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ABSTRACT 
The quantum mechanical analysis for a non-resonant case of a single 

radiation mode interacting with a two-level atom in a cavity is studied. 
Expressions for the mean value of photon number and the time evolution of the 
atomic motion are given. The frequency of exchange energy between the atomic 
levels and the radiation field systems for non- resonant and resonant 
interactions is obtained. Results for all initial states of the atom-radiation field 
are presented. Results for resonant and non-resonant interactions are 
compared.      
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  حالة اللاتجاوب لتبادل الطاقة بين ذرة ثنائية السوية 
   النمطوحقل إشعاع وحيد
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  ملخصال
اللاتجـاوب   فـي حالـة  النمط  إشعاع وحيد درست مسألة تفاعل ذرة  ثنائية السوية مع أنموذج حقل   

وتم .  الزمني للحركة الذرية والتطورأعطيت عبارات القيمة المتوسطة للعدد الفوتوني       .  الكم اضمن ميكانيك 
. الحصول على تواتر تبادل الطاقة بين السويات الذرية وحقل الأشعة في حـالتي التجـاوب واللاتجـاوب          

تمت المقارنة بين نتـائج التفاعـل اللاتجـاوبي    .  حقل الإشعاع-عرضت نتائج جميع شروط البدء للذرة     
  .   لتجاوبياوالتفاعل 

  
 .ذرة ثنائية السوية، الحركة الذرية، التفاعل اللاتجاوبي: الكلمات المفتاحية
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1. Introduction 
It is clear that the problem of a single radiation mode interacting 

with a two-level atom in a cavity plays a fundamental role in the 
physics of laser [1]. Rabi has treated this problem for some time 
within the rotating-wave approximation [2]; he used a single classical 
radiation mode interacting with the atom. The quantum mechanical 
treatment within the same approximation of this system was 
performed by Jayens and Gummings [3], Scully and Lamb [4] 
treatment of the same model involved the evaluation of photon 
numbers representation. The quantum statistical properties of a single-
atom maser [5] and a single-atom laser [6] were studied within the 
cavity. This system was treated as a spin-statistics via the combined 
operation of charge conjunction and time reversal [7]. The equation of 
motion of the spin vector of the two-level systems was treated in the 
presence of relaxation [8]. The resonant  interaction of a two identical 
atoms with a single radiation field was solved via the coherent state 
method [9] . The full quantum mechanical treatment of the resonant 
interaction of a non identical two type of a two-level atom with a 
single radiation field was discussed [10] . 

We consider in this work, the fully quantized model for a non -
resonant interaction between the two level-atom and the radiation 
field, discuss the results for all possible initial states and compare 
them with the resonant interaction atom- radiation field. 

The system consists of a single two-level atom resonant with the 
radiation field whose energy is given by ωh⋅N  (h  is the Planck’s 
constant divided by π2 ) where N   is the photons number, and ω  is 
given by: 

)1(12

h

EE −
=ω  

2E  And 1E  are the exited ↑  and ground ↓  energy states of the 
atom respectively. 
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According to the atomic theory, the atom will be able to exchange a 
photon with the radiation field. However, suppose that the radiation 
field is not resonant with the atomic transition it is also possible for 
the atom to exchange a single photon whose energy is equal to the 
energy of the atomic transition. We describe the quantized radiation 

field by the vector N , where the energy of the radiation field is 

given, by Ω⋅ hN . Here, we assume that Ω≠ω, therefore, the 
approximation of the non-resonant interaction of atom-radiation field 
system, due to the inequality between Ω and ω, can be expressed as: 

∆ ω = Ω - ω                      (1.1) 
Schrödinger equation 
The Hamiltonian of this system consists of the radiation field 

Hamiltonian in the absence of the atom ( )21+Ω + aah , where  aa ,+
 

are the creation and annihilation operators [11] respectively, the 

Hamiltonian of free atom ss+ωh , where ss ,+
 are the spin ½  

operators [12], and the atom-radiation field interaction Hamiltonian 
( )( )ssaag ++ ++h , where g is the atom-radiation field coupling 

constant, which characterized [13] by the electric-dipole. Thus, the 
whole Hamiltonian of this system (neglecting the terms which do not 

conserve the energy [14] such 
++ sag  and sag ) can be written in 

the form: 

( )221 




 ++++++





 ++Ω= sasagssaaH hhh ω

 
The wave function must satisfy the following Schrodinger 

equation: 

( ) ( ) ( )3
11

tHt
t

i ψψ =
∂
∂

h
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substituting the transformation: 

( ) ( ) )1.3(1
1

1 tt tiHe φψ −=  

Where: 

( )2.3
2
1

2
1

1






 −+∆+++






 ++Ω= ssssaaH ωω  

Into Schrodinger equation (3), and using the Hamiltonian (3.2), 
then we will obtain the following Schrodinger equation for the new 

wave function ( )t1
φ : 

( ) ( ) )3.3(1
1

2
1

1 tHt
t

i tiHtiH ee φφ −=
∂
∂  

Where  

( )4.3
2
1

2






 −+∆−





 +++= sssasagH ω  

We can see that the system’s Hamiltonian unchanged, we mean 
that, ( )21 HHH += h , in addition, 

1
H  and 2H  obey the 

commutation relation, [ ] 0,
21

=HH , using this commutator in the 
following relation [15]: 

( ) [ ] ( ) [ ][ ] )5.3(,,
21

,
1 211

2

212
1

2
1 L+

×
++=− HHHtiHHtiHH tiHtiH ee  

putting this result in the Schrodinger equation (3.3), which can be 
rewritten in the following suitable form: 

( ) ( ) )4(121 tHt
t

i φφ =
∂
∂
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2. The wave function and the Equation of motion: 
We assume that the interaction is (turned on) at 0=t , and the 

system has the atom in the ground state energy with N  photons (this 
situation can be represented by N,↓ ). At later time, it is possible for 

the atom to rise to the excited energy state, with simultaneous 
absorption of a single photon; (this situation can be represented by 

1, −↑ N ). Thus, the atom – radiation field system oscillates between 

these two states, and the wave function ( )t1φ  is just a linear 
summation of these states: 

( ) ( ) ( ) ( )51,,1 11
−↑+↓= NtyNtxtφ  

( )tx1  And ( )ty1  are the amplitude of the states N,↓  and 1, −↑ N  

respectively. If we substitute the wave function (5) into Schrodinger 
equation (4), then we will obtain the equation of motion for the 
amplitudes ( )tx1  and ( )ty1 : 

( )1.5)(
)(

)(
)(

1

1

1

1


















−

=










∂
∂

ty
tx

ty
tx

t
i

αβ
βα

 

Where 

( )1.1.5
2

Ng=

∆
=

β

ω
α

 

According to the wave function (5) the initial condition becomes 
( ) Nt ,

1
↓=φ , which expressed in the amplitudes representation 

( ) 101 =x and ( ) 001 =y , therefore, the solution can be written as: 
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)6(

) (          )(

) (  
 2
   ) (     )(

1

1

tSinNgity

tSinitCostx

λ
λ

λ
λ
ω

λ

−=

∆
−=

 

Where 

)1.6(
4

22 ω
λ

∆
+= gN  

Notice that the wave function ( )t1φ  is normalized: 

( ) ( ) ( ) ( ) )7(12
1

2
111 =+= tytxtt ϕϕ  

Here we used the orthogonal property of two states via the 
relations: 

)1.7(,;,&,,, , ↓↑=′↓↑=′=′′ ′ sssssNNs NN δδ

 

If we use the transformation (3.1) we can see that the wave 
function ( )t1φ  is an Eigenfunction of 1H , therefore, if we operate on 

the wave function ( )t1φ  with the Hamiltonian 1H  we will obtain the 

wave function ( )t1φ  (eigenfunction) with the eigenvalue 

22
1 ω∆−+⋅Ω













 N , so the wave function ( )t1ψ  is given by: 

( ) ( )[ ] ( ) )2.7(
11

22
1

t
t

et
Ni

φψ
ω∆−+Ω−

=  

Thus, the wave function )(1 tψ is normalized too: 

( ) ( ) )3.7(111 =tt ψψ  
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In order, if we use the relations (7.1), (7.2) and (7.3), then we can 
write the energy of the radiation field in form: 

)8()(21)(21)( 2

2

2

11 










−+Ω=





 ++Ω tSingNNtaat λ

λ
ψψ hh  

Similarly, the energy of the atom can be written as: 

)9()()()( 2

2

2

11 










=+ tSingNtsst λ

λ
ωψψω hh  

Let us consider the situation where the interaction is (turned on) at 
0=t , and the system has the atom in the excited energy state 

with 1−N  photons (this state represented by 1, −↑ N ), then the atom 
will emit a single photon with simultaneous transition to the ground 
energy state N,↓ . Thus the new wave function can be written as: 

( ) ( ) ( ) ( )10,1,
222

NtyNtxt ↓+−↑=φ  

Where we used the following Schrodinger equation: 

( ) ( ) ( )11
22

tHt
t

i ψψ =
∂
∂

h  

And the transformation: 

( ) ( ) )1.11(2
1

2 tt tiHe φψ −=  

If we substitute  (11.1) into (11) and using (10), then we will obtain 
the following equations of motion for the wave function ( )t

2
ψ : 

( )12
)(
)(

)(
)(

2

2

2

2















































 −
=

∂
∂

ty
tx

ty
tx

t
i

αβ
βα
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And the solution of the differential equations (12), under the 
following initial conditions ( ) 10

2
=x and ( ) 00

2
=y , defined by: 

)13(

)(   )(

)(      
2

)(   )(

2

2

tSin
Ng

ity

tSinitCostx

λ
λ

λ
λ
ω

λ

−=

∆
+=

 

Note that λ ,
1

H  and 2H  are the same. 

We followed the same foot steps and found the energy of the 
radiation field to this situation in the form: 

)14()(21)(21)( 2

2

2

22























 + +−Ω=+Ω tSingNNtaat λ
λ

ψψ hh  

And the energy of the atom as: 

)15()(1)()( 2

2

2

22 










−=+ tSingNtsst λ

λ
ωψψω hh  

3. Resonant case: 
In the resonant case ( 0=∆ω ), we rewrite the Hamiltonian 1H  and 

2H  in form 

( )16
2
1

1 





 ++++= aassH ω  

( )17
2






 +++= sasagH  

Thus, we rewrite the solutions of the wave function ( )t
1

ψ  of the 

resonant case in form: 
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( ) ( ) ( ) )18(
11

2
1

t
t

et
Ni

φψ
ω +−

=  

Where ( )t
1

φ  has the same form as (5) with the following 

amplitudes [12,13]: 

)(   )(
)1.18(

)(   )(

1

1

tSinity

tCostx

r

r

λ

λ

−=

=

 

Where 

)2.18(Ng
r

=λ   

And the energy of the radiation field becomes: 

)3.18()(21)(21)( 2

11 



 −+=





 ++Ω tSinNtaat

r
λωψψ hh  

Also, the energy of the atom will be: 

)4.18()()()( 2

11 



=+ tSintsst

r
λωψψω hh  

Similarly, we rewrite the wave function )(2 tψ  of the resonant 
case in form: 

( ) ( ) ( ) )19(
22

2
1

t
t

et
Ni

φψ
ω +−

=  

Where ( )t
2

φ  has the same form as (10) with the following 

amplitudes: 
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)(   )(
)1.19(

)(   )(

2

2

tSinity

tCostx

r

r

λ

λ

−=

=

 

The energy of the radiation field becomes: 

)2.19()(21)(21)( 2

22 



 +−=





 ++Ω tSinNtaat

r
λωψψ hh

 

And the energy of the atom: 

)3.19()()()( 2

22 



=+ tCostsst rλωψψω hh  

4. Discussion: 
Equations (8), (9) show that, the energy oscillates in non-resonant 

case, with frequency (Rabi frequency [2,3] ) 2λ  between the atom 
and the radiation field. And equation (18.3) and (19.2) show that, the 
energy oscillates with frequency 2

r
λ  in resonant case. Equations 

(6.1), (18.2) show that, λ and 
r

λ related to one another via the relation: 

)20(
2

1

24

2
1 












 ∆
+=

gNr
ω

λλ  

Note that, if ω∆  very small then λ and 
r

λ  will be very close. Fig.1 

shows plot of λ  as a function of ω∆ , the axis ω∆  represents the plot 
of 

r
λ , where we know that, if 0→∆ω  then 

r
λλ → , and if ω∆  

increased 
r

λ  remain constant. 
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Fig.1. plot of λ  as function of ω∆ , 1,5.0 == Ng . 

 
Both fig.2 and fig.3 show diagram of the time development of the 

probability density 2
1 )(tx and 2

1 )(ty of the states N,↓ and 1, −↑ N  

(respectively) of the wave function )(
1

tψ . 

We can see that, a delay in the exchange of the energy between the 
atom and the radiation field in non-resonant interaction due to ω∆ , as 
when 08.0=∆ω  then the system of non-resonant interaction 
exchanges energy slower than the same picture when 04.0=∆ω , 
which in turn exchanges energy slower than the same picture of the 
resonant case ( 0=∆ω ). Thus, the delay becomes more obvious and 
slower as ω∆  increases. 

We note that the same picture to the non-resonant interaction of the 

wave function )(
2

tψ , where the diagram of 2
2 )(tx  is the same 
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diagram as 2
1 )(tx , and the diagram of 2

2 )(ty  is the same diagram as 
2

1 )(ty . The only difference is that, 2
2 )(tx  is the probability density 

of the state 1, −↑ N  and 2
2 )(ty  is the probability density of the state 

N,↓ , with initial condition 1,)0(
2

−↑= Nψ  or 1)0(2 =x  and 

0)0(2 =y . 

Note that figure (2) shows that, for 08.0=∆ω , then, according to 
equation (20)  rλλ 003.1≈ , at  772.970≈t , where, the probability 

density of resonant interaction is 00009.0)( 2
≈tx , and the probability 

density of non-resonant interaction is  999.0)( 2
≈tx , thus, the change 

of the probability density of non-resonant interaction inversed relative 
to the signal of the probability density of resonant interaction. 

Similarly, figure (3) shows that for 04.0=∆ω , where, 
rλλ 0008.1≈ , the inversed point becomes at 84.4036≈t , in this 

case, the probability density of resonant interaction is 0019.0)( 2
≈tx  

and the probability density of non-resonant interaction is 
9999.0)( 2

≈tx . So, as 0→∆ω , then, rλλ → , also, figure (1) 
shows that λ very close to rλ  for  008.0≤∆ω   where  

rλλ 00003.1≤  . 

5. Conclusion 

So the approximation dependes on the value of ω∆ , when 
ω∆ tends to zero then λ tends to rλ  and the inversed point tends to 

the infinity, thereby, the non-resonant signal close to the resonant 
signal, however, the Green function calculation, for the linear 
polarizability of a two-level atom interact with light [16] has been 
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used a good approximation for frequency close to the resonance, such  
0=∆ω , it has been shown here that, this approximation is not close 

to the resonant interaction, it represents the resonant interaction 
picture.  

 

Fig 2. probability density 
2

)(
1

tx and 
2

)(
1

ty of the wave function 

with the initial state ( ) N,01 ↓=ψ , where, 1,5.0 == Ng . 

Sold line 08.0=∆ω , and dot line 0=∆ω (resonant case). 

 

Fig 3. probability density  
2

)(
1

tx and 
2

)(
1

ty of the wave function 

with the initial state ( ) N,01 ↓=ψ , where, 1,5.0 == Ng . 

Sold line 04.0=∆ω ,  and dot line 0=∆ω (resonant case). 
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