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ABSTRACT 
 

A non-empty set  X with a binary operation * and a distinguished 
element 0 is called a BCI-algebra if the following axioms are satisfied: 

I) (( ) ( )) ( ) 0x y x z z y∗ ∗ ∗ ∗ ∗ =   
II) ( ( )) 0x x y y∗ ∗ ∗ =   
III) 0x x∗ =       
IV) 0, 0x y y x x y∗ = ∗ = ⇒ =   
for every , ,x y z X∈ . 
Let be X a finite BCI- algebra, it is known that X is of KL- product 

if and only if the following condition is satisfied: 
( ) (0 )  ; , ( )a e e a a X e L X∗ ∗ ∗ = ∀ ∈ ∀ ∈  

We present a necessary and sufficient condition for BCI-algebra X 
to be of KL- product, this condition is pure numerical, that is the 
number of  elements of the row which is opposite to the zero element 
in the Cayley table of the operation * divides the number of elements 
in each row of the mentioned table.  

 
Key words: BCI- algebra, KL -product. 
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  جداء-KL من النوع منتهيال BCI جبر
  

  أحمد هابيل 
  سورية ـ  جامعة دمشق ـكلية العلوم ـ قسم الرياضيات

  
 09/05/2007تاريـخ الإيداع 
   15/07/2008 قبل للنشـر في

  
  الملخص

 تتحقق إذا BCI-تدعى جبر 0مميز بعنصر  و*بعملية ثنائية  مزودة X  غير خاليةإن مجموعة
  :الآتيةالخواص 

I) (( ) ( )) ( ) 0x y x z z y∗ ∗ ∗ ∗ ∗ =   

II) ( ( )) 0x x y y∗ ∗ ∗ =   
III) 0x x∗ =       
IV) 0, 0x y y x x y∗ = ∗ = ⇒ =   

,وذلك مهما يكن  ,x y z من X.  
  : تي فقط تحقق فيه الشرط الآإذا جداء -KL هو X نمن المعروف أ، ياً منتهBCI - جبرX ليكن

( ) (0 )  ; , ( )a e e a a X e L X∗ ∗ ∗ = ∀ ∈ ∀ ∈  

، هذا الـشرط    جداء -KLمن النوع    BCI- جبر Xنقدم في هذا البحث شرطاً لازماً وكافياً لكي يكون          
 ∗ للعمليـة   كايليعددي  صرف وهو أن يكون عدد  عناصر السطر المقابل للعنصر الصفري في جدول         

  . الجدول المذكورفيقاسماً لعدد عناصر كل سطر 

  
  . جداء-BCI ،KL -جبر: الكلمات المفتاحية
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Introduction 
The notion of BCK- algebras was proposed by Y. Iami and K. Iseki 

in 1966.  
In the same year K. Iseki [3] introduced the notion of BCI -algebra, 

which is a generalization of BCK- algebra. 
After that, many mathematical papers have been published 

investigating some algebraic properties of BCK/BCI-algebras and their 
relationship with other universal structures including lattices and 
Boolean algebras. 

1) - Basic definitions and results 
Definition (1): A non-empty set X with a binary operation * and a 

distinguished element 0 is called a  BCI - algebra if the following 
axioms are satisfied for every , ,x y z X∈ : 

I) (( ) ( )) ( ) 0x y x z z y∗ ∗ ∗ ∗ ∗ =   
II) ( ( )) 0x x y y∗ ∗ ∗ =   
III) 0x x∗ =       
IV) 0, 0x y y x x y∗ = ∗ = ⇒ =   
Definition (2): A BCI -algebra X is called BCK-algebra if it 

satisfied:  
V)  0 0 ;x x X∗ = ∀ ∈  

  A partial ordering relation  ≤  can be defined on BCI -algebra X 
for some ,x y X∈ by: x y≤ if and only if    0 x y∗ =   

Remark: the axioms in definition (1) can be rewriting by using the 
symbol  ≤ in the following simpler way: 

Iَََ )( ) ( )x y x z z y∗ ∗ ∗ ≤ ∗   

II َ) ( )x x y y∗ ∗ ≤   
III َ) x x≤       

IV َ) , x y y x x y≤ ≤ ⇒ =  
And the axiom V in definition (2):  
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V َ)  0  ;x x X≤ ∀ ∈  
Definition (3):[5] An element a in  BCI -algebra X is called an 

atom if and only if : 0   ( )x a x a x X∗ = ⇒ = ∀ ∈ . 
Definition (4): [2] A BCI - algebra X is called p-semisimple when 

the following condition is satisfied:  0 (0 )  ( )x x x X∗ ∗ = ∀ ∈  
J. Meng and X. L. Xin [6] introduced the notion of KL-product 

BCI-algebras. 
 Definition (5): Let X be BCI -algebra. If there exist BCK- algebra 

Y and p-semisimple BCI -algebra Z such that  X Y Z≈ × , then X is 
called BCI -algebra of KL-product.  

Lemma (1): [7] An element a in BCI - algebra X is an atom if and 
only if  ( )  ( )x x a a x X∗ ∗ = ∀ ∈  

Notation: We shall denote the subset of all atoms in BCI -algebra 
X by L(X) 

Lemma (2): [7] Let X be BCI -algebra then ( ) 0L X X= ∗ . 
Theorem (1): [7] A BCI -algebra X is of KL- product if and only if 

it satisfies the condition: 
               ( ) (0 )  ; , ( )a e e a a X e L X∗ ∗ ∗ = ∀ ∈ ∀ ∈               
Proposition (1): [4], [1] In any BCI -algebra X the following 

Proprieties hold for every , ,x y z X∈ : 
(1)  0  x x∗ =  
(2) ( ( ))  x x x y x y∗ ∗ ∗ = ∗  
(3) ( )   ( )x y z x z y∗ ∗ = ∗ ∗   

(4) ( ) ( )x y z y x z∗ ∗ ∗ ≤ ∗  
2) - Main Results 
Definition (6): Let X be BCI -algebra, then for any element 

a X∈ the subset 
aT is defined by:  

                                 { : ( ) }aT x X a a x x= ∈ ∗ ∗ =  
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Lemma (3): Let X be BCI -algebra, and  a X∈ , then: 
(1) 

0( )L X T=  

(2) 0, aa T∈  

Proof: 
(1)(i) 

0 0 (0 ) 0 ,x T x x x X∈ ⇒ ∗ ∗ = ⇒ ∈ ∗ so  
0 0T X⊆ ∗  

    (ii) 0 ; 0x X y X x y∈ ∗ ⇒ ∃ ∈ = ∗ ⇒  

00 (0 ) 0 (0 (0 )) 0 ,x y y x x T∗ ∗ = ∗ ∗ ∗ = ∗ = ⇒ ∈  So we have 

the other inclusion, 
00 X T∗ ⊆  and by lemma (2)  

0( )L X T= . 

 (2)(i) ( 0) 0 0 aa a a a T∗ ∗ = ∗ = ⇒ ∈  

     (ii) ( ) 0 aa a a a a a T∗ ∗ = ∗ = ⇒ ∈       

Proposition (2): Let X be BCI -algebra, then for any element 
a X∈ we have the following Proprieties: 

(1)  { : }aT a X a x x X= ∗ = ∗ ∈  

(2) 
0( )aT a L X T∗ = =  ( )a X∀ ∈  

(3)    ( )a x aT T x X∗ ⊆ ∀ ∈  

(4) 
0  aT T⊆  

(5) 
a aT X T∗ =  

(6) 
a x ax T T T∈ ⇒ ⊆  

(7) 
0 aT T=  if a is an atom.  

Proof: 
(1) (i) ( )  ay T y a a y y a X∈ ⇒ = ∗ ∗ ⇒ ∈ ∗ , so we have: 
    aT a X⊆ ∗           

(ii) on the other hand: ;y a X x X y a x∈ ∗ ⇒∃ ∈ = ∗ ⇒  
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 ( ) ( ( )) aa a y a a a x a x y y T∗ ∗ = ∗ ∗ ∗ = ∗ = ⇒ ∈  

   This implies  aa X T∗ ⊆ . So, 
aT a X= ∗ . 

     (2)   {( ) : }aT a a x a x X∗ = ∗ ∗ ∈  

                       {( ) : }a a x x X= ∗ ∗ ∈  
                      

0{0 : } 0 ( )x x X X L X T= ∗ ∈ = ∗ = =  

    (3) Let 
a xy T ∗∈ then:   ( ) (( ) )y a x a x y= ∗ ∗ ∗ ∗                                                   

                                               ( ) (( ) )a x a y x= ∗ ∗ ∗ ∗  
But by the proposition (1): ( )a a y≤ ∗ ∗  
                                             y≤  
Therefore we have: ( )a a y y∗ ∗ =  

ay T⇒ ∈ . 

(4) By putting x=a in the preceding property we have:  
 

0a a a aT T T T∗ ⊆ ⇒ ⊆  

(5) (i) Suppose that  ; .az T x X z a x∈ ⇒∃ ∈ = ∗  

Let  y X∈  then by (3): 

( )z y a x y a x aT T T T∗ ∗ ∗ ∗= ⊆ ⊆  . 

 So     az y T∗ ∈ and  
a aT X T∗ ⊆  

     (ii) Now    a aT a X T X= ∗ ⊆ ∗ . 

(6) ; .ax T u X x a u∈ ⇒∃ ∈ = ∗  

We have by (3):  
a u aT T∗ ⊆ ,    therefore    .x aT T⊆  

(7) (i)  a is an atom   
0 0 ( )  aa L X T T T⇒ ∈ = ⇒ ⊆ .   

   And by (4)  
0  aT T⊆  , hence we have:   

0  aT T=  
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(ii) If 
0  aT T= then 

0 0 (0 )a T a a∈ ⇒ ∗ ∗ = , so by lemma (2) 

( )a L X∈ . 
Definition (7): Let X be a BCI- algebra, then for any element 

a X∈  the subset  
aS  is defined by: 

{ : ( ) }.aS x X x x a a= ∈ ∗ ∗ =  

Proposition (3): Let X be a BCI- algebra, then for any elements 
,a b X∈ we have the following Proprieties: 

(1) 
aa S∈  

(2) 
a x ax S S S∈ ⇒ ⊆  

(3) 
a b b aS S T T⊆ ⇔ ⊆  

(4) 
a a xS S ∗⊆ for any x X∈  

(5) ,aS X=  if a is an atom in X. 

(6) 
0 .S X=  

(7) If a is not an atom then ( \ ) \a aX S X X S∗ =  

Proof: 
(1) We have  ( ) 0 aa a a a a a S∗ ∗ = ∗ = ⇒ ∈  

(2) Let 
ax S∈ and let 

xy S∈ then ( )x x a a∗ ∗ =  and 

( )y y x x∗ ∗ =  which imply by proposition (1) 
( ( )) (( ( )) )
( ( )) (( ) ( ))

( )

a y y x y y x a
y y x y a y x

y y a

= ∗ ∗ ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗ ∗ ∗
≤ ∗ ∗

 

So ( )a y y a≤ ∗ ∗  and clearly ( )y y a a∗ ∗ ≤  
So ( )y y a a∗ ∗ =  ⇒ .ay S∈  
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(3) Suppose that 
a bS S⊆ and 

bx T∈ then ( )b b x x∗ ∗ = ⇒  

x b x a xb S S S S S∈ ⇒ ⊆ ⇒ ⊆ , So  
x aa S x T∈ ⇒ ∈ Concluding   

b aT T⊆  

In a similar way we can prove that  
b a a bT T S S⊆ ⇒ ⊆  

(4) We know that  
a x aT T∗ ⊆  therefore   

a a xS S ∗⊆ . 

(5) We know that  ( )x x a a∗ ∗ = ( )x X∀ ∈  if a is an atom by 
lemma (1).  So, 

aS X=  if  a is an atom. 

(6) We have 0 0 0 0 X= ∗ ∈ ∗  ⇒ 0 is an atom  ⇒
0 .S X=  

(7) If a is not an atom then .aS X≠  

Now let  \ ax X S∈  and  ,y X∈  and suppose that  
ax y S∗ ∈  

Then 
x y aS S∗ ⊆ , but 

x x y aS S x S∗⊆ ⇒ ∈  which is not true,   

so, \ ax y X S∗ ∈ which implies ( \ ) \a aX S X X S∗ ⊆ , but of course: 

( \ ) \a aX S X X S∗ ⊇  Because for any \ ax X S∈ we have: 

0x x= ∗  and finally ( \ ) \a aX S X X S∗ = . 

As a consequence of the preceding proposition we can write the 
following: 

Corollary (1): In any BCI -algebra  X, the following properties are 
equivalents: 

(1) 
a bS S=  

(2) 
a bT T=  

(3) 
a ab S T∈ ∩  

(4) 
b ba S T∈ ∩  

Notation: We define a relation   ∼  on BCI - algebra X by: 
x ∼ 

x yy T T⇔ = . 
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It is clear that  ∼  is an equivalence relation, and by corollary (1) the 
equivalence class of an element a X∈ is  

a aS T∩ . 

Proposition (4): In any BCI - algebra X the function 

0 0: ; a a aS T S T x a xϕ ∩ → ∩ → ∗ is well defined and injective, 

a X∀ ∈ . 
 
Proof:  
If   

a ax S T∈ ∩  then:  ( )a x a xϕ = ∗  

                                                 ( ( ))x x a x= ∗ ∗ ∗  
                                                 ( ) ( )x x x a= ∗ ∗ ∗  
                                                 0 ( )x a= ∗ ∗  
So    

0 0 0 0( ) 0a x X T X T S Tϕ ∈ ∗ = = ∩ = ∩           

Therefore aϕ  is well defined. 

If   
1 2, a ax x S T∈ ∩ such that  

1 2( ) ( )a ax xϕ ϕ=  then:    

1 2a x a x∗ = ∗  

Now       
1 1 2 2( ) ( )x a a x a a x x= ∗ ∗ = ∗ ∗ =     

Therefore aϕ  is injective. 

Theorem (2): In any finite BCI- algebra X the following conditions 
are equivalents: 

(1)  ( ) (0 )a e e a∗ ∗ ∗ =   ( a X∀ ∈ and  ( ))e L X∀ ∈ .   
(2)  

0 0: ; a a aS T S T x a xϕ ∩ → ∩ → ∗ is surjective , a X∀ ∈ .  

(3)  Card (0*X)  divides Card (I) ( :  )I X I X I∀ ⊆ ∗ ⊆  
Proof: 
(1)⇒(2) 
By proposition (4) the function aϕ  is well defined and injective.               

Also aϕ  is surjective. 

 For 
0 0 0 0 0 ( )e S T X T T X L X∈ ∩ = ∩ = = ∗ =   
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 ⇒ e Is an atom   ( ) .a a e e⇒ ∗ ∗ =   
Let    ,x a e= ∗  then clearly 

ax T∈ , and  
ax S∈ because 

( ) ( ) (( ) )x x a a e a e a∗ ∗ = ∗ ∗ ∗ ∗  
( ) (( ) )a e a a e= ∗ ∗ ∗ ∗  
( ) (0 )a e e= ∗ ∗ ∗  
a=  

Finally 
a ax S T∈ ∩ . 

So, for  
0 0 e S T∈ ∩  we have found  

a ax S T∈ ∩ such that  

( )a x eϕ =  so aϕ  is surjective, which prove (2). 

(2)⇒(1) 
Let be a X∈ ,  

0 0( )e L X S T∈ = ∩ , since  aϕ  is surjective there 

exists some 
a ax S T∈ ∩ such that ( )a x eϕ =  

So, ( )a x e a a x a e∗ = ⇒ ∗ ∗ = ∗ . 
But 

ax T∈  so x = a * e, also 
ax S∈ implies: 

( ) (( ) )
( ) (( ) )
( ) (0 )

a a e a e a
a e a a e
a e e

= ∗ ∗ ∗ ∗
= ∗ ∗ ∗ ∗
= ∗ ∗ ∗

 

Which prove (1). 
(2) ⇒ (3) 
let I be any subset of X such that  ,I X I∗ ⊆  in this case it is easy 

to see that  I is the union of disjoint subsets of the form 
a aS T∩ , 

because if   a I∈  then: 

aT a X I X I= ∗ ⊆ ∗ ⊆ , but 
a a aS T T∩ ⊆ which implies that        

a aS T I∩ ⊆ . 

so (  )a C a aI S T∈=∪ ∩  where C I⊆ , and the 

subsets  ;a aS T a C∩ ∈  are disjoints, this is   possible because they are 
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equivalence classes of the equivalence relation ∼ defined above, so we 
have: Card( ) Card(  )a aa CI S T∈= ∩∑  

Since aϕ  is surjective by (2) and injective by proposition (4) we 

have: 
0 0Card(  ) Card(  )a aS T S T∩ = ∩  and: 

0 0Card( ) Card(  )a CI S T∈= ∩∑  
Card(0 )a C X∈= ∗∑  

= Card Card(0 )C X× ∗  
Which implies that:  Card (0 * X) divides Card (I). 
(3) ⇒ (2): 
If Card (0 * X) divides Card (I) ( : )I X I X I∀ ⊆ ∗ ⊆     then: 
For any   a X∈ we have:   a aT X T= ∩  

( ( \ ))a a aS X S T= ∪ ∩  

( ) (( \ ) )a a a aS T X S T= ∩ ∪ ∩  

This implies Card Card( ) Card(( \ ) )a a a a aT S T X S T= ∩ + ∩  

Or Card( ) Card Card(( \ ) )a a a a aS T T X S T−∩ = ∩  

We have tow cases: 
(i)If a is not an atom then:( \ ) ( \ )a aX S X X S∗ =  (Proposition 3) 

And  
a aT X T∗ =   (Proposition 2) 

Hence  (( \ ) ) ( \ )a a a aX S T X X S T∩ ∗ ⊆ ∩ By (3) we have: 

Card (0 * X) Card( )aT , Card (0 * X) Card(( \ ) )a aX S T∩  

This implies: 
Card(0*X)[Card( )aT −Card(( \ ) )a aX S T∩ ]⇒  

Card  (0* X)Card( )a aS T∩  

However, clearly 
0 0 0S T X∩ = ∗ , which implies: 

0 0Card( )S T∩ |Card( )a aS T∩ ⇒
0 0Card( )S T∩ ≤  Card( )a aS T∩  
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By proposition (4) the function aϕ  is injective, so we got the 

inequality: 
0 0Card( ) Card( )a aS T S T∩ ≤ ∩  concluding that: 

0 0Card( ) Card( )a aS T S T∩ = ∩  ⇒  aϕ   is surjective, because it 

is an injective function of finite subsets which have the same 
cardinality.  

(ii) If a  is an atom, we know that 
0aS X S= = by Proposition (3),  

0aT T=  by Proposition (2). 

Therefore, we have: 
0 0a aS T S T∩ = ∩ ⇒ similarly, as in (i), aϕ  

is surjective. 
So aϕ is surjective a X∀ ∈ , which prove (2). 

Which conclude the proof of the theorem.     
By the preceding theorem and by theorem (1) we have: 
Corollary (1): A finite BCI - algebra X is of KL- product iff: 
Card (0 * X) divides Card (I) ( : )I X I X I∀ ⊆ ∗ ⊆ . 
Remark:  let I be a subset of finite BCI- algebra X such that  

I X I∗ ⊆ then we can see that if x I∈ then 
xT x X I= ∗ ⊆ , now  

using the fact that 
xx T∈ by (2) in lemma (3) we can write: 

x
x I

I T
∈

= U Or 
1 2

.....a a as
I T T T= ∪ ∪ ∪ in such a way that  

a ai j
T T⊄ whenever i j≠ , in this case we shall say that I is properly 

written. 
Theorem (3): Let be X a finite BCI - algebra, then the following 

conditions are equivalents:  
(1) Card (0 * X)   divides Card (I) ( : )I X I X I∀ ⊆ ∗ ⊆  
(2) Card (0 * X)  divides Card (0 * X) ( )a X∀ ∈  
Proof: 
(1) ⇒ (2)  Let aI T=  where a X∈ .  
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By the property (5) of the proposition (2) the subset I satisfies the 
condition  I X I∗ ⊆ , so, by (1) Card (0 * X) divides Card (I),  but 

aI T a X= = ∗ , which is clear by the proposition (2), and condition 

(2) is proved.  
(2) ⇒ (1) 
 First we define the subsets:  { :Card( ) }n xX x X T n= ∈ = , 

for n any natural number, then we have a sequence of natural 
numbers: ....0 1 2 .... kn n n n << < < < where we suppose that for 

any number 
kn there exist at least one element x X∈ such that: 

Card( )x kT n=  and if we have 
1k kn m n +< < then there is no 

element x X∈ such that Card( )xT m= .  

It is clear by propriety (4) of the proposition (2) that
0 0Card( )T n= . 

We will prove (1) by induction on k the index of the numbers
kn . 

Now, the statement of induction for k-1 is: 
If I is any subset of Xsuch that:   
 I X I∗ ⊆  and 

1Card( ) ;x kT n x I−≤ ∀ ∈  then:   

Card (0 * X)  divides Card (I). 
Now for 0k = , Suppose that I is a subset of  X such that I X I∗ ⊆  

and 
0Card( ) ;xT n x I≤ ∀ ∈ , but 

0  xT T⊆ by proposition (2), so 

0 0Card( ) Card( )xT T n≤ ≤  then it is clear that 
0card( ) ,xT n=  because 

the fact mentioned above that 
0 0Card( ) ,T n=  also we have:  

0  xT T= , 

x I∀ ∈ however 
x

x I
I T

∈
= U therefore, in this case 

0I T= .   

So, 
0Card( )T divides Card (I), or Card (0 * X) divides Card (I), and 

the statement of induction is true for k=0. 
Now, we prove the statement for k:  
Suppose that I is any subset of Xsuch that  I X I∗ ⊆ and 
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Card( ) ;x kT n x I≤ ∀ ∈ , We shall prove that Card (0 * X)  divides 

Card (I), provided that the assertion is true for k-1. 
As we have seen above in the remark, the subset I can be properly 

Written in the form: 
1 2

.....a a as
I T T T= ∪ ∪ ∪ . 

By set theory we have: 
Card( ) Card( ) Card( ) Card( ) ...

i i j i j ki j ki i j
I T T T T T Ta a a a a a< <<

= − ∩ + ∩ ∩ −∑∑ ∑

 Now it is clear that the first sum is divisible by Card(0 )X∗ , because  
this number divides Card( ),ai

T i∀ by (2).  

For the other sums, the subsets like  a ai j
T T∩ ,  a a ai j k

T T T∩ ∩ , 

…… will be denoted by J. 
 We shall prove the following for the subset   a ai j

J T T= ∩ , 

which we can do with the remaining subsets in the same way. 
It is clear by property (5) in the proposition (2) that the subset 
J Satisfies the condition: J X J∗ ⊆  and can be written as the 

union of subsets of the form  
xT , just as it was remarked above so: 

1 2

.....a a b b bi j r
J T T T T T= ∩ = ∪ ∪ ∪ , (Properly Written), here we 

have: 
( 1)Card( ) ,(1 )kbt

T n t r−≤ ≤ ≤ , because if Card( )b kt
T n= , for 

some 1   t r≤ ≤  then we have: 
=Card( ) Card( ) Card( )

=Card( ) Card( ) Card( )
k b a a a kt i j i

k b a a a kt i j j

n T T T T n

n T T T T n

≤ ∩ ≤ ≤

≤ ∩ ≤ ≤
 

So, we have: Card( ) Card( ) Card( )a a a ai j i j
T T T T∩ = = which implies 

a a a ai i j j
T T T T= ∩ = but this is impossible because I is properly 

Written in the form 
1 2

.....a a as
I T T T= ∪ ∪ ∪ , so 
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( 1)Card( ) ,(1 )b kt
T n t r−≤ ≤ ≤ , from this we have by using property (6) 

in proposition (2) that: 

( 1)Card( ) ;x kT n x J−≤ ∀ ∈  And by the statement of induction: 

 Card(0 )X∗  divides Card( ) Card( )a ai j
J T T= ∩  . 

In the same way we proceed for the remaining subsets in the  
Other sums, so Card (0 * X)  divides each of these sums, hence:  
Card (0 * X)  divides Card (I). Which prove (1). 
So the theorem is proved.  
By the preceding theorem and corollary (1) of the theorem (2) we have: 
Corollary (1): 
A finite BCI- algebra X is of KL- product iff  
Card (0 * X)  divides Card( )a X∗ ( )a X∀ ∈ . 
In other words a finite BCI -algebra X is of KL- product iff the 

number of atoms in X divides the number of elements of any row in 
the Cayley table of the binary operation*. 

Example:  
The last corollary gives us a simple method for examining if a BCI 

-algebra is of KL- product or not. Here we have these tow examples: 

 

0 1 2 3 4 5
0 0 0 0 3 3 3
1 1 0 0 3 3 3
2 2 2 0 5 5 3
3 3 3 3 0 0 0
4 4 3 3 1 0 0
5 5 5 3 2 2 0

∗

 

Where the first table represents a BCI- algebra of KL- product but 
the second does not. Because the number of atoms in the first and the 
second BCI-algebras is 2 (the number of the elements of the first row 
in the tow tables), it is clear that the condition of the precedent 
corollary is satisfied in the first table but not in the second.   

0 1 2 3 4 5
0 0 0 0 3 3 3
1 1 0 0 4 3 3
2 2 2 0 5 5 3
3 3 3 3 0 0 0
4 4 3 3 1 0 0
5 5 5 3 2 2 0

∗
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