Preparation 

 

1. For reference, the subject's weight, 

height, and hand length are measured and  

documented. 

2. Subjects are sat in an armchair with their 

forearm supported and fixed in a single  

position to eliminate the effect of variable 

limb postures on the produced EMG 

signals. 

3. Scrub the electrode patch regions with a 

paper towel or alcohol swab to remove  

excess skin oil and moisture. Hair is 

removed. 

 
Figure 2: The placement of the red and green 

electrodes on flexor carpi radial muscle. 

 

 
Figure 3: The placement of the red and green 

electrodes on the extensor carpi ulnaris muscle. 

 

 

 
                   H1                              H2 

 
Figure 4: Forearm flexion (H1), and hand 

contraction 2 (H2) 

 

To train the pattern classification 

algorithm, the trial consists of a session 

with five seconds repeats for each selected 

movement. To minimize muscular 

tiredness that might impact the EMG data 

generated, each effort is done individually. 

Extensor carpi ulnaris and Flexor carpi 

radialis are the muscles where the electrode 

pads were placed. The analog voltage data 

of the EMG signals acquired by Muscle 

Sensor v3 is saved using CoolTerm 

software. According to each move, the data 

is recorded in Microsoft Excel. 

 

3.2 Data Collection 

 

The experimental design was established 

for data collection. This covers the type of 

data being gathered, the location or body 

part being measured, the sensor device to 

be used, and the processing processes to be 

used, among other factors. Then it's time to 

construct an ethical screening application 

that has been granted permission to collect 



data from human bodies. This requires a 

good understanding of the research. The 

data collection process began after the 

application was approved. The experiment  

was carried out after choosing a suitable 

less distracting place and constructing the  

necessary equipment for the recording 

method.  

 

The goal of this study is to look at the 

relationship between forearm EMG signals 

in a relaxed state, hand contractions, and 

forearm flexions. The data will be used for 

signal processing and analysis, as well as 

for pattern recognition. A non-invasive 

approach is used to obtain EMG signals 

from human upper forearm muscles. Two 

volunteers are used in a series of studies to 

acquire EMG data for varied hand angles 

and movements. The participants are a 

post-stroke participant (58 years old) and a 

healthy participant (24 years old), both of 

whom are men. Before the study, all 

subjects were given an oral briefing and 

given the opportunity to give their 

informed consent. This data collection 

includes the following four experiments: 

i) EMG signal extraction from forearm 

muscles in relaxed posture; 

ii) EMG signal extraction from forearm 

and upper arm muscles giving  

hand contractions. 

iii) EMG signal extraction from forearm 

flexion. 

 

4 Result and Discussion 

 

4.1 The Result from Data 

Collection 

 

As stated previously, data was collected 

from two individuals over the course of 5 

sessions. Five repetitions of the specified 

movements made up a session. The 

individuals were told to relax in between 

motions for a few seconds and to make 

each movement as natural as possible. The 

amount of force exerted by the individuals  

during arm movements was neither 

restricted or measured in any way. One is a 

healthy subject (24 years old) and another 

one is a post-stroke subject (58 years old). 

 

During the data collection process, the 

signal was recorded during basic hand 

movements. Note that the signal that is 

measured are signals that have been filtered  

and rectified by the EMG muscle sensor 

v3. Since the Arduino IDE built-in serial 

plotter and monitor do not allow for data to 

be written to a file right away, the 

CoolTerm serial monitor program is used 

for the output to be taken into a text file, 

then sent the data to Microsoft Excel to 

produce the EMG signal below. 

 

 
Figure 5: The EMG signal taken from post-

stroke subject  

 

 
Figure 6: The EMG signal taken from a healthy 

subject 

 

 

4.2 Feature Extraction for Time 

Domain 

 

Referring to the figures below, the 

amplitude of the input signal is used to 

compute time-domain characteristics. With 

certain limits, the resulting numbers 



provide a measure of the waveform 

amplitude, frequency, and duration. 

 

In this stage, a 58-year old post-stroke 

subject and a 24-year-old healthy subject 

performed 5 sessions per day for 3 separate 

days for each of two movements, flexing 

and contracting the hand, using 1 sensor for 

receiving data. The total duration of each 

measurement is 4 secs with 100 samples 

per sec, i.e. delay (10) (100Hz), having six 

characteristics of the raw signal: maximum 

value, absolute average, waveform length, 

number of slope changes, Willison 

Amplitude, and standard deviation. 

 

Based on figure 7, Variance is the average 

of the square values of the variable's 

deviation. The red line is the signal which 

is already extracted from the original signal  

(blue line) by implementing the Time 

Domain (TD) features; The variance of 

EMG (VAR) is a useful characteristic that 

reflects the strength of the EMG signal. 

Figure 8 shows the results of where the 

Root Mean Square (RMS) is modeled as an 

amplitude modulated Gaussian random 

process, with the RMS being associated 

with constant force and non-fatiguing 

muscular contractions. Feature extraction 

using the RMS approach is fairly popular. 

Because it is computationally efficient and 

speedy while retaining important data. 

From figure 9, Integrated EMG (IEMG) is 

a pre-activation indicator for muscle 

activity that is commonly used. It's the area 

under the rectified EMG signal's curve. 

The sum of the absolute values of the EMG 

amplitude can be used to approximate 

IEMG. The Waveform Length (WL) in 

figure 10 is the total length of the 

waveform over the segment, which is 

another improvement of the IEMG feature. 

Zero crossing (ZC) is a time-domain 

measure of frequency information in the 

EMG signal. The ZC computation for 

signals incorporates additional criteria in 

addition to the confidence of whether the 

signal passed through zero or not, because 

at the moment of signal extraction, in many 

instances, ambient or line noise is also 

read. 

 

 
Figure 7: Time-domain feature extraction for 

Variance (VAR) for both subjects 

 

 

 
Figure 8: Time-domain feature extraction for 

Root Mean Square (RMS) for both subjects. 



 
Figure 9: Time-domain feature extraction for 

Integrated EMG (IEMG) for both subjects. 

 

 
 

 
Figure 10: Time-domain feature extraction for 

Wavelength (WL) for both subject 

 
Figure 11: Time-domain feature extraction for 

Zero Crossing (ZC) 

 

4.3 Feature Extraction for 

Frequency Domain 

 
Based on figure 12 and figure 13, shows 

the difference between the signals which 

has undergone the Frequency Domain 

series feature (red line) and the original 

signal (blue line). Given the fact that 

muscle fatigue causes a downward shift in 

the frequency spectrum of the EMG signal, 

MNF and MDF have been lauded as the 

gold standard for muscle fatigue evaluation 

with surface EMG data. MNP can be 

utilized as a muscle tiredness indicator, 

despite the fact that EMG signal amplitude 

is rarely employed to diagnose muscle 

fatigue. MNF has the robustness tolerance 

of white Gaussian noise and power line 

interference. 



 
Figure 12: Frequency domain feature 

extraction for Mean frequency (MNF) 

 

 

 

 
Figure 13: Frequency domain feature 

extraction for Median frequency (MDF) 

 

5 Conclusion 

 
The main purpose was in this paper was to 

feature extraction of basic forearm 

movements and the construction of the 

application. Several features were chosen 

from Time Domain and also a few features 

from Frequency Domain. Variance (VAR), 

Root Mean Square (RMS), Integrated 

EMG (IEMG), Zero Crossing (ZC), Mean 

Frequency (MNF), and Median Frequency 

(MDF) are the seven optimal features 

included in this study. A number of 

features are robust across different kinds of 

noise and most of the TD and FD features  

are superfluity and redundancy, thus the 

reduction of computational time caused by  

redundant features are achieved.  
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