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Analytical Evaluation of Multicenter Integrals
needed in Molecular Quantum Mechanical
Calculations of some Magnetic Tensors over
Slater Type Basis Functions

Nabil Fadl allaah Joudieh®

Abstract

In the quantum theory of atoms or molecules in magnetic fields of different
origin that can be an external homogenous field and that created by the nuclear
magnetic moment of a nucleus, some important magnetic tensor appears. The
integrals due to magnetic perturbations appeared within coupled Hartree-
Fock-Roothaan perturbation Gauge Invariant Atomic Orbitals or in Density
Functional Theory (DFT) are analytically evaluated for Slater Type nsnp basis
functions. Reduced analytical formulas are obtained using properties of the
Levi-Civita tensor of rank 3, properties of rotation matrix and symmetry
properties of field-independent atomic orbitals. The condensed formalism is
expressed in term of auxiliary functions and integrals. The angular dependence
of integrals is also discussed in detail. The multicenter integrals can be
monocentric, bicentric or three centric. All monocentric and bicentric integrals
with monocentric electron distribution can be calculated rigorously in spherical
polar coordinates with the nucleus as origin. Bicentric integrals with bicentric
electron distribution were also integrated using elliptic coordinates after an
appropriate axis transformation. The three centre integrals with bicentric
electron distribution were determined analytically within the London Type
approximation. The resulting angular momentum and impulsion integrals
whether dipolar or quadrupolar are all computed rigorously in elliptic
coordinates.

Keywords: Molecular Magnetic Tensors Integrals, Analytical Multicenter
integrals, STOs Basis Functions.
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I-Introduction

In the quantum mechanical theory of atoms or molecules in magnetic
field of different origin that can be an external homogenous field and
that created by the nuclear magnetic moment of a nucleus, some
important magnetic tensor appears. The theory of second-order
magnetic tensors is actually well established in the framework of
coupled Hartree-Fock perturbation theory and analytical derivative or
in Density Functional Theory (DFT) using field-dependent basis
functions called gauge-including atomic orbital (GIAQO) :

b0 B0y o0 |~ 8 Ry 7] 7 =Ty Ay =3 (8

where, respectively, r is the position vector of the electron with
respect to a fixed frame axes, JS(S) is the vector position of nucleus
S, As(s) is the potential vector created by the magnetic field B at

the location of nucleus S and q)s(s) is the field independent basis

function located at the nucleus S which can be a Slater Type basis
function or a Gaussian basis function. At the computational level, the
choice of magnetic field-dependent basis functions is important. The
integrals due to magnetic perturbations can be calculated, as usually
doing in many programs, using Gaussian field-independent basis
functions. However, it is known that atomic and molecular orbitals
must decay exponentially at long-range distance. They should also
possess cusps when two particles approach each other . Therefore,
Slater basis functions are the natural choice for a quantum mechanical
calculations of zero order properties and this is more true for second
order properties. Their use was hindered over the last four decades by
integration problems. Consequently, the gauge-including atomic
orbital with Slater basis functions were replaced by Gaussian
expansions. However, in the field of magnetic properties, the rapid
decay and the absent cusps still a problem for obtaining very precise
values for the components of theses tensors and their mean values. A
very well description of the situation is given by Gaston Berthier in
his interview in Paris in 1997: “ GTOs are like medicine, you have to
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use them as long as they are healing, but once they don’t work
anymore, you must change them”. In this work, we adopt the
determination of multicenter integrals involved in magnetic
susceptibility and nuclear screening tensors using the Slater Type
basis functions. Highly reduced analytical formulas are obtained using
properties of the Levi-Civita tensor of rank 3, properties of rotation
matrix and symmetry properties of field-independent atomic orbitals.
The condensed formalism is expressed in term of auxiliary functions
and integrals. The angular dependence of integrals is also discussed in
detail. Before presenting the determination of integrals involved in
quantum theory of molecular magnetism we examine briefly some
properties of the most important field-independent basis functions
used in atomic and molecular quantum mechanical calculations at the
level of zero order wave functions or higher order properties for
justifying our choice of one of the basis functions actually in use.
I1-Elliptical coordinates

We use in some molecular quantum mechanical calculations the
elliptical coordinates [1,2,3]. We define a fictive diatomic system of
coordinate associated with a pair of atoms R and S as shown in
the following figure. The electron can occupy the point p.

The elliptic coordinates is formed by the three coordinates:

,ue[l,oo] ve[—1,+1] (pe[O,Z-ﬂ]
We relit the atomic polar coordinates (rR Os 5315, 05, @ )With
elliptic one (y,v : (p) and some other quantity by the equations :

d 1
rR:;'(,U"‘V) ﬂ:a'(rR"'rs)
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I11-Slater and Gaussian type Basis Functions: definitions, advantages
and disadvantages

Nowadays, Slater Type Orbitals (STO) are used in atomic calculation,
especially in highly accurate calculations of atoms, see for example
beryllium atom [4], using Hylleraas wave functions and they are used
in 2001 in a DFT program: ADF (Amsterdam Density Functional) [5].
The program CADPAC [6] in Cambridge uses techniques like fitting,
involving auxiliary Slater type orbitals basis functions to perform
Hartree-Fock (HF) and Density Functional Theory (DFT) calculations,
a technique that aimed to obtain better Nuclear Magnetic Resonance
(NMR) Tensors on the basis involving nuclear cusps. In 1998 a
program was written using STO by Steinborn et . al [7,8]. The
program SMILES by Fernandez et . al [9,10] appeared in new version
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in 2004 for Hartree-Fock and Configuration Interaction (CI)
calculations on atoms and molecules. The program STOP by
Bouferguen and Hoggan [11] based on single centre strategy [1]
appeared in parallel version in 2009. Finally, the program ATMOL of
Bunge at . al [12] performs large highly accurate CI calculations on
atoms using Slater orbitals. There are actually 90 groups around the
world that developing new STO computer programs which are now
distributed. This means that much interest is concentrated on
generating more efficient calculations algorithms using STO, use of
non-integer STO, numerical solution of integrals when using B-
functions and in the electron correlation when using Hylleraas wave
functions. A basis function is a mathematical description of orbitals of
system which is used for approximate theoretical calculations. There
are two types of basis functions commonly used in electronic structure
calculations and atomic and molecular properties: Staler Type Orbitals
(STOs) and Gaussian Type Orbitals (GTOs) which have respectively
the functional form:

- n-1 —-¢-r
(pn,lm(rvg):N'Yl m(e'(p)'r "€ d

2
- 2-n-2-1 —c¢-r
€0n,|m(r’§)=N'Y| m(@,(p)-r - J

Where N is a normalization constant, ¢ is a variational parameter,

(n,l,m) the quantum numbers, Yin is the spherical harmonic and r is
the distance electron-nucleus.

I11-1- Some properties of Slater Type Basis Functions

In 1928 Slater [13] simplified the hydrogen-like wave functions to
obtaining orbitals called in the early quantum theory « Hartree-
Orbitals » and which we call in modern atomic and molecular physics
by « Slater Type Orbitals ». The STOs can be chosen to form a
complete basis set and are the most adapted basis functions for atomic
and molecular quantum mechanical calculations. Hydrogen-like
orbitals have nodes but STOs are node-less and a related problem
appears for GTOs. The STOs satisfy Kato's conditions for atomic
orbitals: they possess an electronic cusp at nucleus and decay
exponentially at long distances for it [14,15]. Furthermore, the STOs
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represent well the electron density near the nucleus (cusp) and far
from the nucleus (correct asymptotic decay). Thus, the STOs resemble
the true orbitals. It is known that if the basis function is not an exact
solution of the Schrodinger its convergence is slower. That means that
more Slater determinants are required to obtain the same result. Thus
Slater orbitals show faster convergence when increasing their number.
Another advantage of STOs is the size of the basis. One orbital per
electron is of reasonable quality. Furthermore, a multiple-zeta STOs
basis functions converge fast to the Hartree-Fock limit. Consequently
the number of integrals to be evaluated is dramatically smaller. Finally
the STOs give a more intuitive description of the atomic orbitals and
of the molecular orbitals formed with them. But the STOs have some
disadvantage: the three and four center two-electron integrals appears
in electronic structure calculation is extremely difficult to calculate. In
fact there is no general analytical solution for them. The existence of
analytical solution and for electronic structure integrals is the most
effective and fastest way of calculation. Some approximation methods
are used involving infinite series or truncated approximations to the
Coulomb operator itself. The radial Slater function does not represent
the bonding region adequately. So it is necessary to add higher angular
momentum functions. It is nevertheless possible to use linear
combinations restoring radial nodes. We added that some of the two-
center integrals since the times of Roothaan and Rudenberg [16] have
been solved for co-axial conformation of atomic coordinate system
that is not the molecular frame. Therefore rotations and reflections are
necessary. These problems have been solved but it in consequence
requires additional calculations.

I11-2- Advantage and disadvantage of Gaussian Type Orbitals

In 1954 Boys, Shavitt et al [17, 18] expanded STO into a Gaussian to
perform quantum mechanical calculations and theses orbitals are
generally used in standard programs like GAUSSIAN, ORCA,
CRYSTAL, NWChem. The GTOs are not shaped like analytical
orbitals. The GTO have erroneous shape near and far from the nucleus
and they have no electronic cusp at the nucleus. One can observe that
far from the nucleus the GTO tend to zero much faster than STO. For
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these reasons they are not good for the calculations of properties
where the density at nucleus has to be well described. Furthermore the
radial dependence of GTOs is not well represented and the number of
integrals in electronic structure calculation increase dramatically with
the dimension of the basis. The major advantage of GTOs is the
existence of a product theorem: "the product of two Gaussian
functions located on different centers is a new Gaussian function
located on a new center”. Thus the calculation of multicenter
electronic structure integrals was analytically facilitated. The product
theorem has been derived by Boys in Cambridge [17]. Concluding,
while GTOs can be chosen to form a complete basis set [19], the main
defect of GTO expansions is the absence of electron cusp
(discontinuous derivative) at nucleus which slows the convergence of
the wave function solutions to exact (Hartree-Fock or CI) result.
IV-Integrals of diamagnetic susceptibility and nuclear screening
tensors.

It is difficult to overemphasize the importance of magnetic resonance
techniques in physics and chemistry. Experimental spectra can usually
be successfully interpreted empirically, but more difficult cases
require a prediction based on precise electronic structure. In the last 25
years the calculation of magnetic resonance parameters from first
quantum mechanical principles become a powerful research tool that
can significantly enhance the utility of magnetic resonance techniques
when empirical interpretation are insufficient. The quantum
mechanical calculation of NMR parameters [20,21] is less
straightforward than the calculation of the most other atomic and
molecular properties. Understanding the source of these difficulties
led to their successful solution. The theory of molecular magnetism is
essentially the quantum theory of an atom or molecule in magnetic
fields of different origin, namely an external homogeneous field and
that created by the magnetic moment of a nucleus. It appears in this
theory that second-order properties which are quadratic in the field
strength include magnetic susceptibility, nuclear magnetic screening
and nuclear spin-spin coupling tensors. The theory of molecular
magnetism has a long history which begins by Ramsey Theory [22]
and continued to nowadays (Relativistic calculations, Many-Body
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Perturbations Theory, Propagators, and different for Gauges for
magnetic fields...). Hameka [23,24] has clarified many of the physical
concepts from Ramsey [22] theory paving the way to Ditchfield's
fundamental work [25] on Gauge-Independent Atomic Orbitals
(GIAOs). From the work of Ditchfield's which developed his theory
within a finite perturbation method, along the times a coupled Hartree-
Fock-Roothaan perturbations theory using GIAO theory of the
diamagnetic susceptibility tensor » and nuclear screening o, theory

has been developed in divers forms [25,26]. If we use a field
dependent basis functions, the matrix elements of Hamiltonian is :

SN 02 SRRV
A—AS)-V+ -(A—A5)|(p5>
2.m-c?

© (A A ;S)}

e

j— . . 0_
h _<;LI’S grs (Dr‘h m-c

s

i-e — [ -
zrs=exp[2.h_c~8-(dr/\ds)} 9r5=e><p[2 :
Where A is the London exponential, 'x is the electron position
vector with respect to atom X, dx js the nucleus position vector in

molecular frame, Ax is the potential vector on the atom X, and B is

the magnetic field. . The London approximation [27] yield to 0, =1,

This approximation breaks down the hermiticity of Hamiltonian, but

we can re-establish it by making the transformation h —)E-(h + h+).
2

Within the London approximation the following integrals appear in

theses magnetic tensors:

1K Rysisy =(0r B - Cslos)— (s [y - Csor)

W myscs) ~or 8, nr P, ar Blo,)= Do+t

i=k=
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(ﬁk AT )-(ﬁk AFR)+(uk AT )-(Uk AT )-(ak Ars)

Mr(R)s(S):<(/’r| r3 |os)
N
K (U AL ) 0 AL
Krtrysts) ~{or =g )~ log |2

N
The integrals Il‘s and J,l.(s are involved in the tensor y , K'r‘sand M'r‘s in
the tensor o, . In these formulas the index k labels the direction of the
magnetic field, r; (T =R, S, N) is the electron position vector in the
molecular system with respect to atomT. L, is the angular

momentum operator with respect to R,S, N . Uk IS a unit vector in the

molecular frame. Pr(R) is a Slater type atomic orbital centered on
atom R . For convenience, we adopted the functional form:

orry M =N_2.(0-2 @.9)

In this expression Nris the normalization constant, Z, and Qrare
respectively, the radical and angular functions. Several authors [28-
31] have published partial work on integrals obviously defined. These
integrals belong to four categories: 1) Monocentric termS =R, or
S=R=N. These integrals are obtained in spherical polar

coordinates. Compact forms will be given for arbitrary field direction.
2) Bicentric terms with monocentric charge distributions. Kondo and

all [28] have calculated o, uniquely at the INDO-STO-2s2p level

(Intermediate Neglect Differential Overlap for Slater Type Orbitals)
including only first neighbor's interaction. These authors determine

the m fr((R)s(R) and Kli,((R)s(R) (R # N) integrals on a diatomic system of
coordinates, neglecting all molecular orientation effects. Moreover
Kf(R)S(R) is evaluated numerically and er((R)S(R) analytically in [30].
This work generalizes the method of Kondo in entirely analytical
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form. The integrals M';(R)S(R) and K'r‘(R)S(R) are given by reduced

formulas for general nsnp basis functions which present a great
interest for direct use in a Fortran program. 3) Bicentric terms with
bicentric charge distribution. Previous work [30] on susceptibilities
integrals have been carried out uniquely at the CNDO level (Complete
Neglect of Differential Overlap) [3] and for one direction of magnetic
field and without arbitrary molecular orientations of axes system.

Here, the integrals |'r‘(R)S(S) and J:((R)S(S) are integrated in elliptical
coordinates at the NDDO [3] level (Neglect of Diatomic Differential
Overlap), a more advanced level than the CNDO one, and the compact
formulas given here are for arbitrary molecular orientation of

molecular axes and arbitrary directions of external magnetic field. 4)
Bi- and tricentric terms with bi bicentric electron distribution

Mﬁ(R)s(S)and K';(R)s(s). These are apparently absent from previous
analytical STO's. Here, they are evaluated analytically using a London
type approximation relating them |f(R)S(S) andJ'r‘(R)s(s).

V-Analytical forms of monocentric integrals

1-Integrals involved in the susceptibility tensor
Dropping the subscript R the |$s integrals are determined by the

angular momentum operator on the STO nsnp:

o Chnsf)0 v =123 : (ui-[)-npj.(f‘):i.n.eijk-npk(r)

€ jj is the Levi-Civita 3-tensor [32]. By symmetry of (ns|np; )

k k k

v k=123 , lnsns:0 ) Insnpt =0 , |nptns =0

For the integrals |||1(pnp :
k

PP, =y '<”pj p|>_"h'ekjm '<npt‘”pm>

This gives by symmetry:

k :

| =—2-i-n-L-6_Je
npjnpt It/ kit
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For J X, using the identity:

X=r.sin6.cose =r-w, ,
y=rsingsing=r-w,; < x;=r*-w! |  ©/=)06, &
z=r.cos  =r-w, =

r> —xZ2 gives for any direction of field magnetic field:

r’—x;=r? -(1—a)k2):r2 -[1—23:5“ -a),z}
1=1

J¥ becomes:

JI!(SZZ.NF 'Ns'<Zr|r2|Zs>'<Qr |1_a)k2|Qs>

o0

(el xs)=[ e

0

2

~;(S-r2'dr=.[r4-;(,~;(s.dr
0

2

(0,11 ?0,)=(0,[1- 35, -of|0,)= | [©, -{1—23“@, a)}Q sing-d0-dp
1=1 00 1=1

(Q, [1—f|©,) also necessary in M, has the values:
8.
<Qns|1—a)k2|Qns>:T7[ (- af |0y, )=(Q,, -0, )=0
8.
(-] Q)= 5, -(2-0,)
These relationships give:
2n+2)-(2n+1 _ Gns
J:sns:( 3')a(§s ) ) ‘]rlfan = ‘]r|1(pins:O ans:n_—ao
2n+2)-(2n+1 Sn
Inpnp; = O -[2—5kj)~( )2( ) e
i 5. n-a,

np
2- Integrals involved in the nuclear shielding tensors:
The monocentric terms M X :

1
M s =2 Ny N (7, |F|Zs>'<Qr |1_a’|f‘95>
This gives:
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k 4 X k k Shs
M fons == - D MK =ME =0, g =t
nsns 3 n nsnpi npins ns n- ao
k 4 Uy Snp
ME o =6, -(2-8,) = L g =2
npinpj ij ( ki ) n np n-a,

The integrals Kl‘s litis clear that KX -0 vk=123

nsns

We obtain for nsnp using equation of angular momentum operator:

an> . <Qns anj >

KK = 20ion e
1

1

N N - il
kii ns np <Zns‘r3
k

The angular terms being zero v j =123 we obtain Kr'fsnp_ =Khpns=0
1 I
k.
and for Kppnp:
Kk =2.i-#h -N2 . = {Q Q
npinpj ' eij np <%npi r3 ani>< npi an>
Also:
3
At 16-a ¢
<Qn,Qn >:_.5“ S K et P,
L i kij 2n-(2n-1)-(2n-2) np n-a

o

VI-Coordinate transformation from diatomic to molecular axes

1-Definition of the problem

- k k k k
The molecular integrals 1z sy Irryscs) s Mr(ryscs)  Kriryssy (R # N)

depend on the orientation of the straight line RS or RN with regard to
the molecular axes. Direct evaluation of these integrals in the
molecular frame is not possible. The problem is avoided by
determining the bicentric integrals in parallel axes centered on atoms
Rand S. These diatomic axes take the RS distance along the z axis.
Therefore, elliptic or polar spherical coordinates can be defined
enabling analytical evaluation of various bicentric integrals. The
actual integral may then be expressed as a function of auxiliary
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integrals in the diatomic frame. The molecular integrals may be
expanded in combination of fictitious integrals determined in the
diatomic frame. The corresponding transformation is just a rotation
matrix relating axes on R and S in the diatomic frame to the initial
molecular orientation. We define here the rotation matrix.

2-Rotation matrix

Let (R,ijk) the molecular frame (o,ijk) translated to atom R and
(Rs,i"j'k') the diatomic frame. The vector K' follows the RS axis. ]’
is arbitrarily positioned in the (Ri, j) plane. The vector i is
perpendicularto j and K . In the molecular frame k'

gives:

k'=cosy, - +cosy, -] +cosy, -k

The directions cosines are determined as follows. Let
aR(XPR)’aS(XPS)’ |O=1,2,3,

be the position vectors with respect to (0,ijk) and d_(X ., ) be the

position vector with respect to(R,ijk). We have for d; and its
orthogonal projection in (R, ijk )

-

vi=123, dy=d,-d, = X =Xi-X. . Xi=R-cosy, , R=|RS]

The y, are obtained by use of the last equation:

Xs =X, 2
COS?’i:% J R:[(XR_XS)2+(YR _Ys)2+((ZR_Zs)2]1/
The vector j decomposed in (R, ijk )gives:

T:A21'T+A22 ) I
The coefficients A, and A, are obtained by orthogonality of j :
Cosy _Cosy,
1=t : ) Ay =F—
siny, siny,
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Similarly, T in the molecular frame gives:
i=AT+A, T+A;K

The unknowns A, ;i=123 ; are obtained from:
- cosy, -C0Sy,

_ 0S¥, -COS Y _
Ay = ; F————  Ay=ising,
siny, siny,

These formulas define four independent determinations. The direct
diatomic frame

U, AU, =€

! 2

el (o= =], a'=k)
Reduce this number to two. One is chosen arbitrarily.
The elements A, of orthogonal matrix Adefine a transformation

from diatomic to molecular axes with T = A".

i Cosy, -COSy, —C0Sy, c0S i
siny, siny, &

j _ Cos 7, - C0S 7, +C0S 7, wsy | + 7
siny, siny, !

K —siny, 0 cos y, k'

& U=T-0

Invariance of these vectors for a change of axes shows that the
(x,y,z) coordinates transform as unit vectors. The orbitals np,
proportional to x,y and z also behave as unit vectors. The spherically

symmetric atomic orbitals ns are invariant. Therefore the last equation
can be generalized:

4
Vi=>T,v;, © v=T-v , vi=0, %,
=1
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4

T T
Z;Tqi-TqJ.:aij & TT7=T".T=I
q:

The elements T, =6, (i [L4])account for the OA ns form vector
v including the basis: v:(npX np, np, ns).

VI1-Exact analytical evaluation of bicentric integrals

1-Integrals for the susceptibility tensor

In the molecular frame the angular momentum operator acting on the
OA'sgives the 1 integrals subsequently evaluated in the diatomic
axes. The action of angular momentum on orbitals with spherical
symmetry implies:

" -0

nsRnsS
Using the action of angular momentum operator on basis functions
n .
| np,np DECOMES:
n - -
I”ij“Sts =lhey '<nij n'°1s>_"h'€|<jm '<”pts‘”'°mR>

Expressing this in the diatomic frame:

k . .

Inpjeng =1 7<yy '<”ij ”p|s>_ P im '<”pts ”me>_
3 3 D

e 6kjm .vz—:lwi—’ 1Ttv 'me ' <nva npr>

Eliminating zero integrals and using orthogonality of T :

K i [Ekjm (5tm ~Ti3 .TmS)_eku '(5j1_Tj3 ~T13)j| 'I3 +
Inpjenpg =171
e T T -e T _-T |
kim t3 m3 k1 j3 13| 4

The same procedure gives:

K . .
I =+i-hhe T .
NSRNRs ki 13 1
Kk . .
I =—Il-he T -
NSRNSg kit 13 2

{12 [0} 1 =5 09} 1= (0 ) 1 ={wi )
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Where k, j,t,m,1=12,3. similarly J,"S becomes:
4

3 3 4
‘]rks :ZZZZ(é‘pq _Tkp 'qu)'Trt 'Tsu '<§DII(R) ‘X'pR X +XpS X

p=19g=1 t=1 u=1

¢’;(S)>

For a (ns,np) basis, using orthogonality of T :

k . .
Ins RMNSs [1+Tk23j. )+ (1_Tk23)' )

k _ 1a.s . 2 |- . ' ) 2 i |
ananij _(gij _Tis'Tjaj {3 VRN +Tk3 (J - )} [T le Tk1+TI2 sz Tkz} Jy
+Tig Ty [jlo + j11+Tk23 '(jlo ~ i )]_Z'Tkl Tes '(Til T 4T, 'le)' =2 T3 Ty
(é‘ik - Ti3 'Tks)' ji13 -2 Ti3 'Tks (5|k - Tj3 'Tk3)' j13 - Z'Tis ‘Tks '(5jk - Tj3 'Tk3)' j14

JrlstanS =T '(1+Tk23)' js - T '(1+Tk23)' J4 -2 Ty (5| —Tis- TkS) J
JrlipiRnsS = Tis '(1+Tk23)' Jo— T '<1+Tk23)' =2 T (6~ Tis Ts)- s
jp - <nSR ‘XSR +X§S nSS> jp - <ns ‘ ‘npzs

|
e,

- 2 2 -
=(n X" +X ns> <n ‘
Jp <pZR‘ grR gqsS!l s J8 P XS
. 2 2
=(n X" +X >
Jp <sz grR gs anS
J =<ns X -Z +X -Z |np >
5 RI1 R R S S XS
| =(n X
J12 <pXR S npys>
] =(np X -Z +X -Z |n >
J13 <pxR R R S S pZS
] =(np [|X -Z +X -2 >
J14 <sz R R S S anS

Substituting g =1 gives jp =(p=136810), q=3  gives
i =(p=2,4,7911)
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Auxiliary integrals i, and j, ; pe[L14], in the R and S diatomic

frame are computable exactly in elliptic coordinates.

2-Integrals for the nuclear screening tensor

Bicentric integrals with monocentric electron distribution are obtained
from general formula by takingS=R. The integrals

<¢r(R) ON
after translating éN operator to R . The above rotation matrix should

) (R)> become calculated in spherical polar coordinates

S

be used for directional quantities. Using the matrix equation v=T -v
we expand the integrals M ¥ in the diatomic frame axes:

ME =TT ST, T, T, ,<(pt-‘(up ArR).S(aq AF) ")
p=1g=1t=1 u=l I’N
Vi=123, fy=Fk+R — X =X +J, R

3/2
r,jz[rR2+R2+2-rR -R-cosR]/

The second term in the last equation of M¥ contains operator of M ¥

integrals.
Within the former expression, this operator can be expanded as
follows:

(Uk A FR r.a(ak A FN ): ii-rkp qu (u p A rR 2‘3(uq A rN ):
N p=1g=1 N
3 , A ) 2 R- X;}R X'pR . X;}R
2T 'O(R’Xp)_ 2TeTa = =22 T T — 5
p=1 g=1 'n p(q Iy

For a (ns,np) basis functions we get:

k _ . T2 . 2
MnsiRnij =2 [(1 Tks) m1+Tk3 mz}
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(T_ T OT24T T T2 )-m +(T_ T T24T T .sz-m +

il j1 ki i2  j2 k2 7 i1 j1 k2 i2 j2 ki 8
1

[ b T Tk (57 ) 2 -

k3 | j3 Vik i3 k3/ i3 Uik 3 k3 12 13

2.T T -(T_ T +T T )-m
ki1 k2 i1 j2 i2 1

T T ,(1—T2).m +T° .(5__ T,T ).m +T T T2.m -
Mk 9. i3 j3 k3/ "9 k3 Vij i3 j3/ 10 i3 j3 k3

NSRNPjR

14

k — . _ 2 . . 2 . _ . _ . . .
ME oy =2 [Tjs(l Tksj T TEm T (5,-k T, T ) m5+m6)}

k aak
M NSjRNPR M NSRNP jR

The monocentric integralsm, (i €[L14]) can be evaluated analytically
in spherical polar coordinates with the origin on atom R where the
AO are centered. As with the M [ integrals the K X bicentric terms are
expanded in the diatomic frame:
i Ly, .
prs N ‘¢t>i|

3 3 4 . .[’N . .
Kfs = Zzszp 'Trt 'Tsu |:<(Dt‘ : 3 ‘¢u>_<¢u

p=1t=1 u=1 I'N
The center of the operator is translated r, — Ty + R : NR; and
it is expanded in the diatomic frame to give is its molecular frame
expression:

G, -Cy =0, - (Fy APy ) =0, - [(F, +R)AR, |

— 3 N — 3 — "
Uy - Ly :szi U - Lg + ZeiSI R-Ty -U; - Pg
i-1 i=1

—

U -L, is the k"component of the angular momentum in the
molecular frame. G, - L, the i™in the diatomic frame. The impulsion
of a particle at 1 is given by:

F o 1 &S

=—i'h'—'§——2'zzz € Uy + X, -|:k

Replacing the operator r) in U, - I:N and using the identity:

b
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IJR ’\l l Ay
Siat” Sy k| X ZTkt ( Xig R LtR)

.- L, become:

- .. R ¢ .0 R Xspz | < ~
Ly :_"h‘_-'z Siat .Tki.XtR.aT+[l+.—23R\]'ZTkt'LtR

r i =
R =l R rR t=1

Mw

Il Mw

i

—
N

1

Cl

<

R & Coa
2 'ZTkt X L3R
Rk t=1

The radial derivatives are readily carried out and these relations give:

K 3 i_h.{tris'(-rjl'Tszjz 'Tkl )+Tj3'(Ti2 'Tkl_Til'Tkz )

"SRR 'k7 + 2'Tk3' Til'sz_Tiz'le 'ke
k _—-. . . —_— . .

KnSRnSiR =—1-n (Til Tk2 Ti2 Tkl) (k1+k2)
k k

Knpgnsg =~ Knsgnig

Integralsk; (i €[L,7]) are evaluated analytically as for m; integrals.
3-Analytical integration for m;, and Kk,

m, and k; are rigorously integrable in the (R, xgy'Rz'R) frame in
spherical polar coordinates. Let r,=r,0,=0, ¢.,=¢. For a STO
basis, m, or k; , labeledn, , become:

n, = <g0p ‘(5(?}(0Q>:NFJ N, -I:;(; -U:IOZHQ’; -O(F)-Qq -Sih@-d@-dgﬁ}
.;{q.rz.dr
Where N;=N_ -N, -1 and:

g = <Zp ‘qu(rqu>: LOOZ; 'qu(r)'lq r®edr
To()=(Q,[0F),)=[ [} -OF)-, sing-do-dp

Our procedure for m; gives:
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2 ., )
m1=<nS|é(R,x)| ns> _ <ns| r -(1—Sln @ -cos (p)+r . R.Zos‘g
\/('f2 +R?+2.r-R-cos0)

[ns)
Given the relationQ, =1, the auxiliary integrals T, takes the form:

2217 - (L-sin”@-cos’ p}+1-R-cosd
Toans =(Q, ‘ORX‘Q )= HO r ( 23'” 2COS (p)+r (3:03 .
\/(r +R +2-r-R‘cos€)

sinf-dé-do
Or integrating overgo :

T o= 7|17 (Ky +K,)+2-1-R-K, |
.[ x" - dx

\/a+b x

a=r’+R?> , b=2-r-R , x=cosé

The integrals K (r) ; n=012 ; in T, give:

I” —1{ 11 }
w/a+bx r+R [r—R|

2
Ko(r)=
O(r) +r~r2—R2

Ko ()= ———F

= ﬂm 0<r=<R
1 X-dX -1 1
:I /a+bx rR[r+R |r—R| (r+R—|r—R|):|

R<r<w

Kf(l’): +ﬁ22.R—2) R<r<w
re-\rr--R
h - 2-r
Kl(r)z_

0<r=<R
Rz-irz—Rzi
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+ .dx
K(r): 1X—:
4=, (a+b-x)
-1 1 1
— R-r+R+[r-R R2)-(r+R-r-R
r-R|T+R |r R\ 3.1’ [r r+ R+ -R))- (1 +R7)(r+ r ‘)]
+ 2-\r‘+2-R
) K; (r)= +3~r(3'(r2—R2)) R<r=<ow
s 2.(R? +2-12
KZ(r): 3. F\’(S(Z—RZ)) 0<r<R
By replacing K, , K, and K, in T, we obtain:
Toona = +8—7r R<r<w
3-r
2
-l-r;sna= _4”! 0<r<R
3-R

As the auxiliary functions 1, (qu =T +T,;q) , | 54 Splits up into two
integrals:

_ 0 (np+nq) 6{p+aq - +
_Ir To(r)-dr=1,,+17,
R (n +n ) a +a
— pTq p q
= hr N g(r)-dr

_ (np+nq) (ap+aq)
1, = IR r e 17,(r)-dr

When the I/ (r) functions are used in |
Euler's integrals [32]:

_ . .
oqr 1pq @nd 1, and using

J.Oan p— n!—FO({r:;rl,p)
j: r".e " .dr = _r(r;;j,p)

n k
F(n+1,p):I:t”.e*.dt:n!.e*p. %
k=0 K=
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and stand:

Z, Z,
— _ p _ q

a=a,+a, , ap—n P aq—n P e (ap+a)R
p 0 q 0

The 1, becomes:
0 —Za -r

Insns <Ins |Tnsns| Zns _[0 r e 'Tnsns(r)' dr =

J-O r2n .eiz.anS.r ) n;ns r) dr + _[ r 72'0‘n3‘r 'Tn;ns(r)'dr

Therefore, posing p=2-«,,-R :
2-a,,

™3 )

Where T'(n , p) is the gamma function. For 1s AO, n=1, we get:

L [(2n+2)4T(2n+3 p)+2- p*-T(2n, p)]

m1=Z13S ~{—8+[+8+8-p+4~p2+2-p3+p4]-e‘p}

There are four auxiliary integrals K (r) required to evaluate K*.We
have demonstrated here the procedure of calculation for the most
simpler K,(r) , 1;,(r) and m, integrals concerning the basis
functions nsns. For a nsnp basis, the calculations are more complex.
The integrals m;and k; have been calculated over a nsnpSTO pasis,

for any integer n, and are expressed using gamma functions in a
practical form adapted to a Fortran program.

VIII-Approximate analytical evaluation of integrals in the nuclear
screening tensor not retained by NDDO

Taking into account the obvious relation

ry=d,+F, (A=R or S) theintegrals M* become:

TH R R LT T
k=1 r rs S iR r f,j S iS r r’f,‘ S
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A London type approximation [27] simplifies their evaluation:
P (d +dg )= di

The M ¥ mtegrals become:

I\/Irk(R)s(S) d3 {Jrs+ Z[Xm Di§+Xis DE]}
RS

izk=1

D;?R)S(S) = <¢r(R) ‘XiA ¢s(5)> A=R,S
The integralsJX are determined in the above section. The last

equation of Mr(R)S(S) constitute for M ¥ an approximate analytical
formula in the molecular frame. The transformation to the diatomic

iA imi k H .
frame of Dr(R)S(S) is similar to that for J /s, - Finally:
A :
D:(R)S(S) Z_l;zl-rlp T Ty < t(R) X o §0u(3)>

Orthogonality of T gives the reduced formulas (for nsnp basis):
D . =Ty'd, (A=R = p=1; A=S = p=9)

nsRnsS

DrlmF; iRMPrs Ti3 'Tj3 'Tts ‘de +
[Ti3 ( j3 _Tt3 'Tts)"'Tjs '(5i3 _Tt3 'Tts)'d7 +Tt3 '(5ij _TiS 'Tjs)' ds ]

iS _
anjRnptS Ti3 'Tjs 'Tts 'dlz +

[Tis '(5jt _Tj3 'Tt3)+Tt3 '(5ij _Ti3 'Tjs)'ds +Tj3 '(5it _Ti3 'Tts)' d7 ]
DrI@Rnp is (5jt —Tis 'Tjs)'dz + T3 Tjs-d,

D2 v —(6, -Ty-Ty)-d, +Ty-T,y-d, (A=R=v=5;A=S= v=11)
d, =(nsg|z\ns) (A=R=p=1A=S= p=9)

d, =(NSg[Xea|MPs) (A=Riq=1=p=2,q=3; A=S:q=3=p=10)
d, :<nsR\qu‘npxqs> (A=R:q=1=p=4,q=3=p=5;A=S:g=3=p=11)
d, =(npg|zsnps) (A=R =p=6;A=S=p=12)
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dp =<npxR|ZA|npxS> (A=R =>p=7 ;A=S:>p:12)

The angular moment operators L, L, and the impulsion P, defined

respectively with regard to the screened nucleus N and the atom A
(A=RorS) are, owing to the invariance of gradient operator,
related by:

ULy =0 Ly + D0 > g X Ui Py

Substituting the last equation into Kf(R)S(S) and taking the London
type approximation into account we obtain:

PR TR o (X g + Xgs)-P!
r(R)s(S)_E' rs+zzeikq : qR+ s/ Frs

izk=1 q=1

. 0
= —i-n -
(Ps(5)> <§0r(R)‘ ! X §Ds(5)>

It appears that, using our approximation, that bi or tricentric integrals
KX can be expressed in terms of bicentric angular momentum
| \myssy and impulsion P, integrals. By the action of the
derivative operator on a nsnp AO basis, we obtain in the molecular
system of coordinates:
PrI(R)s(S) = i <€9r(R)
Pri(R)nij =i-n- <¢r(R) ‘aps s Xig —(I’lpss -2)-15° 'Xis‘nsjs> -

78y (00|13 )

a, and n are exponent and principal quantum number of the

npj, AO. a, and ng are those of the ns; AO. The ket |ns?)

correspond formally to annp  AO. These integrals are both bicentric.
Their form in the diatomic frame is:

i . 4 3 '
PrI(R)npjs =1-n- ZZTYU 'Tiv <¢U(R)

u=1l v=1 s

i .
Pryscs) = <(0r(R) ‘pis

Uss - rs_1 * Xis _(nss _1)’ rs_z ‘Xis|nss>

X, X,
U _r_vs_(nss _1) rV25
s

ns;>
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&_(nps _2)'& ‘ >

4 3 3
=i-n- zzz_l-rru Tiv 'Tjw<¢u(R) Ugs - r l’52

u=1l v=1

r(R)anS

1
—i-h- 5u ZTru <§Du )‘ ‘nss >
S
Orthogonallty of T leads to simplifications:
Pnls nsg = —i-h- {Tis'[nss _1]' P~ - pz}

24
Tie'Tjs‘Tts'pla [511 T + T, '(5ij_2'T' 'T' )] N
* Pas +T]3 (5 T T ) p15+T13 (5 T T ) P17

o7 F Ta+T }

i iz ljz lig Pt '

Pnij"Pts - J (T' Ty T, 'Tjs)
(nps_z)' Pis +Tjs (5 T T ) P +

Ty Ti Tise Pug

+5 T13 Pig

i . - ps'[Tis'Tjs'p4+(5ij_Ti3'Tj3)p9]+
Pasonp.e = —1°7-

RIS 5ij'p7+(nps_2)'[Ti3'Tj3'p3 (5 T Tja)'ps]
{ass'lTis'Tjs'm (5 —Tia T]3)'pllj+}
(nsS _1)' [Ti3 'Tjs “Pg+ (5ij —Tis 'Tj3)' plO]
[q:1:>t:2;q:2:>t:1]

) p=l=g=1=>q=3=>t=4,
Pt= <nSR|rsp.Xq3‘npqu> |:p:2:q:1:>t:5,q:3:>t:3i|

- p=lg=1=q=3=t=4,
Pt:<npqu‘rSp'Xq5|nss> {p=2:q=1:>t=5,q=3:>t=8}

Pnij nsg —

P = (nsg|rs? - z5|nsg)
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u=g=v=3:p=1=t=13 p=2=>t=12;
u=v=1q=3:p=1=t=15p=2=t=14;
u=3qg=v=1:p=1=t=17,p=2=t=16;
u=g=1p=2=t=18

Py = <nsz |r571‘nsg> P, = <npR |rsil‘nssp>
The bicentric integrals d, and p, ;t €[1,19] ; defined in the diatomic

frame can be integrals analytically in elliptic coordinates.
IX-Conclusion

At the NDDO level we have given a detailed and rigorous treatment of
the integrals involved in the susceptibility and nuclear screening
tensors for a GIAO-STO base within the London approximation for
arbitrary molecular frames axes and for arbitrary direction of magnetic
field. Analytical formulas are established here for a nsnp basis and

applied to the first three rows of the periodic table. The integrals
involved in the nuclear screening tensor (usually zero in NDDO) are
also included. Their evaluation involves a London type approximation
which allows them to be calculated in elliptic coordinates. Ours
analytic and compacts formulas are helpful for a FORTRAN program.

Pt = <npxrR ‘rsip ' qu‘ nvas>
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