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Abstract 

In the quantum theory of atoms or molecules in magnetic fields of different 

origin that can be an external homogenous field and that created by the nuclear 

magnetic moment of a nucleus, some important magnetic tensor appears. The 

integrals due to magnetic perturbations appeared within coupled Hartree-

Fock-Roothaan perturbation Gauge Invariant Atomic Orbitals or in Density 

Functional Theory (DFT) are analytically evaluated for Slater Type nsnp basis 

functions. Reduced analytical formulas are obtained using properties of the 

Levi-Civita tensor of rank 3, properties of rotation matrix and symmetry 

properties of field-independent atomic orbitals. The condensed formalism is 

expressed in term of auxiliary functions and integrals. The angular dependence 

of integrals is also discussed in detail. The multicenter integrals can be 

monocentric, bicentric or three centric.  All monocentric and bicentric integrals 

with monocentric electron distribution can be calculated rigorously in spherical 

polar coordinates with the nucleus as origin. Bicentric integrals with bicentric 

electron distribution were also integrated using elliptic coordinates after an 

appropriate axis transformation. The three centre integrals with bicentric 

electron distribution were determined analytically within the London Type 

approximation. The resulting angular momentum and impulsion integrals 

whether dipolar or quadrupolar are all computed rigorously in elliptic 

coordinates.  

 

Keywords: Molecular Magnetic Tensors Integrals, Analytical Multicenter 

integrals, STOs Basis Functions. 
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لمتكاملات متعددة المراكز اللازمة لمحسابات  التحميميالحساب 
الميكانيكية الكمومية الجزيئية لبعض التنسورات المغناطيسية 

 باستخدام توابع سلاتر  كقاعدة
 
 

 (1)نبيل فضل الله جودية
 الممخص

خاضع لحقول مغناطيسية ذات منشأ مختمف يمكن أن يكون  يءالكمومية لذرة أو جز في النظرية ر يظه
 عن العزم المغناطيسي النووي بعض التنسورات المغناطيسية. حسبت اا ناجم أو حقلاا  اا متجانس اا خارجي حقلاا 

أو  المترابطةروثان -فوك-هارتريالتي تظهر في نظرية  الاضطرابات المغناطيسيةالتكاملات الناجمة عن 
. كقاعدة  nsnpسلاتر تحميمياا باستخدام توابع مدارات ذرية مستقمة العيار المستخدمة  تابع الكثافةنظرية 

سيفيتا من المرتبة الثالثة، -علاقات تحميمية مضغوطة بفضل استخدام خصائص تنسور ليفيى لإتم التوصل 
 أيضاا صِيغَتْ لمستقمة عن الحقل المغناطيسي.  خصائص مصفوفة الدوران وعناصر تناظر المدارات الذرية ا

التابعية الزاوية لمتكاملات بتفصيل كبير. يمكن  رست أيضاا المعادلات بواسطة توابع وتكاملات وسيطة. د  
ثنائية المركز أو ثلاثية المركز. حسبت التكاملات أو لمتكاملات متعددة المراكز أن تكون أحادية المركز، 

باستخدام الحداثيات القطبية الكروية  جميعها لكتروني أحادي المركزركز ذات التوزع ال أحادية وثنائية الم
لكتروني ثنائي المركز باستخدام التي يقع مركزها عمى النواة. حسبت التكاملات ثنائية المركز ذات التوزع  ال 

التكاملات ثلاثية المركز  الحداثيات القطعية بعد إجراء تحويل مناسب لجممة الحداثيات. بالمقابل حسبت
وحسبت تكاملات العزم والاندفاع والتكاملات  ،بعد استخدام تقريب لندن لكتروني تحميمياا وثنائية التوزع ال 

 القطعية.   الحداثياتثنائية أو رباعية الأقطاب بشكل دقيق باستخدام 

عدة من نوع االمغناطيسية الجزيئية، تكاملات متعددة المراكز، توابع الق : تكاملات التنسوراتمفتاحية كممات
 .سلاتر

                                                           

 سوريا –جامعة دمشق  -كمية العموم  -قسم الفيزياء  (1)
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I-Introduction 

In the quantum mechanical theory of atoms or molecules in magnetic 

field of different origin that can be an external homogenous field and 

that created by the nuclear magnetic moment of a nucleus, some 

important magnetic tensor appears. The theory of second-order 

magnetic tensors is actually well established in the framework of 

coupled Hartree-Fock perturbation theory and analytical derivative or 

in Density Functional Theory (DFT) using field-dependent basis 

functions called gauge-including atomic orbital (GIAO)  : 
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where, respectively, r


is the position vector of the electron with 

respect to a fixed frame axes,  Ssd


  is the vector position of nucleus 

S  ,
 Ss

A


 is the potential vector created by the magnetic field B


  at 

the location of nucleus S  and  Ss
  is the field independent basis 

function located at the nucleus S  which can be  a Slater Type basis 

function or a Gaussian basis function. At the computational level, the 

choice of  magnetic field-dependent basis functions is important.

 

The 

integrals due to magnetic perturbations can be calculated, as usually 

doing in many programs,  using Gaussian field-independent basis 

functions. However, it is known that atomic and molecular orbitals 

must decay exponentially at long-range distance. They should also 

possess cusps when two particles approach each other . Therefore, 

Slater basis functions are the natural choice for a quantum mechanical 

calculations of zero order properties and this is more true for second 

order properties. Their use was hindered over the last four decades by 

integration problems. Consequently, the gauge-including atomic 

orbital with Slater basis functions were replaced by Gaussian 

expansions. However, in the field of magnetic properties, the rapid 

decay and the absent cusps still a problem for obtaining  very precise 

values for the components of theses tensors and their mean values. A 

very well description of the situation is given by Gaston Berthier  in 

his interview in Paris in 1997: “ GTOs are like medicine, you have to 
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use them as long as they are healing, but once they don’t work 

anymore, you must change them”. In this work, we adopt the 

determination of multicenter integrals involved in magnetic 

susceptibility and nuclear screening tensors using the Slater Type 

basis functions. Highly reduced analytical formulas are obtained using 

properties of the Levi-Civita tensor of rank 3, properties of rotation 

matrix and symmetry properties of field-independent atomic orbitals. 

The condensed formalism is expressed in term of auxiliary functions 

and integrals. The angular dependence of integrals is also discussed in 

detail. Before presenting the determination of integrals involved in 

quantum theory of molecular magnetism we examine briefly some 

properties of the most important field-independent basis functions 

used in atomic and molecular quantum mechanical calculations at the 

level of zero order wave functions or higher order properties for 

justifying our choice of one of the basis functions actually in use. 

II-Elliptical coordinates 

We use in some molecular quantum mechanical calculations the 

elliptical coordinates [1,2,3]. We define a fictive diatomic system of 

coordinate associated with a pair of atoms      R  and S  as shown in 

the following figure. The electron can occupy the point p.     

 

 

The elliptic coordinates is formed by the three coordinates: 

  ,1   1,1      2,0  

We relit the atomic polar coordinates  SSSRRR rr  ,,;,, with 

elliptic one   ,,  and some other quantity by the equations :  
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III-Slater and Gaussian type Basis Functions: definitions, advantages 

and disadvantages 

Nowadays, Slater Type Orbitals (STO) are used in atomic calculation, 

especially in highly accurate calculations of atoms, see for example 

beryllium atom [4], using Hylleraas wave functions and they are used 

in 2001 in a DFT program: ADF (Amsterdam Density Functional) [5]. 

The program CADPAC [6] in Cambridge uses techniques like fitting, 

involving auxiliary Slater type orbitals basis functions to perform 

Hartree-Fock (HF) and Density Functional Theory (DFT) calculations, 

a technique that aimed to obtain better Nuclear Magnetic Resonance 

(NMR) Tensors on the basis involving nuclear cusps. In 1998 a 

program was written using STO by Steinborn et . al [7,8]. The 

program SMILES by Fernandez et . al [9,10] appeared in new version 
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in 2004 for Hartree-Fock and Configuration Interaction (CI) 

calculations on atoms and molecules. The program STOP by 

Bouferguen and Hoggan [11] based on single centre strategy [1] 

appeared in parallel version in 2009. Finally, the program ATMOL of 

Bunge at . al [12] performs large highly accurate CI calculations on 

atoms using Slater orbitals. There are actually 90 groups around the 

world that developing new STO computer programs which are now 

distributed. This means that much interest is concentrated on 

generating more efficient calculations algorithms using STO, use of 

non-integer STO, numerical solution of integrals when using B-

functions and in the electron correlation when using Hylleraas wave 

functions. A basis function is a mathematical description of orbitals of 

system which is used for approximate theoretical calculations. There 

are two types of basis functions commonly used in electronic structure 

calculations and atomic and molecular properties: Staler Type Orbitals 

(STOs) and Gaussian Type Orbitals (GTOs) which have respectively 

the functional form: 

  r
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Where N is a normalization constant,    is a variational parameter, 

 mln ,,  the quantum numbers, lmY  is the spherical harmonic and r is 

the distance electron-nucleus.  

III-1- Some properties of Slater Type Basis Functions 

In 1928 Slater [13] simplified the hydrogen-like wave functions to 

obtaining orbitals called in the early quantum theory « Hartree-

Orbitals » and which we call in modern atomic and molecular physics 

by « Slater Type Orbitals ». The STOs can be chosen to form a 

complete basis set and are the most adapted basis functions for atomic 

and molecular quantum mechanical calculations. Hydrogen-like 

orbitals have nodes but STOs are node-less and a related problem 

appears for GTOs. The STOs satisfy Kato's conditions for atomic 

orbitals: they possess an electronic cusp at nucleus and decay 

exponentially at long distances for it [14,15]. Furthermore, the STOs 
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represent well the electron density near the nucleus (cusp) and far 

from the nucleus (correct asymptotic decay). Thus, the STOs resemble 

the true orbitals. It is known that if the basis function is not an exact 

solution of the Schrodinger its convergence is slower. That means that 

more Slater determinants are required to obtain the same result. Thus 

Slater orbitals show faster convergence when increasing their number. 

Another advantage of STOs is the size of the basis. One orbital per 

electron is of reasonable quality. Furthermore, a multiple-zeta STOs 

basis functions converge fast to the Hartree-Fock limit. Consequently 

the number of integrals to be evaluated is dramatically smaller. Finally 

the STOs give a more intuitive description of the atomic orbitals and 

of the molecular orbitals formed with them. But the STOs have some 

disadvantage: the three and four center two-electron integrals appears 

in electronic structure calculation is extremely difficult to calculate. In 

fact there is no general analytical solution for them. The existence of 

analytical solution and for electronic structure integrals is the most 

effective and fastest way of calculation. Some approximation methods 

are used involving infinite series or truncated approximations to the 

Coulomb operator itself. The radial Slater function does not represent 

the bonding region adequately. So it is necessary to add higher angular 

momentum functions. It is nevertheless possible to use linear 

combinations restoring radial nodes. We added that some of the two-

center integrals since the times of Roothaan and Rudenberg [16] have 

been solved for co-axial conformation of atomic coordinate system 

that is not the molecular frame. Therefore rotations and reflections are 

necessary. These problems have been solved but it in consequence 

requires additional calculations.  

III-2- Advantage and disadvantage of Gaussian Type Orbitals 

In 1954 Boys, Shavitt et al [17, 18] expanded STO into a Gaussian to 

perform quantum mechanical calculations and theses orbitals are 

generally used in standard programs like GAUSSIAN, ORCA, 

CRYSTAL, NWChem. The GTOs are not shaped like analytical 

orbitals. The GTO have erroneous shape near and far from the nucleus 

and they have no electronic cusp at the nucleus. One can observe that 

far from the nucleus the GTO tend to zero much faster than STO. For 



Joudieh - Analytical Evaluation of Multicenter Integrals needed in Molecular ... 

23 

 

these reasons they are not good for the calculations of properties 

where the density at nucleus has to be well described. Furthermore the 

radial dependence of GTOs is not well represented and the number of 

integrals in electronic structure calculation increase dramatically with 

the dimension of the basis. The major advantage of GTOs is the 

existence of a product theorem: "the product of two Gaussian 

functions located on different centers is a new Gaussian function 

located on a new center". Thus the calculation of multicenter 

electronic structure integrals was analytically facilitated. The product 

theorem has been derived by Boys in Cambridge [17]. Concluding, 

while GTOs can be chosen to form a complete basis set [19], the main 

defect of GTO expansions is the absence of electron cusp 

(discontinuous derivative) at nucleus which slows the convergence of 

the wave function solutions to exact (Hartree-Fock or CI) result.  

IV-Integrals of diamagnetic susceptibility and nuclear screening 

tensors. 

It is difficult to overemphasize the importance of magnetic resonance 

techniques in physics and chemistry. Experimental spectra can usually 

be successfully interpreted empirically, but more difficult cases 

require a prediction based on precise electronic structure. In the last 25 

years the calculation of magnetic resonance parameters from first 

quantum mechanical principles become a powerful research tool that 

can significantly enhance the utility of magnetic resonance techniques 

when empirical interpretation are insufficient. The quantum 

mechanical calculation of NMR parameters [20,21] is less 

straightforward than the calculation of the most other atomic and 

molecular properties. Understanding the source of these difficulties 

led to their successful solution. The theory of molecular magnetism is 

essentially the quantum theory of an atom or molecule in magnetic 

fields of different origin, namely an external homogeneous field and 

that created by the magnetic moment of a nucleus. It appears in this 

theory that second-order properties which are quadratic in the field 

strength include magnetic susceptibility, nuclear magnetic screening 

and nuclear spin-spin coupling tensors. The theory of molecular 

magnetism has a long history which begins by Ramsey Theory [22] 

and continued to nowadays (Relativistic calculations, Many-Body 
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Perturbations Theory, Propagators, and different for Gauges for 

magnetic fields...). Hameka [23,24] has clarified many of the physical 

concepts from Ramsey [22] theory paving the way to Ditchfield's 

fundamental work [25] on Gauge-Independent Atomic Orbitals 

(GIAOs). From the work of Ditchfield's which developed his theory 

within a finite perturbation method, along the times a coupled Hartree-

Fock-Roothaan perturbations theory using GIAO theory of the 

diamagnetic susceptibility tensor   and nuclear screening N  theory 

has been developed in divers forms [25,26]. If we use a field 

dependent basis functions, the matrix elements of Hamiltonian is : 
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Where  rs  is the London exponential, Xr   is the electron position 

vector with respect to atom X, Xd  is the nucleus position vector in 

molecular frame, XA  is the potential vector on the atom X, and B   is 

the magnetic field. . The London approximation [27] yield to 1rs . 

This approximation breaks down the hermiticity of Hamiltonian, but 

we can re-establish it by making the transformation   hhh
2

1
. 

Within the London approximation the following integrals appear in 

theses magnetic tensors: 
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The integrals k
rsI  and k

rsJ  are involved in the tensor  , 
k
rsK and k

rsM  in 

the tensor N . In these formulas the index k labels the direction of the 

magnetic field, Tr


),,( NSRT   is the electron position vector in the 

molecular system with respect to atomT . TL


 is the angular 

momentum operator with respect to NSR ,, .  
k

u


is a unit vector in the 

molecular frame. 
)(Rr

 is a Slater type atomic orbital centered on 

atom R . For convenience, we adopted the functional form:  

),()()(
)(


rrr

rNr
r R




                                                       

In this expression 
r

N is the normalization constant, 
r

  and 
r

 are 

respectively, the radical and angular functions. Several authors [28-

31] have published partial work on integrals obviously defined. These 

integrals belong to four categories: 1) Monocentric term RS  , or

NRS  . These integrals are obtained in spherical polar 

coordinates. Compact forms will be given for arbitrary field direction. 

2) Bicentric terms with monocentric charge distributions. Kondo and 

all [28] have calculated N  uniquely at the INDO-STO-2s2p level 

(Intermediate Neglect Differential Overlap for Slater Type Orbitals) 

including only first neighbor's interaction. These authors determine 

the 
k

RsRrM )()(  and
k

RsRrK )()(  )( NR   integrals on a diatomic system of 

coordinates, neglecting all molecular orientation effects.  Moreover 
k

RsRrK )()(  is evaluated numerically and 
k

RsRrM )()(  analytically in [30]. 

This work generalizes the method of Kondo in entirely analytical 
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form. The integrals 
k

RsRrM )()(  and 
k

RsRrK )()(  are given by reduced 

formulas for general nsnp basis functions which present a great 

interest for direct use in a Fortran program. 3) Bicentric terms with 

bicentric charge distribution. Previous work [30] on susceptibilities 

integrals have been carried out uniquely at the CNDO level (Complete 

Neglect of Differential Overlap) [3]  and for one direction of magnetic 

field and without arbitrary molecular orientations of axes system. 

Here, the integrals 
k

SsRrI )()(  and 
k

SsRrJ )()(  are integrated in elliptical 

coordinates at the NDDO [3] level (Neglect of Diatomic Differential 

Overlap), a more advanced level than the CNDO one, and the compact 

formulas given here are for arbitrary molecular orientation of 

molecular axes and arbitrary directions of external magnetic field. 4) 

Bi- and tricentric terms with bi bicentric electron distribution 
k

SsRrM )()( and
k

SsRrK )()( . These are apparently absent from previous 

analytical STO's. Here, they are evaluated analytically using a London 

type approximation relating them 
k

SsRrI )()(   and
k

SsRrJ )()( . 

V-Analytical forms of monocentric integrals 

1-Integrals involved in the susceptibility tensor 

Dropping the subscript R the 
k
rsI  integrals are determined by the 

angular momentum operator on the STO nsnp: 

         rnpni kijkr
j
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i
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ijk  is the Levi-Civita 3-tensor [32]. By symmetry of  inpns  
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For k

rsJ , using the identity: 
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kxr  gives for any direction of field magnetic field: 
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These relationships give: 
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2- Integrals involved in the nuclear shielding tensors: 

The monocentric terms k

rsM : 

skrsrsr

k

NsNr
r

NNM  21
1
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This gives: 
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The integrals
k
rsK  :it is clear that 3,2,10  k

k
nsnsK                                               

We obtain for nsnp using equation of angular momentum operator: 
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VI-Coordinate transformation from diatomic to molecular axes 

1-Definition of the problem 

The molecular integrals  )(,;, )()()()()()()()( NR
k

K
k

M
k

J
k

I SsRrSsRrSsRrSsRr   

depend on the orientation of the straight line RS or RN with regard to 

the molecular axes. Direct evaluation of these integrals in the 

molecular frame is not possible. The problem is avoided by 

determining the bicentric integrals in parallel axes centered on atoms 

R and S . These diatomic axes take the RS distance along the z axis. 

Therefore, elliptic or polar spherical coordinates can be defined 

enabling analytical evaluation of various bicentric integrals. The 

actual integral may then be expressed as a function of auxiliary 
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integrals in the diatomic frame. The molecular integrals may be 

expanded in combination of fictitious integrals determined in the 

diatomic frame. The corresponding transformation is just a rotation 

matrix relating axes on R  and S in the diatomic frame to the initial 

molecular orientation. We define here the rotation matrix. 

2-Rotation matrix 

Let  ijkR,  the molecular frame  ijko,  translated to atom R  and 

 ''', kjiRS  the diatomic frame. The vector 'k


 follows the RS axis. 'j


is arbitrarily positioned in the  jRi,  plane. The vector 'i


is 

perpendicular to 'j


 and 'k


. In the molecular frame 'k


 

gives: 

kjik zyx


  coscoscos'                                 

The directions cosines are determined as follows. Let 

    ,3,2,1,, pXdXd PSSPRR


  

be the position vectors with respect to  ijko,  and  ''

PRS Xd


 be the 

position vector with respect to  ijkR, . We have for 
'

Sd


 and its 

orthogonal projection in  ijkR, : 

||,cos,,3,2,1 '''


 RSRRXXXXdddi iiSiRiSiSRSS 


                               

The  i   are obtained by use of the last equation: 
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The coefficients 21A  and 22A  are obtained by orthogonality of
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Similarly, 'i


 in the molecular frame gives: 

kAjAiAi

 131211

'                                                    

The unknowns ;3,2,1;3 iA i  are obtained from: 
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These formulas define four independent determinations. The direct 

diatomic frame 

 ''''

2

''

1

''' ,, kujuiuuuu tpqtqp


               

Reduce this number to two.  One is chosen arbitrarily. 

The elements  ijA  of orthogonal matrix A define a transformation 

from diatomic to molecular axes with . AT  

k

j

i
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coscos







  +  

'

'

'

k

j

i







  

'uTu

       

Invariance of these vectors for a change of axes shows that the 

 zyx ,,  coordinates transform as unit vectors. The orbitals  inp  

proportional to yx,  and z also behave as unit vectors. The spherically 

symmetric atomic orbitals ns are invariant. Therefore the last equation 

can be generalized: 

iiii

j

jiji xuvvTvvTv ,,,'
4

1

' 
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ITTTTTT TT

ij

q

qjqi 



4

1

                                           

The elements   44 iiT     4,1i account for the nsOA  form vector 

v  including the basis:
 

 nsnpnpnpv zyx . 

VII-Exact analytical evaluation of bicentric integrals 

1-Integrals for the susceptibility tensor 

In the molecular frame the angular momentum operator acting on the 

sOA' gives the k

rsI  integrals subsequently evaluated in the diatomic 

axes. The action of angular momentum on orbitals with spherical 

symmetry implies: 

                       0
n

SnsRnsI                                       

Using the action of angular momentum operator on basis functions 
n

npnpp
I becomes: 

mR
np

tS
np

S
np

jR
np

n

tSns
jR

np kjmktl
iiI   

1
                      

Expressing this in the diatomic frame:
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k
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Eliminating zero integrals and using orthogonality of T :
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The same procedure gives: 

1131
iTiI

kttS

k
npnsR

                    

2131
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ktStR

k
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''

4

''

3
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2
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1 ,,, zSzRxSxRZRSZRZS npnpinpnpinpnsinpnsi 

        



Damascus University Journal for BASIC SCIENCES Vol. 33, No1, 2017 

 

22 

 

Where .3,2,1,,,, lmtjk similarly k

rsJ  becomes: 

  '

)(

'''''
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1 1

3 3 4

1
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1
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rs xxxxTTTTJ
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For a  npns, basis, using orthogonality ofT : 
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k
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k
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s

nS
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xxj np
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22
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qSqRzRp
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ssRRR
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5
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ssRRxR
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12
             

zs
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13
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ssRRzR
zxzxj np  

14
            

Substituting   1q gives      3,10,8,6,3,1  qpj
p

    gives    
   

 .11,9,7,4,2 pj
p
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Auxiliary integrals pi   and  14,1; pjq , in the R  and S  diatomic 

frame are computable exactly in elliptic coordinates. 

2-Integrals for the nuclear screening tensor 

Bicentric integrals with monocentric electron distribution are obtained 

from general formula by taking RS  .  The integrals 

)()(

ˆ
RsNRr

O   become calculated in spherical polar coordinates 

after translating 
N

Ô  operator to R . The above rotation matrix should 

be used for directional quantities. Using the matrix equation 'vTv    

we expand the integrals k

rsM  in the diatomic frame axes:  

   
'
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''''
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1 1

3 3 4
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2 u
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RxxRrri iiRiNRN  3
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  23223 cos2 RRRN RrRrr           

   

The second term in the last equation of  k

rsM  contains operator of k

rsM

integrals. 

Within the former expression, this operator can be expanded as 

follows: 
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For a  npns,  basis functions we get: 
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The monocentric integrals   14,1imi  can be evaluated analytically 

in spherical polar coordinates with the origin on atom R where the 

AO are centered. As with the k

rsM  integrals the k

rsK bicentric terms are 

expanded in the diatomic frame: 
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The center of the operator is translated  ;;


 NRRrr RN


 and 

it is expanded in the diatomic frame to give is its molecular frame 

expression: 

    RRkNNkNk RRrupruLu


                        

''
3

1

3

3

1

''

Rt

i

kiti

i

RikiNk puTRLuTLu


 


                  

Nk Lu

   is the thk component of the angular momentum in the 

molecular frame.  Ni Lu


'
 the thi in the diatomic frame. The impulsion 

of a particle at r


 is given by: 

kjt
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1

3

1
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Replacing the operator p̂


  in Nk Lu

  and using the identity: 
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The radial derivatives are readily carried out and these relations give: 
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Integrals   7,1iki  are evaluated analytically as for im integrals.  

3-Analytical integration for im  and ik   

im and ik are rigorously integrable in the  ''', RRR zyxR  frame in 

spherical polar coordinates. Let rrR 
'

,  '

R ,  '

R . For a STO 

basis, im or
 ik , labeled in , become: 

     






 

0 0
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2

0
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0
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* sinˆˆ


 ddrOrOrT qpqppq


                     

Our procedure for im gives: 
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 Given the relation 1ns , the auxiliary integrals nsnsT takes the form: 
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The integrals   ;2,1,0; nrKn in  nsnsT   give: 
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By replacing  0K  , 1K  and 2K  in nsnsT  we obtain: 
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As the auxiliary functions    pqpqpqpq TTTI  , pqI splits up into two 

integrals: 
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When the  rI pq


 functions are used in pqI , 
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pqI  and using 

Euler's integrals [32]: 
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and stand: 
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The  nsnsI  becomes: 
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Therefore, posing Rns   2   : 
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Where  ,n  is the gamma function.  For 1,1 nAOs , we get: 
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3

1
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There are four auxiliary integrals  rKn  required to evaluate  k

rsK . We 

have demonstrated here the procedure of calculation for the most 

simpler  rKn  
,  rI pq


 and im  integrals concerning the basis 

functions nsns. For a nsnp basis, the calculations are more complex. 

The integrals im and ik have been calculated over a nsnp STO basis, 

for any integer n, and are expressed using gamma functions in a 

practical form adapted to a Fortran program. 

VIII-Approximate analytical evaluation of integrals in the nuclear 

screening tensor not retained by NDDO  

Taking into account the obvious relation  
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A London type approximation [27] simplifies their evaluation: 

  RSSRN dddr
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The k

rsM integrals become: 
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The integrals k

rsJ
 

are determined in the above section. The last 

equation of  
k

SsRrM )()(  constitute for k

rsM  an approximate analytical 

formula in the molecular frame. The transformation to the diatomic 

frame of iA

SsRrD )()(
 is similar to that for k

SsRrJ )()(
. Finally: 
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Orthogonality of T gives the reduced formulas (for nsnp basis): 
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 9;1  pSApRAnznsd SARp                                                     

 103:;3,21:  pqSAqpqRAnpxnsd xqSqARp
        

 113:;53,41:  pqSApqpqRAnpxnsd xqSqARp

  12;6  pSApRAnpznpd xSAzRp     
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 12;7  pSApRAnpznpd xSAxRp
     

The angular moment operators NL


, AL


and the impulsion AP


, defined 

respectively with regard to the screened nucleus N and the atom A  

 SorRA   are, owing to the invariance of gradient operator, 

related by: 
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Substituting the last equation into 
k

SsRrK )()(  and taking the London 

type approximation into account we obtain: 
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It appears that, using our approximation, that bi or tricentric integrals 
k

rsK  can be expressed in terms of bicentric angular momentum 

k

SsRrI )()( and impulsion 
i

SsRrP )()( integrals. By the action of the 

derivative operator on a AOnsnp basis, we obtain in the molecular 

system of coordinates: 
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ps  and psn are exponent and principal quantum number of the 

.AOnp js  sS  and  sSn  are those of the AOnsS . The ket  p

sns  

correspond formally to an AOnp . These integrals are both bicentric. 

Their form in the diatomic frame is: 
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  Orthogonality of T leads to simplifications: 
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182,1

;162,171:1,3

;142,151:3,1
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P

SSzR nsrnpPnsrnpP 1

7

1

9

             

The bicentric integrals qd and tp ;  19,1t ; defined in the diatomic 

frame can be integrals analytically in elliptic coordinates. 

IX-Conclusion 

At the NDDO level we have given a detailed and rigorous treatment of 

the integrals involved in the susceptibility and nuclear screening 

tensors for a GIAO-STO base within the London approximation for 

arbitrary molecular frames axes and for arbitrary direction of magnetic 

field. Analytical formulas are established here for a nsnp basis and 

applied to the first three rows of the periodic table. The integrals 

involved in the nuclear screening tensor (usually zero in NDDO) are 

also included. Their evaluation involves a London type approximation 

which allows them to be calculated in elliptic coordinates. Ours 

analytic and compacts formulas are helpful for a FORTRAN program.  
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