A Finite BCI-algebra of $\boldsymbol{K L}$-Product

Ahmad Habil
Department of Mathematics- Faculty of Sciences-University of Damascus-Syria

Received 09/05/2007
Accepted 15/07/2008

Abstract

A non-empty set X with a binary operation * and a distinguished element 0 is called a $B C I$-algebra if the following axioms are satisfied: I) $((x * y) *(x * z)) *(z * y)=0$ II) $(x *(x * y)) * y=0$ III) $x * x=0$ IV) $x * y=0, y * x=0 \Rightarrow x=y$ for every $x, y, z \in X$. Let be X a finite $B C I$ - algebra, it is known that X is of $K L$ - product if and only if the following condition is satisfied: $$
(a * e) *(0 * e)=a ; \forall a \in X, \forall e \in L(X)
$$

We present a necessary and sufficient condition for $B C I$-algebra X to be of $K L$ - product, this condition is pure numerical, that is the number of elements of the row which is opposite to the zero element in the Cayley table of the operation * divides the number of elements in each row of the mentioned table.

Key words: $B C I$ - algebra, $K L$-product.

جبرBCI المنتهي من النوع KL -جداء

أحمد هابيل

قسم الرياضيات ــلية العلوم ـ جامعة دمشق ـ سورية

تاريـــخ الإيداع 2007/05/09

قبل للنشثـر في 2008/07/15

الملخص

إن مجموعة غير خالية X مزودة بعمية ثـائية * وبغصر مميز 0 تثعى جبر -BCI إذا تحققت الخواص الآتية:
I) $((x * y) *(x * z)) *(z * y)=0$
II) $(x *(x * y)) * y=0$
III) $x * x=0$
IV) $x * y=0, y * x=0 \Rightarrow x=y$
وذلك مهما يكن . x, y,z من x.

ليكنX جبر -BCI منتهياً، من المعروف أن X XL X (X - جواء إذا تحقق فيه الثرط الآتي فقط: $(a * e) *(0 * e)=a ; \forall a \in X, \forall e \in L(X)$
نقد في هذا البحث شرطاً لازماً وكافياً لكي يكون X جبر BCI من النوع -
 قاسماً لعدد غاصر كل سطر في الجدول المذكور .
الكلمـات المفتاحية: جبر -KL - ، ، جداء.

Introduction

The notion of $B C K$ - algebras was proposed by Y. Iami and K. Iseki in 1966.

In the same year K. Iseki [3] introduced the notion of $B C I$-algebra, which is a generalization of $B C K$ - algebra.

After that, many mathematical papers have been published investigating some algebraic properties of $B C K / B C I$-algebras and their relationship with other universal structures including lattices and Boolean algebras.

1) - Basic definitions and results

Definition (1): A non-empty set X with a binary operation * and a distinguished element 0 is called a $B C I$ - algebra if the following axioms are satisfied for every $x, y, z \in X$:
I) $((x * y) *(x * z)) *(z * y)=0$
II) $(x *(x * y)) * y=0$
III) $x * x=0$
IV) $x * y=0, y * x=0 \Rightarrow x=y$

Definition (2): A $B C I$-algebra X is called $B C K$-algebra if it satisfied:
V) $0 * x=0 ; \forall x \in X$

A partial ordering relation \leq can be defined on $B C I$-algebra X for some $x, y \in X$ by: $x \leq y$ if and only if $x * y=0$

Remark: the axioms in definition (1) can be rewriting by using the symbol \leq in the following simpler way:
i) $(x * y) *(x * z) \leq z * y$

II) $x *(x * y) \leq y$
III) $x \leq x$

IV) $x \leq y, y \leq x \Rightarrow x=y$
And the axiom V in definition (2):
V) $0 \leq x ; \forall x \in X$

Definition (3):[5] An element a in $B C I$-algebra X is called an atom if and only if : $x * a=0 \Rightarrow x=a(\forall x \in X)$.

Definition (4): [2] A $B C I$ - algebra X is called p-semisimple when the following condition is satisfied: $0 *(0 * x)=x \quad(\forall x \in X)$
J. Meng and X. L. Xin [6] introduced the notion of $K L$-product BCI-algebras.

Definition (5): Let X be $B C I$-algebra. If there exist $B C K$ - algebra Y and p-semisimple $B C I$-algebra Z such that $X \approx Y \times Z$, then X is called $B C I$-algebra of $K L$-product.

Lemma (1): [7] An element a in $B C I$-algebra X is an atom if and only if $x *(x * a)=a(\forall x \in X)$

Notation: We shall denote the subset of all atoms in $B C I$-algebra X by $L(X)$

Lemma (2): [7] Let X be $B C I$-algebra then $L(X)=0 * X$.
Theorem (1): [7] A $B C I$-algebra X is of $K L$ - product if and only if it satisfies the condition:

$$
(a * e) *(0 * e)=a ; \forall a \in X, \forall e \in L(X)
$$

Proposition (1): [4], [1] In any $B C I$-algebra X the following Proprieties hold for every $x, y, z \in X$:
(1) $x * 0=x$
(2) $x *(x *(x * y))=x * y$
(3) $(x * y) * z=(x * z) * y$
(4) $(x * y) *(z * y) \leq x * z$
2) - Main Results

Definition (6): Let X be $B C I$-algebra, then for any element $a \in X$ the subset T_{a} is defined by:

$$
T_{a}=\{x \in X: a *(a * x)=x\}
$$

Lemma (3): Let X be $B C I$-algebra, and $a \in X$, then:
(1) $L(X)=T_{0}$
(2) $0, a \in T_{a}$

Proof:

(1)(i) $x \in T_{0} \Rightarrow 0 *(0 * x)=x \Rightarrow x \in 0 * X$, so $T_{0} \subseteq 0 * X$
(ii) $x \in 0 * X \Rightarrow \exists y \in X ; x=0 * y \Rightarrow$
$0 *(0 * x)=0 *(0 *(0 * y))=0 * y=x \Rightarrow x \in T_{0}$, So we have the other inclusion, $0 * X \subseteq T_{0}$ and by lemma (2) $L(X)=T_{0}$.
(2)(i) $a *(a * 0)=a * a=0 \Rightarrow 0 \in T_{a}$
(ii) $a *(a * a)=a * 0=a \Rightarrow a \in T_{a}$

Proposition (2): Let X be $B C I$-algebra, then for any element $a \in X$ we have the following Proprieties:
(1) $T_{a}=a * X=\{a * x: x \in X\}$
(2) $T_{a} * a=L(X)=T_{0} \quad(\forall a \in X)$
(3) $T_{a * x} \subseteq T_{a} \quad(\forall x \in X)$
(4) $T_{0} \subseteq T_{a}$
(5) $T_{a} * X=T{ }_{a}$
(6) $x \in T_{a} \Rightarrow T_{x} \subseteq T_{a}$
(7) $T_{0}=T_{a}$ if a is an atom.

Proof:

(1) (i) $y \in T_{a} \Rightarrow y=a *(a * y) \Rightarrow y \in a * X$, so we have:

$$
T_{a} \subseteq a * X
$$

(ii) on the other hand: $y \in a * X \Rightarrow \exists x \in X ; y=a * x \Rightarrow$
$a *(a * y)=a *(a *(a * x))=a * x=y \Rightarrow y \in T_{a}$
This implies $a * X \subseteq T_{a}$. So, $T_{a}=a * X$.
(2) $T_{a} * a=\{(a * x) * a: x \in X\}$

$$
\begin{aligned}
& =\{(a * a) * x: x \in X\} \\
& =\{0 * x: x \in X\}=0 * X=L(X)=T_{0}
\end{aligned}
$$

(3) Let $y \in T_{a * x}$ then: $y=(a * x) *((a * x) * y)$

$$
=(a * x) *((a * y) * x)
$$

But by the proposition (1): $\leq a *(a * y)$

$$
\leq y
$$

Therefore we have: $a *(a * y)=y \Rightarrow y \in T_{a}$.
(4) By putting $x=a$ in the preceding property we have:

$$
T_{a * a} \subseteq T_{a} \Rightarrow T_{0} \subseteq T_{a}
$$

(5) (i) Suppose that $z \in T_{a} \Rightarrow \exists x \in X ; z=a * x$.

Let $y \in X$ then by (3):
$T_{z * y}=T_{(a * x) * y} \subseteq T_{a * x} \subseteq T_{a}$.
So $\quad z * y \in T_{a}$ and $T_{a} * X \subseteq T_{a}$
(ii) Now $T_{a}=a * X \subseteq T_{a} * X$.
(6) $x \in T_{a} \Rightarrow \exists u \in X ; x=a * u$.

We have by (3): $T_{a^{* u}} \subseteq T_{a}$, therefore $T_{x} \subseteq T_{a}$.
(7) (i) a is an atom $\Rightarrow a \in L(X)=T_{0} \Rightarrow T_{a} \subseteq T_{0}$.

And by (4) $T_{0} \subseteq T_{a}$, hence we have: $T_{0}=T_{a}$
(ii) If $T_{0}=T_{a}$ then $a \in T_{0} \Rightarrow 0 *(0 * a)=a$, so by lemma (2) $a \in L(X)$.

Definition (7): Let X be a $B C I$ - algebra, then for any element $a \in X$ the subset S_{a} is defined by:

$$
S_{a}=\{x \in X: x *(x * a)=a\} .
$$

Proposition (3): Let X be a $B C I$ - algebra, then for any elements $a, b \in X$ we have the following Proprieties:
(1) $a \in S_{a}$
(2) $x \in S_{a} \Rightarrow S_{x} \subseteq S_{a}$
(3) $S_{a} \subseteq S_{b} \Leftrightarrow T_{b} \subseteq T_{a}$
(4) $S_{a} \subseteq S_{a * x}$ for any $x \in X$
(5) $S_{a}=X$, if a is an atom in X.
(6) $S_{0}=X$.
(7) If a is not an atom then $\left(X \backslash S_{a}\right) * X=X \backslash S_{a}$

Proof:

(1) We have $a *(a * a)=a * 0=a \Rightarrow a \in S_{a}$
(2) Let $x \in S_{a}$ and let $y \in S_{x}$ then $x *(x * a)=a \quad$ and $y *(y * x)=x$ which imply by proposition (1)

$$
\begin{aligned}
a & =(y *(y * x)) *((y *(y * x)) * a) \\
& =(y *(y * x)) *((y * a) *(y * x)) \\
& \leq y *(y * a)
\end{aligned}
$$

So $a \leq y *(y * a)$ and clearly $y *(y * a) \leq a$
So $y *(y * a)=a \Rightarrow y \in S_{a}$.
(3) Suppose that $S_{a} \subseteq S_{b}$ and $x \in T_{b}$ then $b *(b * x)=x \Rightarrow$ $b \in S_{x} \Rightarrow S_{b} \subseteq S_{x} \Rightarrow S_{a} \subseteq S_{x}$, So $a \in S_{x} \Rightarrow x \in T_{a}$ Concluding $T_{b} \subseteq T_{a}$

In a similar way we can prove that $T_{b} \subseteq T_{a} \Rightarrow S_{a} \subseteq S_{b}$
(4) We know that $T_{a * x} \subseteq T_{a}$ therefore $S_{a} \subseteq S_{a * x}$.
(5) We know that $x *(x * a)=a(\forall x \in X)$ if a is an atom by lemma (1). So, $S_{a}=X$ if a is an atom.
(6) We have $0=0 * 0 \in 0 * X \Rightarrow 0$ is an atom $\Rightarrow S_{0}=X$.
(7) If a is not an atom then $S_{a} \neq X$.

Now let $x \in X \backslash S_{a}$ and $y \in X$, and suppose that $x * y \in S_{a}$
Then $S_{x * y} \subseteq S_{a}$, but $S_{x} \subseteq S_{x * y} \Rightarrow x \in S_{a}$ which is not true, so, $x * y \in X \backslash S_{a}$ which implies $\left(X \backslash S_{a}\right) * X \subseteq X \backslash S_{a}$, but of course:
$\left(X \backslash S_{a}\right) * X \supseteq X \backslash S_{a}$ Because for any $x \in X \backslash S_{a}$ we have: $x=x * 0$ and finally $\left(X \backslash S_{a}\right) * X=X \backslash S_{a}$.

As a consequence of the preceding proposition we can write the following:

Corollary (1): In any $B C I$-algebra X, the following properties are equivalents:
(1) $S_{a}=S_{b}$
(2) $T_{a}=T_{b}$
(3) $b \in S_{a} \cap T_{a}$
(4) $a \in S_{b} \cap T_{b}$

Notation: We define a relation \sim on $B C I$ - algebra X by:

$$
x \sim y \Leftrightarrow T_{x}=T_{y} .
$$

It is clear that \sim is an equivalence relation, and by corollary (1) the equivalence class of an element $a \in X$ is $S_{a} \cap T_{a}$.

Proposition (4): In any $B C I-$ algebra X the function
$\varphi_{a}: S_{a} \cap T_{a} \rightarrow S_{0} \cap T_{0} ; x \rightarrow a * x$ is well defined and injective, $\forall a \in X$.

Proof:

If $x \in S_{a} \cap T_{a}$ then: $\varphi_{a}(x)=a * x$

$$
\begin{aligned}
& =(x *(x * a)) * x \\
& =(x * x) *(x * a) \\
& =0 *(x * a)
\end{aligned}
$$

So $\quad \varphi_{a}(x) \in 0 * X=T_{0}=X \cap T_{0}=S_{0} \cap T_{0}$
Therefore φ_{a} is well defined.
If $x_{1}, x_{2} \in S_{a} \cap T_{a}$ such that $\varphi_{a}\left(x_{1}\right)=\varphi_{a}\left(x_{2}\right)$ then: $a * x_{1}=a * x_{2}$

Now $\quad x_{1}=a *\left(a * x_{1}\right)=a *\left(a * x_{2}\right)=x_{2}$
Therefore φ_{a} is injective.
Theorem (2): In any finite $B C I$ - algebra X the following conditions are equivalents:
(1) $(a * e) *(0 * e)=a \quad(\forall a \in X$ and $\forall e \in L(X))$.
(2) $\varphi_{a}: S_{a} \cap T_{a} \rightarrow S_{0} \cap T_{0} ; x \rightarrow a * x$ is surjective, $\forall a \in X$.
(3) Card $(0 * X)$ divides $\operatorname{Card}(I)(\forall I \subseteq X: I * X \subseteq I)$

Proof:

(1) $\Rightarrow(2)$

By proposition (4) the function φ_{a} is well defined and injective.
Also φ_{a} is surjective.
For $e \in S_{0} \cap T_{0}=X \cap T_{0}=T_{0}=0 * X=L(X)$
$\Rightarrow e \mathrm{Is}$ an atom $\Rightarrow a *(a * e)=e$.
Let $\quad x=a * e$, then clearly $x \in T_{a}$, and $x \in S_{a}$ because

$$
\begin{aligned}
x *(x * a) & =(a * e) *((a * e) * a) \\
& =(a * e) *((a * a) * e) \\
& =(a * e) *(0 * e) \\
& =a
\end{aligned}
$$

Finally $x \in S_{a} \cap T_{a}$.
So, for $e \in S_{0} \cap T_{0}$ we have found $x \in S_{a} \cap T_{a}$ such that $\varphi_{a}(x)=e$ so φ_{a} is surjective, which prove (2).
$(2) \Rightarrow(1)$
Let be $a \in X, \quad e \in L(X)=S_{0} \cap T_{0}$, since φ_{a} is surjective there exists some $x \in S_{a} \cap T_{a}$ such that $\varphi_{a}(x)=e$

So, $a * x=e \Rightarrow a *(a * x)=a * e$.
But $x \in T_{a}$ so $x=a^{*} e$, also $x \in S_{a}$ implies:

$$
\begin{aligned}
a & =(a * e) *((a * e) * a) \\
& =(a * e) *((a * a) * e) \\
& =(a * e) *(0 * e)
\end{aligned}
$$

Which prove (1).
(2) \Rightarrow (3)
let I be any subset of X such that $I * X \subseteq I$, in this case it is easy to see that I is the union of disjoint subsets of the form $S_{a} \cap T_{a}$, because if $a \in I$ then:
$T_{a}=a * X \subseteq I * X \subseteq I$, but $S_{a} \cap T_{a} \subseteq T_{a}$ which implies that $S_{a} \cap T_{a} \subseteq I$.
so $\quad I=\cup_{a \in C}\left(S_{a} \cap T_{a}\right) \quad$ where $\quad C \subseteq I, \quad$ and the subsets $S_{a} \cap T_{a} ; a \in C$ are disjoints, this is possible because they are
equivalence classes of the equivalence relation \sim defined above, so we have: $\operatorname{Card}(I)=\sum_{a \in C} \operatorname{Card}\left(S_{a} \cap T_{a}\right)$

Since φ_{a} is surjective by (2) and injective by proposition (4) we have: $\operatorname{Card}\left(S_{a} \cap T_{a}\right)=\operatorname{Card}\left(S_{0} \cap T_{0}\right)$ and:
$\operatorname{Card}(I)=\sum_{a \in C} \operatorname{Card}\left(S_{0} \cap T_{0}\right)$

$$
\begin{aligned}
& =\sum_{a \in C} \operatorname{Card}(0 * X) \\
& =\operatorname{Card} C \times \operatorname{Card}(0 * X)
\end{aligned}
$$

Which implies that: Card $(0 * X)$ divides Card (I).
(3) $\Rightarrow(2)$:

If Card $(0 * X)$ divides Card $(I)(\forall I \subseteq X: I * X \subseteq I)$ then:
For any $a \in X$ we have: $T_{a}=X \cap T_{a}$

$$
\begin{aligned}
& =\left(S_{a} \cup\left(X \backslash S_{a}\right)\right) \cap T_{a} \\
& =\left(S_{a} \cap T_{a}\right) \cup\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)
\end{aligned}
$$

This implies $\operatorname{Card} T_{a}=\operatorname{Card}\left(S_{a} \cap T_{a}\right)+\operatorname{Card}\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)$
$\operatorname{Or} \operatorname{Card}\left(S_{a} \cap T_{a}\right)=\operatorname{Card} T_{a}-\operatorname{Card}\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)$
We have tow cases:
(i)If a is not an atom then: $\left(X \backslash S_{a}\right) * X=\left(X \backslash S_{a}\right)$ (Proposition 3)

And $T_{a} * X=T_{a}$ (Proposition 2)
Hence $\left(\left(X \backslash S_{a}\right) \cap T_{a}\right) * X \subseteq\left(X \backslash S_{a}\right) \cap T_{a}$ By (3) we have:
$\left.\operatorname{Card}(0 * X)\right|_{\operatorname{Card}\left(T_{a}\right)}$, $\operatorname{Card}(0 * X) \mid \operatorname{Card}\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)$
This implies:
$\operatorname{Card}\left(0^{*} X\right) \mid\left[\operatorname{Card}\left(T_{a}\right)-\operatorname{Card}\left(\left(X \backslash S_{a}\right) \cap T_{a}\right)\right] \Rightarrow$
Card ($\left.0^{*} X\right) \mid \operatorname{Card}\left(S_{a} \cap T_{a}\right)$
However, clearly $S_{0} \cap T_{0}=0 * X$, which implies:
$\operatorname{Card}\left(S_{0} \cap T_{0}\right) \mid \operatorname{Card}\left(S_{a} \cap T_{a}\right) \Rightarrow \operatorname{Card}\left(S_{0} \cap T_{0}\right) \leq \operatorname{Card}\left(S_{a} \cap T_{a}\right)$

By proposition (4) the function φ_{a} is injective, so we got the inequality: $\operatorname{Card}\left(S_{a} \cap T_{a}\right) \leq \operatorname{Card}\left(S_{0} \cap T_{0}\right)$ concluding that:
$\operatorname{Card}\left(S_{a} \cap T_{a}\right)=\operatorname{Card}\left(S_{0} \cap T_{0}\right) \Rightarrow \varphi_{a}$ is surjective, because it is an injective function of finite subsets which have the same cardinality.
(ii) If a is an atom, we know that $S_{a}=X=S_{0}$ by Proposition (3), $T_{a}=T_{0}$ by Proposition (2).

Therefore, we have: $S_{a} \cap T_{a}=S_{0} \cap T_{0} \Rightarrow$ similarly, as in (i), φ_{a} is surjective.

So φ_{a} is surjective $\forall a \in X$, which prove (2).
Which conclude the proof of the theorem.
By the preceding theorem and by theorem (1) we have:
Corollary (1): A finite $B C I$ - algebra X is of $K L$ - product iff:
Card ($0 * X$) divides Card $(I)(\forall I \subseteq X: I * X \subseteq I)$.
Remark: let I be a subset of finite $B C I$ - algebra X such that $I * X \subseteq I$ then we can see that if $x \in I$ then $T_{x}=x * X \subseteq I$, now using the fact that $x \in T_{x}$ by (2) in lemma (3) we can write: $I=\bigcup_{x \in I} T_{x}$ Or $\quad I=T_{a_{1}} \cup T_{a_{2}} \cup \ldots . \cup T_{a_{s}}$ in such a way that $T_{a_{i}} \not \subset T_{a_{j}}$ whenever $i \neq j$, in this case we shall say that I is properly written.

Theorem (3): Let be X a finite $B C I$ - algebra, then the following conditions are equivalents:
(1) $\operatorname{Card}(0 * X)$ divides $\operatorname{Card}(I)(\forall I \subseteq X: I * X \subseteq I)$
(2) Card $(0 * X)$ divides Card $(0 * X)(\forall a \in X)$

Proof:
(1) \Rightarrow (2) Let $I=T_{a}$ where $a \in X$.

By the property (5) of the proposition (2) the subset I satisfies the condition $I * X \subseteq I$, so, by (1) Card $(0 * X)$ divides Card (I), but $I=T_{a}=a * X$, which is clear by the proposition (2), and condition (2) is proved.
(2) \Rightarrow (1)

First we define the subsets: $X_{n}=\left\{x \in X: \operatorname{Card}\left(T_{x}\right)=n\right\}$, for n any natural number, then we have a sequence of natural numbers: $n_{0}<n_{1}<n_{2}<\ldots<n_{k}<\ldots$. where we suppose that for any number n_{k} there exist at least one element $x \in X$ such that: $\operatorname{Card}\left(T_{x}\right)=n_{k}$ and if we have $n_{k}<m<n_{k+1}$ then there is no element $x \in X$ such that $\operatorname{Card}\left(T_{x}\right)=m$.

It is clear by propriety (4) of the proposition (2) that $\operatorname{Card}\left(T_{0}\right)=n_{0}$.
We will prove (1) by induction on k the index of the numbers n_{k}.
Now, the statement of induction for $k-1$ is:
If I is any subset of X such that:
$I * X \subseteq I$ and $\operatorname{Card}\left(T_{x}\right) \leq n_{k-1} ; \forall x \in I$ then:
Card ($0 * X$) divides Card (I).
Now for $k=0$, Suppose that I is a subset of X such that $I * X \subseteq I$ and $\operatorname{Card}\left(T_{x}\right) \leq n_{0} ; \forall x \in I$, but $T_{0} \subseteq T_{x}$ by proposition (2), so $\operatorname{Card}\left(T_{0}\right) \leq \operatorname{Card}\left(T_{x}\right) \leq n_{0}$ then it is clear that $\operatorname{card}\left(T_{x}\right)=n_{0}$, because the fact mentioned above that $\operatorname{Card}\left(T_{0}\right)=n_{0}$, also we have: $T_{0}=T_{x}$, $\forall x \in I$ however $I=\bigcup_{x \in I} T_{x}$ therefore, in this case $I=T_{0}$.

So, $\operatorname{Card}\left(T_{0}\right)$ divides Card (I), or Card $(0 * X)$ divides Card (I), and the statement of induction is true for $k=0$.

Now, we prove the statement for k :
Suppose that I is any subset of X such that $I * X \subseteq I$ and
$\operatorname{Card}\left(T_{x}\right) \leq n_{k} ; \forall x \in I$, We shall prove that $\operatorname{Card}(0 * X)$ divides Card (I), provided that the assertion is true for $k-1$.

As we have seen above in the remark, the subset I can be properly Written in the form: $I=T_{a_{1}} \cup T_{a_{2}} \cup \ldots . \cup T_{a_{S}}$.

By set theory we have:
$\operatorname{Card}(I)=\sum_{i} \operatorname{Card}\left(T_{a_{i}}\right)-\sum_{i<j} \operatorname{Card}\left(T_{a_{i}} \cap T_{a_{j}}\right)+\sum_{i<j<k} \operatorname{Card}\left(T_{a_{i}} \cap T_{a_{j}} \cap T_{a_{k}}\right)-\ldots$
Now it is clear that the first sum is divisible by $\operatorname{Card}(0 * X)$, because
this number divides $\operatorname{Card}\left(T_{a_{i}}\right), \forall i$ by (2).
For the other sums, the subsets like $T_{a_{i}} \cap T_{a_{j}}, T_{a_{i}} \cap T_{a_{j}} \cap T_{a_{k}}$,
...... will be denoted by J.
We shall prove the following for the subset $J=T_{a_{i}} \cap T_{a_{j}}$, which we can do with the remaining subsets in the same way.

It is clear by property (5) in the proposition (2) that the subset
J Satisfies the condition: $J * X \subseteq J$ and can be written as the union of subsets of the form T_{x}, just as it was remarked above so: $J=T_{a_{i}} \cap T_{a_{j}}=T_{b_{1}} \cup T_{b_{2}} \cup \ldots . \cup T_{b_{r}},($ Properly Written), here we have: $\operatorname{Card}\left(T_{b_{t}}\right) \leq n_{(k-1)},(1 \leq t \leq r)$, because if $\operatorname{Card}\left(T_{b_{t}}\right)=n_{k}$, for some $1 \leq t \leq r$ then we have: $n_{k}=\operatorname{Card}\left(T_{b_{t}}\right) \leq \operatorname{Card}\left(T_{a_{i}} \cap T_{a_{j}}\right) \leq \operatorname{Card}\left(T_{a_{i}}\right) \leq n_{k}$ $n_{k}=\operatorname{Card}\left(T_{b_{t}}\right) \leq \operatorname{Card}\left(T_{a_{i}} \cap T_{a_{j}}\right) \leq \operatorname{Card}\left(T_{a_{j}}\right) \leq n_{k}$

So, we have: $\operatorname{Card}\left(T_{a_{i}} \cap T_{a_{j}}\right)=\operatorname{Card}\left(T_{a_{i}}\right)=\operatorname{Card}\left(T_{a_{j}}\right)$ which implies $T_{a_{i}}=T_{a_{i}} \cap T_{a_{j}}=T_{a_{j}}$ but this is impossible because I is properly Written in the form $I=T_{a_{1}} \cup T_{a_{2}} \cup \ldots . \cup T_{a_{s}}, \quad$ so
$\operatorname{Card}\left(T_{b_{t}}\right) \leq n_{(k-1)},(1 \leq t \leq r)$, from this we have by using property (6)
in proposition (2) that:
$\operatorname{Card}\left(T_{x}\right) \leq n_{(k-1)} ; \forall x \in J$ And by the statement of induction:

$$
\operatorname{Card}(0 * X) \text { divides } \operatorname{Card}(J)=\operatorname{Card}\left(T_{a_{i}} \cap T_{a_{j}}\right) .
$$

In the same way we proceed for the remaining subsets in the Other sums, so Card $(0 * X)$ divides each of these sums, hence:
Card $(0 * X)$ divides Card (I). Which prove (1).
So the theorem is proved.
By the preceding theorem and corollary (1) of the theorem (2) we have:
Corollary (1):
A finite $B C I$ - algebra X is of $K L$ - product iff
$\operatorname{Card}(0 * X)$ divides $\operatorname{Card}(a * X)(\forall a \in X)$.
In other words a finite $B C I$-algebra X is of $K L$ - product iff the number of atoms in X divides the number of elements of any row in the Cayley table of the binary operation*.

Example:

The last corollary gives us a simple method for examining if a $B C I$ -algebra is of $K L$ - product or not. Here we have these tow examples:

$*$	0	1	2	3	4	5	$*$	0	1	2	3	4	5
0	0	0	0	3	3	3	0	0	0	0	3	3	3
1	1	0	0	4	3	3	1	1	0	0	3	3	3
2	2	2	0	5	5	3	2	2	2	0	5	5	3
3	3	3	3	0	0	0	3	3	3	3	0	0	0
4	4	3	3	1	0	0	4	4	3	3	1	0	0
5	5	5	3	2	2	0	5	5	5	3	2	2	0

Where the first table represents a $B C I$ - algebra of $K L$ - product but the second does not. Because the number of atoms in the first and the second BCI -algebras is 2 (the number of the elements of the first row in the tow tables), it is clear that the condition of the precedent corollary is satisfied in the first table but not in the second.

REFERENCES

[1] Dudek, W. A. (1988). On the axioms system for BCI-algebras, Prace Nauk. Wsp, Czestochows, Mathematyka 2.
[2] Hoo, C. S. (1990). Closed ideals and p-semisimple BCI-algebras, Math. Japonica. 35, 1103-1112.
[3] Iseki, K. (1966) An algebra related with a prepositional czlculus, Pros. Japan. Acad. 42, 26-29.
[4] Iseki, K. (1980). On BCI-algebras, Math. Sem. Notes 8, 125-130.
[5] Meng, J. and Xin, X. L. (1992). Characterizations of atoms in BCIalgebras, Math. Japonica, 37, 359-361.
[6] Meng, J. and Xin, X. L. (1993). A problem in BCI-algebras, Math. Japonica, 38, 723-725.
[7] Wei, S. M., Bai, G. Q., Meng, J. and Wang, Y. Q. (1999). Quasi- Implicative BCI-algebras, Math. Japonica 50, No. 2, 227- 233.

