اصطناع حفازات بتحميل أكاسيد معدنية على مواد أولية محلية لإزالة NOx من غازات احتراق الوقود المنبعثة من عوادم السيارات ودراسة خواصها الحفزية والسطحية «I- اصطناع حفاز على قاعدة مزيج من الزيوليت السوري من موقع السيس والبنتونيت السوري المحملين بأكسيد الفضة وألومينا – أكسيد الفضة ودراسة خواصها الحفزية والسطحية في تفاعل إزالة أكاسيد الآزوت من الغازات المنبعثة من عوادم السيارات»

> لبنى الحمود و يحيى وليد البزرة و ملك الجبة قسم الكيمياء – كلية العلوم – جامعة دمشق – سورية تاريخ الإيداع 2011/08/14 قبل للنشر في 2011/12/05

الملخص

حُضَر حفاز فضة جديد (BZ Ag₂O – Al₂O₃ – Ag₂O) على قاعدة مزيج من الزيوليت السوري الطبيعي (Z) من موقع السيس في جنوب سورية والبنتونيت السوري الطبيعي (B) المحملين بأكسيد الفضة وألومينا – أكسيد الفضة. أجريت الدراسة الكيميانية والفلزية للبنتونيت والزيوليت إذ تبيّن وجود الفلز الزيوليتي من نوع "الفلبسيت". فضلاً عن ذلك أجريت الدراسة الحرارية التفاضلية لعينات البنتونيت والزيوليت إذ لوحظت أفعال ماصة وناشرة للحرارة ومن خلال الدراسة الطيفية لوحظ وجود عصابات امتصاص ثابتة نوعاً ما لمزائج "البنتونيت والزيوليت" و"البنتونيت والزيوليت وحفاز الفضة قبل إجراء ومريج البنتونيت والزيوليت ولا ما ما مرائج "للبنتونيت والزيوليت" و"لبنتونيت والزيوليت وحفاز الفضة قبل إجراء ومريج البنتونيت والزيوليت ومزيج وبعدها". وثرس امتزاز النتروجين لكل من عينة البنتونيت والزيوليت ومزيج البنتونيت والزيوليت ومزيج البنتونيت والزيوليت وخفاز الفضة، إذ لوحظ وجود ومزيج البنتونيت والزيوليت والزيوليت والزيوليت والزيوليت وحفاز الفضة، إذ لموحظ تناقص المساحة بحسب BET ولا معميور لمزيج البنتونيت والزيوليت وحفاز الفضة عما كانت عليه في كامن البنتونيت والزيوليت ومزيج البنتونيت والزيوليت والزيوليت وحفاز الفضة عما كانت عليه في كامن موزيج البنتونيت والزيوليت والزيوليت والزيوليت وحفاز الفضة عما كانت عليه في كامن البنتونيت والزيوليت ومزيج البنتونيت والزيوليت وخواز الفضة عما كانت عليه في كامن البنتونيت والزيوليت ومزيج البنتونيت والزيوليت والزيوليت وحفاز الفضة عما كانت عليه في كامن البنتونيت والزيوليت ومزيج البنتونيت والزيوليت وقا من ما الدراسة الحفزية بالطريقة النفضة معن المنتونيت والزيوليت ومزيج البنتونيت والزيوليت ولا من مرة الدراسة الحفزيت ليضة المنتونية وبرجة حرارة 270° وذلك من خلال قياس الفعالية الحفزية بالطريقة التدفقية وبسرعات مختلفة وبدرجات حرارة مختلفة إذ لوحظ ازدياد نسب إزالة NON، NOX النصل لنسبة 73 في درجة مرارة 150° ونسبة 37 في درجة حرارة 175° ونسبة 81 % عند الدرجة 200° وتنساقص لتسل السيارات بناءً على المعطيات التجريبية التي حصلنا عليها.

الكلمات المفتاحية وسيط من مزيج من الزيوليت الـسوري الطبيعـي والبنتونيـت السوري الطبيعي محملـين بأكـسيد الفـضة وألومينـا أكـسيد الفـضة dNOx Catalyst-Car Exhaust Catalyst-(BZ Ag₂O-Al₂O₃-Ag₂O)

Preparation of metal oxides catalysts supported on local origin materials for SCR of NOx from gases emitted from the combustion fuel and a study on the catalytic and surface properties

"I- Preparation of a new catalyst for dNOx Emitted along with car exhaust gases from silver oxide supported by a matrix from Syrian natural zeolite of the Sys deposit, Syrian bentonite and alumina supported silver

oxide"

L. Al-Hamoud; Y. Walid Bizreh and M. Joubeh

Department of Chemistry, Faculty of Sciences, Damascus University, Syria.

Received 14/08/2011 Accepted 05/12/2011

ABSTRACT

A new (BZ $Ag_2O - Al_2O_3 - Ag_2O$) catalyst for dNOx has been prepared from silver oxide carried on a matrix of mixture from Syrian natural zeolite, Syrian bentonite and Al_2O_3 . Mineralogical studies were made to identical the components of the catalyst, montmorillonite and phylippsite and others were observed. The FTIR diagrams indicated the characteristics patterns of the wave numbers: 3446 cm⁻¹, 1045.23 cm⁻¹, 1443 cm⁻¹ and 467.33 cm⁻¹ for all samples before or after the catalytic experiments. The DTA diagrams indicated characteristic indothermal and exothermal reaction. The adsorption – desorption of N₂ measurements were carried out at -196°C. A slight decrease of surface area after having the catalyst being covered with Ag₂O. Catalytic experiments were conducted by means of a flow reactor using the gas emitted from car exhaust. A maximal dNOx rate on the (BZ Ag₂O – Al₂O₃ – Ag₂O) catalyst was observed at the range of 150° – 200°C. The catalytic data makes it possible to suggest a mechanism for the current reaction.

Key Words: Matrix of mixture of Syrian natural zeolite and Syrian natural bentonite covred with silver oxide and alumina silver oxide, dNOx Catalyst – Car Exhaust Catalyst – (BZ Ag₂O – Al₂O₃ – Ag₂O).

I مقدمة:

تعدُّ المركبات العضوية CH - أكاسيد النتروجين NOx - أحادي أكسيد الكربون CO وثاني أكسيد الكربون CO₂ من أهم الملوثات الضارة المنبعثة من عوادم السيارات ومنف أكثر من خمس وعشرين سنة عمل الباحثون على إجراء بحوث للتقليل من التلوث الناشئ من عوادم السيارات وأهم الطرائق التي يجري التركيز عليها في السنوات الأخيرة في مختلف أنحاء العالم هي الطرائق الحفزية غير المتجانسة (غاز – صلب). واستخدمت في البداية حفازات من المعادن النادرة المحملة على الألومينا وغيرها متل البلاتين والروديوم والبلاديوم إلا أن ارتفاع أسعارها جعل الباحثين يركزون على الأكاسيد الأقل ثمناً، والمحفزات المستخدمة حالياً إمّا أن تكون سير اميكية شبكية مسير اميكية حبيبية والمحفزات المستخدمة حالياً إمّا أن تكون سير اميكية شبكية مسير اميكية حبيبية

وقد أدى الانتشار الواسع لتلك الغازات السامة إلى ازدياد عدد البحوث التي تعمل على الحد من تلك الغازات والتخلص منها باستخدام عدة طرائق وقد أجريت عدة بحوث على التخلص من هذه الملوثات باستخدام محفزات مختلفة. ففي عام 1988 لاحظ Vogt et) [1] ارتباط نشاط الإرجاع الانتقائى الوساطى لـ NOx بـ NH₃ بـ المواقع الفعالــة على الحفاز V₂O₅/TiO₂ علي السيليكا، وقد درس (Andersson et al., 1989) [2] فعالية حفازات الموردونيت ذات القيم المختلفة بنــسب Si/Al حــين تــنقص حموضــة الموردونيت بزيادة نسبة محتوى الألمنيوم إذ تشير زيادة الألمنيوم إلمي زيمادة مراكمز لويس. أمّا (Aoyama et al., 1997) [3] فقد أوضحوا أن نظام الحفاز & Ag/Al₂O₃ Propene & Ethanol ذو فعالية عالية لإرجاع NOx بواسطة الايتانول والبروبين. وقـد بين (Takami et al., 1997) إرتباط إرجاع NOx بعدد مواقع NO الممتزة على المعادن الثمينة وبعدد جزيئات C₃H₆ الممتزة على الزيوليت. وقــد قــام , (Feeley *et al.*) (1998 [5] بامتزاز NOx بالمصيدة الحفزية البلاتينية بين درجتے حرارة 150-500 درجة مئوية بشكل دوري باستخدام وسيط البلاتين لإرجاع NOx الممتــز . وقــد أشــار (Maunula *et al*., 2000) [6] أن الحفاز Co/Al-sg & propene يتمتع بفعاليـــة عاليــة لتحميل الكوبالت من أجل النسب الوزنية التي تراوح بين %.18 wt. وقد درس Li. et al., 2005) تبادل زيوليت Cu-ZSM-5 cordierite كحفاز انتقائي لإرجاع أكاسيد النتروجين فوجد أنه يبدى فعالية محفزة عالية عند درجة 673 كلفن حيث تتحـول NOx إلى NO₂ تصل إلـــى 50%، ووجــد أن هــذا الحفــاز Cu-ZSM-5 cordierite يبــدي خصائص غير سامة خلال مدة جيدة. وقـد شـرح (Presti & Pace, 2005) [8] كيفيــة الحصول على المردود الأعظمي من استعمال الوسيط في تتقية الغــازات المنطلقــة مـــن العادم فمثلا إذا كان المفاعل الحفزي قريبا من غرفة الاحتراق يجعل التفاعل الحفزي أسرع بتأثير درجة الحــرارة. وقــد بــيّن(Krishna & Makkee, 2006) [9] أن حفــاز

Fe-ZSM-5 المحضر باستخدام أبخرة FeCl₃ في درجة 700 درجة مئوية أكثر فعالية من حفاز Fe-ZSM-5 المحضر بــأبخرة FeCl₃ عنــد درجــة 320° درجــة مئويــة. أمّــا (Zhang et al., 2007) فقد استخدموا الفضنة أو النحاس المحمل كل منهما على Al₂O₃ بنسب 4% لـ لأول و 10% للثاني لإرجاع NOx وقد بين & She Ag-alumina على وسيط Ag-O-Al أن وجود زمر Ag-O-Al على وسيط Ag-O-Al ضروري لأكسدة الميتان بواسطة NOx وتشكيل N₂ وإن وجود H₂O, SO₂ لا تعيق التفاعل فوق 625° درجة مئوية وأن أثر إضافتهما عكوس لأن SO₂ يمتز بشكل عكـوس بسبب التفكك العكوس لكبريتات الفضية المتشكلة. أما (Li et el., 2008) فقد أوضحوا أن اصطناع زيوليت وتحميله على سطح cordierite ثم تشريبه بــ Ir قد أعطى نتائج جيدة لإزالة NOx وقد وجد (Ramiro et al., 2008) [13] إن زيادة تحويل NOx إلى N2 من 25% إلى 55% عند درجة حرارة 500° درجة مئوية وسرعة h 20.000⁻¹ باستخدام CH₄ وكذلك باستخدام C₂H₆ ولكن عيب هذا الوسيط أنه يخضع لتثبيط ابتــدائي حيث يثبط نسبة تحول NOx عند 25% وتبقى ثابتة مدة 125 ساعة. وقد أوضح José) [14] et al., 2008) وجود علاقة وثيقة بين عدد ذرات الكربون في السلسلة الهيدروكربونية وإرجاع الــ NO وأشار إلى أن التفاعلات المجهرية هي طريقًة مفيــدة وسريعة وفعالة لدراسة الإرجاع الانتقائي لـــ أملاح معدنية غير مرتفعة الثمن مــع NO بالهيدر وكربونات

II. الهدف من البحث والمواد والأجهزة المستخدمة في البحث

1 الهدف من البحث: تركيب حفاز جديد محمل على مواد أولية محلية ومن مواد غير ثمينة جداً، واختبار فعاليته الحفزية في إزالة أكاسيد الآزوت من الغازات المنطلقة من عوادم السيارات واستخدام الزيوليت السوري الطبيعي في صناعة هذا الحفاز ومن أهم المواد التي سيجرى عليها البحث هو الزيوليت الطبيعي المسوري (Z) والبنتونيت الطبيعي السوري "B" (تل حجار "حلب").

2- المواد الكيميائية المستخدمة في البحث:
 1- نترات الفضة النقية (SIGMA – ALDRICH)
 2- أكسيد الألمنيوم (Alumina Oxide 90)
 3- الزيوليت السوري الطبيعي الخام
 4- البنتونيت (البيلون) الحلبي
 3- الأجهزة المستخدمة في التحليل (البحث):

1 - جهاز تحليل بالأشعة السينية المتفلورة X.R.F. (Seouential ARL 8410)

الشكل (1) يوضح قطع من حفاز الفضة

IV نتائج العمل المخبري:

أولاً - التحليل الكيميائي

1 - **نتائج التحليل العنصري للزيوليت**: يبين الجدول الآتي ننائج هذا التحليل بالأشـــعة السينية المتفلورة .X. R. F:

,	ي الخام	، الطبيع	لسوري	ليت ا	الزيوا	، لعينة	نصري	ليل الع] التحا	ول (1	الجد

L.O.I	Cľ	Cr ₂ O ₃	P_2O_5	SO ₃	Mn ₂ O ₃	TiO ₂	K ₂ O	Na ₂ O	MgO	CaO	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	الأكاسيد
18.55	0.05	0.015	0.50	< 0.02	0.111	1.81	0.60	0.28	4.50	15.33	9.29	11.37	37.08	النسبة الوزنية%

2- نتائج التحليل العنصري للبنتونيت: يبيّن الجدول الآتي نتائج هذا التحليل بالأشعة السينية المتفلورة X. R. F:

لهبيعي الخام	السوري الد	البنتونيت	صري لعينة	التحليل العن	الجدول (2)

L.O.I	Cl.	Cr ₂ O ₃	P_2O_5	SO ₃	Mn ₂ O ₃	TiO ₂	K ₂ O	Na ₂ O	MgO	CaO	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂	الأكاسيد
18.40	0.08	0.030	0.13	< 0.02	0.107	1.21	0.46	0.11	5.77	6.76	8.30	11.85	46.76	النسبة الوزنية%

ثانياً - التحليل الفلزى

1 - نتائج التحليل الفلزي للزيوليت بالأشعة السينية X Ray Diffraction X. R. D يبيّن الشكل (2) نتائج تحليل عينة الزيوليت السوري الطبيعي الخام بالأشعة الرونتجينية، إذ تبيّن من خلال التحليل أنه يحوي الفلزات الآتية: كالسيت – فيلبسيت – مونتموريلونيت.

الشكل (2) طيف الأشعة السينية X. R. D للزيوليت السوري الطبيعي الخام.

X. R. D انتسائج التحليل الفلزي للبنتونيت بالأشعة السبينية X. R. D - 2 X. Ray Diffraction

يبيّن الشكل (3) نتائج تحليل عينة البنتونيت السوري الطبيعي الخام بالأشعة الرونتجينية. إذ تبيّن من خلال التحليل أنه يحوي الفلزات الآتية: كوارتز – دولوميت – كالسيت – باليغورسكيت – كاؤلينيت - مونتموريلونيت.

الشكل (3) طيف الأشعة السينية X. R. D للبنتونيت السوري الطبيعي الخام (3)

ثالثاً - الدراسة الحرارية

1 نتائج التحليل الحراري التفاضلي لعينة الزيوليت الطبيعي السوري

الشكل (4) التحليل الحراري التفاضلي للزيوليت السوري الطبيعي الخام

يلاحظ من الشكل (4) أنّ هناك فعلاً ماصاً للحرارة في درجات الحرارة 94.85° -2011 - 2012°، وهذا الفعل الماص يعود إلى تبخر الماء الفيزيائي في درجة الحرارة المنخفضة، أمّا في درجة الحرارة المرتفعة فيعود إلى تبخر الماء الكيميائي وتفاعلات بين مكونات الزيوليت أمّا في درجات الحرارة 778.88° - 838.92° فنجد أفعالاً ناشرةً للحرارة بسيطة نوعاً ما

2- نتائج التحليل الحرارى التفاضلي لعينة البنتونيت الطبيعي السوري

الشكل (5) التحليل الحراري التفاضلي للبنتونيت السوري الطبيعي الخام

يلاحظ من الشكل (5) أنه هناك أفعالاً ماصةً للحرارة عند درجات الحرارة 107.34° - 224.36 - 747.25°، وهذا الفعل الماص يعود إلى تبخر الماء الفيزيائي في درجة الحرارة المنخفضة، أمّا في درجة الحرارة المرتفعة فيعود إلى تبخر الماء الكيميائي وتفاعلات بين مكونات البنتونيت أمّا في درجات الحرارة 764.15° فنجد أفعالاً ناشرة للحرارة بسيطة نوعاً ما

رابعاً: تحليل IR

المزيج الزيوليت مع البنتونيت: يلاحظ من الشكل (6) وجود روابط 1100 cm⁻¹ عند عصابة 1000 cm⁻¹ عند عصابة 0-H وروابط cm⁻¹ عند عصابة C-O عند عصابة 1000 cm⁻¹ عند 200 cm⁻¹ عند العصابة C=C عند العصابة 1400 cm⁻¹ عند العصابة 1400 cm⁻¹ عند العصابة 1400 cm⁻¹ عند العصابة 1400 cm⁻¹ عند 1400 cm⁻¹ عند العصابة 1400 cm⁻¹ عند العصابة 1400 cm⁻¹ عند 1400 cm⁻¹ عند العصابة 1400 cm⁻¹ عند 1400 cm⁻¹ am⁻¹ am⁺¹ a

- 2 تحليل IR لمزيج الزيوليت مع البنتونيت والحفاز : يلاحظ من الشكل (7) وجود روابط 1000cm⁻¹ عند عصابة 1000cm⁻¹ وروابط C-O عند عصابة 1000cm⁻¹ وروابط تساندية عند العصابة 500 cm⁻¹

الشكل (7) تحليل IR لمزيج الزيوليت مع البنتونيت والحفاز

294

3- تحليل IR لمزيج الزيوليت مع البنتونيت والحفاز بعد إجراء التجارب عليه: يلاحظ من الشكل (8) عدم وجود فروق في عصابات الامتصاص بعد إجراء التجارب المنتقد عليه

الشكل (8) تحليل IR لمزيج الزيوليت مع البنتونيت والحفاز بعد إجراء التجارب عليه.

خامسا: امتزاز النتروجين Adsorption of Nitrogen : قديسَ المسطح النوعي باستخدام جهاز BET ويوضح الجدول الآتي البيانات الامتزازية لهذه العينة:

Z والزيوليت B وذلك للبنتونيت BET الجدول (3) نتائج قياس السطح النوعي باستخدام جهاز BET وذلك للبنتونيت B والزيوليت $BZ Ag_2O - Al_2O_3 - Ag_2O$ وحفاز BZ موريج الزيوليت والبنتونيت BZ

BZ Ag ₂ O– Al ₂ O ₃ – Ag ₂ O	BZ	زيوليت Z	بنتونيت B	عينة حفاز الفضة
27.1070	52.6014	49.3041	51.7946	المساحة السطحية بحسب BET م ² غ السطح النوعي
42.5744	81.9353	76.2058	82.1938	المساحة السطحية بحسب لانغميور م ² /غ السطح النوعي
2.8837	9.5036	13.3858	0.4878	مساحة المسامات المجهرية م ² /غ
24.2233	43.0978	35.9183	51.3067	المساحة السطحية الخارجية م ² /غ
0.0013	0.0047	0.0069	0.000017	حجم المسام المجهري سم ³ /غ
0.0425	0.0631	0.0515	0.0620	حجم المسامات الكلى عند قيمة محددة لـــ P/P_0 سم $^{3}/3$
62.6644	48.0197	41.7892	47.8927	\mathbf{A}^{0} معدل قطر المسام

من خلال الجدول السابق نجد أن المساحة السطحية بحسب BET ولانغميور للحفاز قد تتاقصت عند إضافة الفضة في حين ازداد معدل قطر المسام A⁰ من مرزيج الزيوليت والبنتونيت وأصبح أكبر في الحفاز بعد إضافة الفضة

وفي ما يأتى نعرض المخططات الناتجة عن امتزاز النتروجين

1 - البنتونيت السوري الطبيعي الخام جرى امتزاز غاز النتروجين على عينة البنتونيت السوري الطبيعي الخام فحصلنا على البيانات الامتزازية الآتية: نلاحظ من الشكل (9) أنه يشبه النموذج II العكوس في نماذج منحنيات الامتزاز الفيزيائي الذي يكون نتيجة الامتزاز الأحادي ومتعدد الطبقة غير المقيد على المواد غير المتجانسة.

الشكل (10) تطبيق معادلةBET لامتزاز النتروجين على عينة البنتونيت السوري الطبيعي الخام

لشكل (12) تورع حجم المسام حسب الأقطار في حال الأمترار على عينة البسوييت المسوري الطبيعي الخام

2- الزيوليت السوري الطبيعي الخام جرى امتزاز غاز النتروجين على عينة الزيوليت السوري الطبيعي الخام فحصلنا على البيانات الامتزازية الآتية نلاحظ من الشكل (13) أنه يشبه النموذج II العكوس في نماذج منحنيات الامتزاز الفيزيائي الذي يكون نتيجة الامتزاز الأحادي ومتعدد الطبقة غير المقيد على المواد غير المتجانسة.

الشكل (13) منحنيا الامتزاز والمج لغاز النتروجين للزيوليت السوري الطبيعي الخام

الشكل (14) تطبيق معادلة $\overline{\mathrm{BET}}$ لامتزاز النتروجين للزيوليت السوري الطبيعي الخام

298

الشكل (16) توزع حجم المسام بحسب الأقطار في حال الامتزاز للزيوليت السوري الطبيعي الخام

3 - مزيج الزيوليت والبنتونيت السوري الطبيعي الخام: جرى امتزاز غاز النتروجين على مزيج الزيوليت والبنتونيت السوري الطبيعي الخام فحصلنا على البيانات الامتزازية الآتية: نلاحظ من الشكل (17) أنه يشبه النموذج II العكوس في نماذج منحنيات الامتزاز الفيزيائي الذي يكون نتيجة الامتزاز الأحادي ومتعدد الطبقة غير المقيد على المواد غير المتجانسة.

الطبيعي الخام

الشكل (19) تطبيق معادلة لانغميور لامتزاز النتروجين على مزيج الزيوليت والبنتونيت السوري الطبيعي الخام

الشكل (20) توزع حجم المسام بحسب الأقطار في حال الامتزاز لمزيج الزيوليت والبنتونيت السوري الطبيعي الخام

4- مزيج الزيوليت والبنتونيت والحفاز جرى امتزاز غاز النتروجين على مريج الزيوليت والبنتونيت والمفاز فحصلنا على البيانات الامتزازية الآتية نلاحظ من الشكل (21) أنه يشبه النموذج II العكوس في نماذج منحنيات الامتزاز الفيزيائي الذي يكون نتيجة الامتزاز الأحادي ومتعدد الطبقة غير المقيد على المواد غير المتجانسة.

الشكل (21) منحنيا الامتزاز والمج لغاز النتروجين على مزيج الزيوليت والبنتونيت والحفاز

الشكل (22) تطبيق معادلة BET لامتزاز النتروجين على مزيج الزيوليت والبنتونيت والحفاز

دراسة علاقة نسب التحول مع الزمن:

NO, NOx درجة الحرارة 150°: نبيّن فيما يلي علاقة نسب إزالة غازات NO, NOx مـع
 الزمن باستخدام حفاز (BZ Ag₂O – Al₂O₃ – Ag₂O) في درجة الحرارة 150° وبحسب

عدة سرعات حجمية. إذ يلاحظ من خلال النتائج والمخططات ارتفاع نسب إزالة NO, مع الرمن ثم ثباتها مع مرور الزمن. NOx ومن ثم ثباتها مع مرور الزمن. الجدول (4) يبيّن نتائج ومخططات نسب إزالة المكونات NO, NOx مع الزمن باستخدام حفاز (BZ Ag₂O – Al₂O₃ – Ag₂O) في درجة حرارة 150° وسرعات حجمية 203.1487 -

h ⁻¹ 1157.1855 - 462.	.1899 - 336.682'	7 - 274.5508 -	256.5136
تسبة ازانة % NOبح الزمن 	h ⁻¹ 203.1487	السرعة الحجمية	حفاز
	°150	درجة الحرارة	الفضة
ري الله : 2 : 10 - 5 : 10 - 5 : 10 - 0 : 10 : 10 : 191 : 200 : 280 : 320 5 : 10 : 191 : 200 : 280 : 320 5 : 10 : 191 : 200 : 280 : 320	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
تعلية إزالة NOx % مع الزمن م	0	0	0
	68.4211	68.4211	60
2 40 - 2 30 - 2 20 -	68.4211	68.4211	120
12 2 0 50 100 150 200 250 300	73.6842	73.6842	180
الإس ذلية	73.6842	73.6842	240

h⁻¹ 256.5136 السرعة الحجمية حفاز تعبة ((الة % NO سع الأمن الفضة °150 درجة الحرارة NOx نسبة إزالة نسبة إزالة NO الزمن ثانية % % 50 :00 - 50 200 250 301 فزين تربية 0 0 0 تعبة ((الة % NOx لأمن 50 -36.0000 35.4167 66 36.0000 35.4167 126 10 38.0000 37.5000 186

304

38.0000

37.5000

246

0 60 100 150

200 200 300

برين ذلينا

تعية إزالة NO "M مع الزمن	h ⁻¹ 274.5508	السرعة الحجمية	حفاز
	°150	درجة الحرارة	الفضة
н мі 195 теп ло в мі и мі и мі 195 теп ло седарі	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسپة إزانة % NOx بي الزمن 1 - 20	0	0	0
	66.6667	65.6250	60
A CAN	69.6970	68.7500	120
0 50 100 50 200 مربز شيئ	69.6970	68.7500	180

نسبة إزانة % NO مع الزمن	h ⁻¹ 462.1899	السرعة الحجمية	حفاز
40 96 -	°150	درجة الحرارة	الفضة
13 - 20 13 - 20 13 - 20 16	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسبة ازالة % NOxمع الزمن	0	0	0
3 *	45.4545	45.2381	60
4900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.4545	45.2381	120
0 80 100 180 200 مېرونې	45.4545	45.2381	180

تىبة برالة % NO مع نزمن	h ⁻¹ 1157.1855	السرعة الحجمية	حفاز
20	°150	درجة الحرارة	الفضة
1 a 1 3 3 1 3 - 1 3	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسبة إزالة % NOx مع الزمن	0	0	0
	22.8571	23.5294	60
NOR C	22.8571	23.5294	120
0 50 100 150 200 نوبر میں	22.8571	23.5294	180

2- درجة الحرارة 175°: نبيّن فيما يلي علاقة نسب إزالة غازات NO, NOx مع الزمن باستخدام حفاز (BZ Ag₂O – Al₂O₃ – Ag₂O) في درجة الحرارة 175°، وبحسب عدة سرعات حجمية. إذ يلاحظ من خلال النتائج والمخططات ارتفاع نسب إزالة NO, NOx ومن ثم ثباتها مع مرور الزمن.

مع الزمن باستخدام حفاز NO, NOx الجدول (5) يبين نتائج ومخططات نسب إزالة المكونات NO, NOx مع الزمن باستخدام حفاز (5) يبين نتائج ومخططات نسب إزالة المكونات BZ Ag₂O – Al₂O₃ – Ag₂O)

نسبة ازالة % NO مع الأمن ²⁰ ²⁰ ²⁰ ²⁰	h ⁻¹ 238.5045	السرعة الحجمية	حفاز الفضة
2 00 2 30 2 20	°175	درجة الحرارة	
2 10 J	نسبة إزالةNOx	نسبة إزالةNO	7.15
ى 100 100 200 200 300 ئېرىنىپ	%	%	الرمن تاليه
نسبة إزالة % NOx مع الزمن م	0	0	0
	52.6316	52.6316	60
NGC A L	57.8947	57.8947	120
C 50 50 150 200 250 500	57.8947	57.8947	180
الرمن فللبنا	57.8947	57.8947	240

 $h^{-1} 792.9956 - 730.0014 - 469.1293 - 370.1888 - 298.1306 - 238.5045$

نسية از ثة % NO مع الزمن	h ⁻¹ 298.1306	السرعة الحجمية	حفاز
3.8 /	°175	درجة الحرارة	الفضة
2 10 1 2 10 1 2 10 1 0 50 102 150 200 250 300 0 50 102 150 200 250 300	نسبة إزالة NOx %	نسبة إزالةNO %	الزمن ثانية
ئىينۇ (زالۇ% NOx» ئۆمن	0	0	0
18 /	57.1429	55.5556	60
(1.50) (1.50) (1.50)	57.1429	55.5556	120
10 / · · · · · · · · · · · · · · · · · ·	57.1429	55.5556	180
ە 220 50 100 100 200 200 500 بىرىپ	57.1429	55.5556	240

الحمود والبزرة والجبة – اصطناع حفازات بتحميل أكاسيد معدنية على مواد أولية محلية لإزالة NO_{X}

تسبة إزالة % NO مع الزمن	h ⁻¹ 370.1888	السرعة الحجمية	حفاز	
J 41	°175	درجة الحرارة	الفضة	
3 30 9 70 0 50 100 150 200 9 50 100 150 200	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية	
نسبة إزالة % NOx مع الزمن 20 -	0	0	0	
	53.3333	51.7241	60	
8000 10 0	53.3333	51.7241	120	
0 50 100 150 230 نوبري ¢ي	53.3333	51.7241	180	

نسبة إزالة % NOمع الإمن	h ⁻¹ 469.1293	السرعة الحجمية	حفاز
	°175	درجة الحرارة	الفضة
67 20 78 20 10 11 84 -100 190 200 142 550	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نصبة إزانة % NOx مع الزمن - 21	0	0	0
3 50 7 30 7 30	50.0000	48.3871	60
	50.0000	48.3871	120
درین ∌ین درین ∌ین	50.0000	48.3871	180

للسية إزالة % NOمع الزمن	h ⁻¹ 730.0014	السرعة الحجمية	حفاز
1	°175	درجة الحرارة	الفضة
17 32 22 23 2 2 10 50 100 150 200 250 300 240 000	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
تعبة إزالة % NOx مع الامن	0	0	0
1 **-	44.1176	42.4242	60
	44.1176	42.4242	120
* 100 0 0 50 50 155 200 250 300	38.2353	39.3939	180
وردي:	38.2353	39.3939	240

لىب (118 % NO، ج الاين	h ⁻¹ 792.9956	السرعة الحجمية	حفاز
5) 1 41	°175	درجة الحرارة	الفضة
	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
لسبة إزبانة % NOx مع الزمن	0	0	0
	47.2222	45.7143	60
§ "	50.0000	48.5714	120
0 50 100 50 200 142 pp	50.0000	48.5714	180

-3 درجة الحرارة 200° نبين فيما يلي علاقة نسب إز الة غاز ات NO, NOx مع NO, NOx مع الزمن باستخدام حفاز (200 - Al₂O₃ - Al₂O) في درجة الحرارة 200° وبحسب عدة سرعات حجمية إذ يلاحظ من خلال النتائج والمخططات ارتفاع نسب إز الـــة NO, NOx ومن ثم ثباتها مع مرور الزمن.

الجدول (6) يبيّن نتائج ومخططات نسب إزالة المكونات NO, NOx مع الزمن باستخدام حفاز (6) يبيّن نتائج ومخططات نسب إزالة المكونات BZ Ag₂O – Al₂O₃ – Ag₂O) في درجة حرارة 200° وسرعات حجمية h⁻¹ 589.5094 - 519.0041 - 367.5768 - 283.0085 - 211.1097

تىية إزالة % NO pus الزمن	h ⁻¹ 211.1097	السرعة الحجمية	حفاز
170	°200	درجة الحرارة	الفضة
3 m 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
تسبة بزرانة % NOx مع الزمن	0	0	0
1 m	78.3784	77.1429	60
v (u 20 20	78.3784	77.1429	120
9-97 الله 100 (SH 200) کونی کونی	81.0811	80.0000	180

نعبة (إلة NO % تربن	h ⁻¹ 283.0085	السرعة الحجمية	حفاز
1 *.	°200	درجة الحرارة	الفضة
1 40 2 40 6 100 200 500 400 2 2 500 300 400	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسية ازائة NOx % الزمن	0	0	0
100	83.0508	84.2105	60
3 0	84.7458	84 2105	120
3		01.2105	120
	84.7458	84.2105	120
	84.7458 86.4407	84.2105 85.9649	120 180 240

تسبة إزالة % NO مع الزمن	h ⁻¹ 367.5768	السرعة الحجمية	حفاز
50 -	°200	درجة الحرارة	الفضة
3 m 2 m 20 m 0 to 100 180 200 3 42 20 2	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسبة إزالة NOx % عالزمن	0	0	0
	74.5763	73.6842	60
SOLDA C	77.9661	77.1930	120
0 60 100 160 200 الزمن تابية	77.9661	77.1930	180

لسبة إز الله NO مع الزمن	h ⁻¹ 589.5094	السرعة الحجمية	حفاز
	°200	درجة الحرارة	الفضة
20 20 20 20 20 20 20 20 20 20 20 20 20	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسبة إزالة % NOx-ي الأمن	0	0	0
	62.7119	63.1579	60
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62.7119	63.1579	120
ರ 50 ೧೫ ೧೯೫೦ ೫೩ ಭ್ರಾಭಕ್ರ	62.7119	63.1579	180

4- درجة الحرارة 250° نبين فيما يلي علاقة نسب إزالة غازات NO, NOx مع NO, NOx مع الزمن باستخدام حفرارة 250° (BZ Ag₂O – Al₂O₃ – Ag₂O) في درجة الحرارة 250° وبحسب عدة سرعات حجمية إذ يلاحظ من خلال النتائج والمخططات ارتفاع نسب إزالة NO, NOx، NOx

الجدول (7) يبيّن نتائج ومخططات نسب إزالة المكونات NO, NOx مع الزمن باستخدام حفاز (7) يبيّن نتائج ومخططات نسب إزالة المكونات BZ Ag₂O – Al₂O₃ – Ag₂O) في درجة حرارة 250° وسرعات حجمية h⁻¹ 979.4382 - 632.4731 - 532.2735 - 318.5017 - 272.1668

نعبة إزالة % NOمع الزمن	h ⁻¹ 196.3688	السرعة الحجمية	حفاز
$1^{\frac{n}{2}}$ \longrightarrow	°250	درجة الحرارة	الفضة
45 17 2 2 5 6 56 150 150 230 255 40 50 150 230 255 40 50 150 230 255 40 50 150 250 150 250 150 150 150 150 150 150 150 1	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
تعية إزالة NOx % مع الزمن	0	0	0
1 50	47.8261	48.8889	60
100-	45.6522	46.6667	100
X 20 W 10 0	45.6522	46.6667	160
0 60 100 160 200 200 مربو <i>ا</i> يک	47.8261	48.8889	220

تىية از الة % NOمع الزمن	h ⁻¹ 272.1668	السرعة الحجمية	حفاز
35	°250	درجة الحرارة	الفضة
3 30 37 20 37 20 37 20 37 20 37 20 37 20 40 50 100 100 200 40 50 100 100 200	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
شنية إزانة % NOxمع الزمن	0	0	0
	40.0000	39.5349	60
	37.7778	37.2093	120
0 50 00 150 200 ಸ್ಥೋತ್ರಿಕ್ಕರ	37.7778	37.2093	180

نىية از لة % NO مع الزمن	h ⁻¹ 318.5017	السرعة الحجمية	حفاز
50	°250	درجة الحرارة	الفضة
3 40 3 40 3 40 4 2 40 10 10 0 50 100 150	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسبة (زالة % NOx-يع الزمن - **	0	0	0
J 40	48.0769	48.0000	60
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42.3077	42.0000	120

نصبة إذالة % NOمع الزمن	h ⁻¹ 532.2735	السرعة الحجمية	J : 11 -1
1 **	°250	درجة الحرارة	حقار القصبة
C 50 60 160 200 306	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
نسبة إزالة % NOx مع الزمن 1 1	0	0	0
	36.8421	36.3636	75
	35.0877	34.5455	135
0 54 140 154 250 250 کونونگه	33.3333	32.7273	195

تعبة ((الة % NO) مع الإين	h ⁻¹ 979.4382	السرعة الحجمية	حفاز
	°250	درجة الحرارة	الفضة
20 12 12 12 12 12 12 12 12 12 12 12 12 12	نسبة إزالة NOx %	نسبة إزالة NO %	الزمن ثانية
تسبة إزالة % NOx مع الأمن م	0	0	0
	35.2941	34.6939	60
a na an	35.2941	34.6939	120
0 50 100 - 50 200 لاہم تعلق	35.2941	34.6939	180

- V مناقشة النتائج: ندرج في الجدولين (8) و (9) دراسة تابعية نسب إزالة -V (BZ Ag₂O بدرجات حرارة مختلفة عند سرعات تدفق متقاربة لحفاز -BZ Ag₂O) $(BZ Ag_2O - Ag_2O)$

 h^{-1} 196.3688-211.1097-238.5045-203.1487 عند السرعات الحجمية 196.3688-211.1097-238.5045 من درجات حرارة مختلفة في درجات حرارة مختلفة (

الجدول (8) معاملات تابعية نسب الإزالة بدرجات حرارة مختلفة عند سرعات حجمية متقاربة (BZ Ag₂O – Al₂O₃ – Ag₂O) لحفاز

	(2211920	111203	
السرعة	نسبة إزالة	نسبة إزالة	درجة	J. 12 1
الحجمية h ⁻¹	NOx	NO	الحرارة	الرمن تاليه
203.1487	73.6842	73.6842	°150	180
238.5045	57.8947	57.8947	°175	180
211.1097	81.0811	80	°200	180

الشكل (25) مخططات تابعية نسب الإزالة بدرجات حرارة مختلفة عند سرعات حجمية متقاربة NO, NOx لحفاز (BZ Ag₂O – Al₂O₃ – Ag₂O) لحفاز

من خلال الشكل (25) نلاحظ أن نسبة الإزالة كانت أكبر ما يمكن عند درجة حــرارة 150° و200° بالترتيب، ويلاحظ تناقص الإزالة فوق 200° وحتى 250°.

- 283.0085 - 298.1306 - 336.6827 - 283.0085 - 298.1306 - 2 h⁻¹ 318.5017 في درجات حرارة مختلفة:

الجدول (9) معاملات تابعية نسب الإزالة بدرجات حرارة مختلفة عند سرعات حجمية متقاربة (8) معاملات تابعية نسب الإزالة $BZ Ag_2O - Al_2O_3 - Ag_2O$

	· · · · · · · · · · · · · · · · · · ·	0-		0- / •
السرعة	نسبة إزالة	نسبة إزالة	درجة	7.114 11
الحجمية h ⁻¹	NOx	NO	الحرارة	الرمن تاليه
336.6827	61.5385	60.5263	°150	120
298.1306	57.1429	55.5556	°175	120
283.0085	84.7458	84.2105	°200	120
318.5017	42.3077	42	°250	120

316

الشكل (26) مخططات تابعية نسب الإزالة بدرجات حرارة مختلفة عند سرعات حجمية متقاربة NO, NOx لحفاز ($BZ Ag_2O - Al_2O_3 - Ag_2O$) بالنسبة ل

من خلال الشكل 26 نلاحظ أن نسبة الإزالة كانت أكبر ما يمكن عند درجة حرارة 150° و200° بالترتيب، ويلاحظ تناقص الإزالة عند درجتي حرارة 175° و250° بالترتيب

ملاحظة لدى قياس نسبة الإزالة باستخدام حفاز تجاري أجنبي أخذ من محرك سيارة مستوردة حصلنا على نسبة إزالة قرابة 80% في الدرجة 175° عند سرعة حجمية مقدارها 421.1002 أ. وهذه النتيجة تتلاقى مع النتائج التي حصلنا عليها.

يبيّن الجدول (10) مقارنة بين الحفاز التجاري وحفاز الفضنة السوري وحفازات أخرى مرجعية

الجدول (10) مقارنة بين الحفاز التجاري وحفاز الفضة السوري وحفازات أخرى مرجعية

•			
نسبة الإزالة % NO	درجات الحرارة	اسم الحفاز	
%80	° 175	الحفاز التجاري الأجنبي	
%48.3871	° 175		
%75	•200	كعار العصبة السوري	

استنادا إلى المعطيات الحفزية المدرجة أعلاه يمكن اقتراح آليــة إزالــة NO بوجــود مراكز فعالة على الحفاز المصنع حيث تمتز NO على الشكل الآتي [15] و[16]: 1- امتزاز NO على المركز الفعال

2- يتفاعل جزيء NO الغازي مع NO الممتز كما يأتي:

$$NO_{Ads} + NO_g \otimes N_2O + O_{Ads}$$

3- يتفاعل جزيئان من NO الممتزين المتجاورين لينتج الأزوت الجزيئي وتبقى على السطح ذرتا أكسجين ممتزاتان كما يأتي:

 $2 \text{ NO}_{\text{Ads}} \otimes N_2 + 2O_{\text{Ads}}$

4- تتحد ذرتا أكسجين ممتزاتان متجاورتان وينتج الأكسجين الجزيئي ويتحلل مركزان فعالان:

مركزان حفزيان فعالان + O_{Ads} ® O_{2g}

تفسير هذه الآلية نتناقص نسبة إزالة NO في درجات حرارة مرتفعة نـــسبيا بـــسبب تناقص عدد جزيئات المادة الممتزة على السطح الماز بارتفاع درجة الحرارة؛ مما يـــؤدي إلى انخفاض الامتزاز وهو معروف في قوانين الامتزاز

VI - الاستنتاجات:

- 1 حضر أول مرة الحفاز (BZ Ag₂O Al₂O₃ Ag₂O) على قاعدة مرزيج من الزيوليت السوري الطبيعي (Z) من موقع السيس والبنتونيت الموري الطبيعي (B) المحملين بأكسيد الفضة وألومينا – أكسيد الفضة
 - 2- تبيّن من الدر إسة الكيميائية و الفازية للعينات وجود الفاز الزيوليتي "الفلبسيت".
- 3- تبيّن من الدراسة الحرارية التفاضلية لعينات البنتونيت والزيوليت وجود أفعال ماصـــة وناشرة للحرارة.
- 4- بينت الدراسة الطيفية وجود عصابات امتصاص ثابتة نوعا ما لمزائج "البنتونيت والزيوليت" و"البنتونيت والزيوليت وحفاز الفضة قبل إجراء التجارب الحفزية على المزيج وبعدها".
- 5- من دراسة امتزاز النتروجين لكل من عينة البنتونيت والزيوليت ومـزيج البنتونيت والزيوليت ومزيج البنتونيت والزيوليت وحفاز الفـضة، لـوحظ تنـقص المـساحة السطحية بحسب BET ولانغميور لمزيج البنتونيت والزيوليت وحفاز الفضة عما كانت عليه في كل من البنتونيت والزيوليت ومزيج البنتونيت والزيوليت.
- 6- من خلال قياس الفعالية الحفزية لحفاز (BZ Ag₂O Al₂O₃ Ag₂O) وذلك بالطريقة التدفقية وبسرعات مختلفة وبدرجات حرارة مختلفة لوحظ ازدياد نسب إزالة NO, NOx لتصل بين 73 % و 81 %، ثم تتناقص بعد ارتفاع درجة الحرارة عن 200° لتصل النسبة 48 % بالدرجة 250°.
- 7- اقترحت آلية لتفاعل إزالة أكاسيد الآزوت من غازات عوادم الــسيارات بنـــاءً علـــى المعطيات التجريبية التي حصلنا عليها.

المراجع REFERENCES

- Vogt, E. T. C. Dillen, A. J. V. Geus, J. W. and Janssen, F. J. J. G., 1988. Selective catalytic reduction of NO_x with NH₃ over a V₂O₅/TiO₂ on silica catalyst. *Catalysis Today*, V. 2, No. 5, pp. 569-579.
 Andersson, Lars A. H. Brandin, Jan G. M. and Odenbrand, C. U. I., 1988. Selective catalytic reduction of NO_x over acid-leached mordenite catalysts *Catalysis Today*, V. 4, No. 2, pp. 173-185.
- '95 (IFEC).
- 5- Feeley, J. Deeba, M. and Farrauto, R. J., 1998. A catalytic NOx management system for lean burn engines. Studies in Surface Science and Catalysis V. 116, pp. 529-536.
- pp. 529-536.
 6- Maunula, T. Ahola, J. and Hamada, H., 2000. Reaction mechanism and kinetics of NO_x reduction by propene on CoO_x/alumina catalysts in lean conditions. Applied Catalysis B: Environmental V. 26, No. 3, pp. 173-192.
 7- Li, L. Jixin, C. Shujuan, Z. Fuxiang, Z. Naijia, G. Tianyou, W. and Shuliang, L., 2005. Selective catalytic reduction as Nitrogen oxides from exhaust of lean Burn Engine over In-Situ synthesized cu-zsm-5 cordierite. Environ. Sci. Technol., V. 39, No. 38, pp. 2841-2847.
 8- Presti, M. and Pace, L., 2005. Optimisation development of advanced exhaust gas after treatment systems for automotive annlications. SAE Paper 2157
- gas after treatment systems for automotive applications. SAE Paper 2157.
- 9- Krishna, K. and Makkee, M., 2006. Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NO_x. Catalysis Today, V. 114, No. 1, pp. 23-30.
- 10-Zhang, C. He, H. Shuai, S. and Wang, J., 2007. Catalytic performance of Ag/Al₂O₃-C₂H₅OH-Cu/Al₂O₃ system for the removal of NOx from diesel engine exhaust. *Environ Pollut.*, V. 147, No. 2, pp. 415-21.

- engine exhaust. Environ Pollut., V. 147, No. 2, pp. 415-21.
 11-She, X. & Stephanopoulos, M. F., 2007. Activity and stability of Ag-alumina for the selective catalytic reduction of NO_x with methane in high-content SO₂ gas streams. Catalysis Today, V. 127, No. 1-4, pp. 207-218.
 12-Li, L. Zhang, F. and Guan, N., 2008. Ir/ZSM-5/cordierite monolith for catalytic NOx reduction from automobile exhaust. Catalysis Communications, V. 9, No. 3, pp. 409-415.
 13-Ramiro, S. Vecchietti, M. J. Eduardo, M. and Alicia, B., 2008. In, Fezeolites: Active and stable catalysts for the SCR of NO_x—Kinetics, characterization and deactivation studies. Catalysis Today, V. 133-135, pp. 480-486 480-486.
- 14-José, R. Hernández, C. Kalle, A. Kari, E. Dmitry, Y. M. and Tapio, S., 2008. Microreactors for environmental catalysis—Selective catalytic reduction of NOx with hydrocarbons over a Ag/alumina catalyst. Catalysis Today, V. 133-135, pp. 448-454.
- 155, pp. 446-454.
 15-Winter, E. R. S., 1971. The catalytic decomposition of nitric oxide by metallic oxides. J. Catalyst V. 22, pp. 158-170.
 16-Amirnazmi, A. Benson, J. E. and Boudart, M., 1973. Oxygen inhibition in the formation of the additional deletion of the second secon
- decomposition of NO on metal oxides and platinum. J. Catalyst V. 30, pp.55-65.