Blowing-ups along exceptional curves

Youssef Alwadi

Department of Mathematics- Faculty of Sciences-University of Damascus-Syria

Received 21/08/2005 Accepted 20/02/2006

ABSTRACT

Let X be a 3-dimensional complex manifold(variety), $C \subseteq X$ an exceptional curve. Let us consider $\mu_1 : X_1 \to X$, $E_1 = \mu_1^{-1}(C)$

We prove that $\, C_1 \subseteq X_1 \,$ is also an exceptional curve,where $\, C_1 \,$ is a negative

section corresponding to the exact sequence of $\frac{I_C}{I_C^2}$.

And I_C is an O_C -ideal.

Key words: Exceptional divisor, Blowing-ups, Resolution of singularities, Algebraic variety, Analytic variety

2005/08/21 2006/02/20

$$C \subseteq X \qquad () \qquad \mathbf{X}$$

$$C_{1} \subseteq X_{1} \qquad E_{1} = \mu_{1}^{-1}(C) \quad \mu_{1} : X_{1} \to X$$

$$\cdot \frac{I_{c}}{I_{c}^{2}}$$

:

•

1.Introduction

Let X be a 3-dimensional complex manifold, $C \subseteq X$ a closed compact smooth curve and let $\mu_1: X_1 \to X$ be the blowing-up of X along C. The exceptional divisor $E_1 = \mu_1^{-1}(C)$ is a ruled surface over C. Here $X_1 = \mu_1^{-1}(X)$

There exists at most one section C_1 of the ruling $E_1 \rightarrow C$ with $(C_1)_{E_1}^2 < 0$. We call this a negative section.

If E_1 has a negative section C_1 , then let us consider the blowing-up $\mu_2: X_2 \to X_1$ along C_1 . In this way, we have a sequence of blowing – ups

 $(B_k): X_k \xrightarrow{\mu_k} X_{k-1} \xrightarrow{\mu_{k-1}} \dots \to X_1 \xrightarrow{\mu_1} X$, the exceptional ruled surfaces E_i on X_i $(1 \le i \le K)$ and the negative sections C_i

on E_i $(1 \le i \le K)$ such that the μ_j is just the blowing-up of X_{j-1} along C_{j-1} and $E_j = \mu_j^{-1}(C_{j-1})$ for $1 \le j \le K$

The purpose of this paper is to answer the following question;

If C is an exceptional curve, when is C₁ an exceptional Curve ?. In the case $C \cong P^1$ and the normal bundle $N_{c/x} \cong O \oplus (-2)$, (P^1 is the 1dimensional projective space) M. Reid [6] has proved this and also T. Ando [2] has treated this problem .In [1] and [7] the exceptional locus was used to study properties of simple singularities.

2.Exceptional curves

Let E be a locally free sheaf of rank two on a smooth compact curve C.

2.1. Lemma: (1) If E is a semi-stable vector bundle, then there exist no curves Γ on the ruled surface $P_C(E)$ with $\Gamma^2 < 0$.

(2) If E is unstable, then there exists a unique (up to isomorphisms) exact sequence.

$$0 \to L \to E \to M \to 0,$$

which satisfies the following conditions:

(i) L and M are invertible sheaves on C,

(ii) $\deg_{C}L > \deg_{C}M$.

Proof:

- (1). Let π be the ruling $P_C(E) \rightarrow C$ and O(1) be the tautological line bundle on $P_C(E)$ with $\Gamma^2 < 0$.
- (2). Since E is unstable, there exists an exact sequence satisfying (i) and (ii). Assume that there is another sequence.

 $0 \to L' \to E \to M' \to 0,$

satisfying (i) and (ii). Since deg M' < deg (det E), the homomorphism $L \to E \to M'$ must be zero. Therefore L'=L and M' \cong M.

2.2. Definition :

If E is unstable, we call the exact sequence.

 $0 \to L \to E \to M \to 0,$

satisfying the above conditions (i) and (ii), the characteristic exact sequence of E. Here we also define $d^+(E) := \deg_C L$,

d⁻ (E) : = deg_C M , and $\delta(E)$:=d⁺(E)-d⁻ (E) . When E is the conormal bundle N_{C/X} of a curve $C \subseteq X$, we simply denote $d^{\pm}(E)$ and $\delta(E)$:by $d^{\pm}(C)$ and $\delta(C)$ respectively.

2.3. Definition :

A compact smooth curve C in a smooth threefold X is called an exceptional curve, if there exists a proper bimeromorphic morphism f : $X \rightarrow Z$ such that f (C) is a point and that f is isomorphic outside C.

We have the following criterion.

2.4. Proposition :

Let $C \subseteq X$ be a compact smooth curve in a smooth threefold. Then C is an exceptional curve if and only if there exists a coherent $O_{x^{-}}$ ideal J on a neighbourhood of C satisfying the following condition :

(E) : dim (supp $(O_x / J)) = 1$, Supp $(O_x / J) \subseteq C$,

and $(J \otimes_{O_{L}} O_{C}) / \text{torsion})$ is an ample vector bundle on C.

Proof. First we assume that C is an exceptional curve. Then there exist two effective cartier divisors S_1 and S_2 on a neighbourhood of C such that $(S_1 . C) < 0$, $(S_2.C) < 0$, and dim $(S_1 \cap S_2)=1$. Let J be the ideal $O_x (-S_1) + O_x (-S_2)$. Then we have $J \otimes O \cong (O_C \otimes O_x (-S_1)) \oplus (O_C \otimes O_x (-S_2))$. Thus J satisfies the condition (E).

Next we assume that there is an O_x -ideal J satisfying the condition (E). By considering the primary decomposition of J,

We have an O_x – ideal $J_o \supseteq J$ such that supp $(O_X/J_0) = C$ and Supp $(J_0/J) \supseteq C$. Hence there is an injection $(J \otimes O_C / \text{torsion}) \rightarrow (J_0 \otimes O_C / \text{torsion})$, where rank $(J \otimes O_C / \text{torsion}) = \text{rank}$ $(J \otimes O_C / \text{torsion})$. Therefore J_0 also satisfies the condition (E). Let $\mu: V \rightarrow X$ be the blowing-up by the ideal J_0 , i.e., $V: = \underline{\text{Projan}}_X (\bigoplus_{d \ge 0} J_0^d)$.

We have an exceptional Cartier divisor.

E: = <u>Projan</u>_X ($\bigoplus_{d\geq 0} J_0^d / J_0^{d+1}$). Let W be a component of E. If μ (W) is

a point, then $0_W \otimes O_V$ (-E) is ample, since O_V (-E) is μ -ample. if $\mu(W)$ is not a point, then μ (W)=C and W is also a component of $\underline{\text{proj}}_C(d \ge J_0^d \ 0_C$ /torsion). Since $(J_0 \otimes 0_C$ /torsion) is an ample vector bundle, $0_W \otimes 0_V$ (-E) is also ample. Therefore 0_E (-E) is an ample invertible sheaf. Then by the contraction criterion (cf. [3], [4]), we have a morphism $\nu : V \rightarrow Z$ such that $\nu(E)$ is a point and ν is an isomorphism outside E. Therefore we have the contraction f: $X \rightarrow Z$ of C.

2.5.Lemma:

Let $C \subseteq X$ be an exceptional curve.

(1) If the conormal bundle $N_{C/x}^{\nu} \cong I_C / I_C^2$ is semi-stable, then

 I_C / I_C^2 is an ample vector bundle.

(2) If I_C / I_C^2 is unstable, then $d^+(C) > 0$,

Proof. Take an ideal J satisfying the condition (E) and the maximal integer k such that $J \subseteq I^k_{C}$. Then we have an injection

 $\mathbf{J}/\mathbf{J} \cap \mathbf{I}_{\mathbf{C}}^{k+1} \to \mathbf{I}_{\mathbf{C}}^{k}/\mathbf{I}_{\mathbf{C}}^{k+1} \cong \mathbf{Sy}_{\mathbf{m}}^{k}(\mathbf{I}_{\mathbf{C}}/\mathbf{I}_{\mathbf{C}}^{2}).$

By the condition (E), $J/J \cap I_C^{k+1}$ is an ample vector bundle. Therefore we have proved (1) and (2).

Let $C \subseteq X$ be an exceptional curve such that I_C/I^2_C is unstable. Let us consider the blowing-up

 $\mu_1: X_1 \rightarrow X, E_1 = \mu_1^{-1}(C)$, and the negative section C_1 corresponding to the chracteristic exact sequence of I_C/I_C^2 .

2.6. Theorem :

 $C_1 \subseteq X_1$ is also an exceptional curve.

Proof: Let $0 \rightarrow L \rightarrow I_C/I^2_C \rightarrow M \rightarrow 0$ be the characteristic exact sequence. Assum that I_C/I^2_C is ample. Then from the natural exact sequence.

$$0 \rightarrow 0_{C_1} \otimes 0_{X_1} (-E_1) \rightarrow I_{C_1} / I^2_{C_1} \rightarrow 0_{C_1} \otimes 0_{E_1} (-C_1) \rightarrow 0,$$

$$\|$$

$$M \qquad \qquad L \otimes M^{-1}$$

and the condition deg L> deg M>0, we see that $I_{C_1}/I^2_{C_1}$ is also

ample. Next assume that I_C / I_C^2 is not ample. Then deg $M \le 0$. Take an 0_X – ideal J satisfying the condition (E) for $C \rightarrow X$. Let us

consider the 0_{X1} – ideal J'satisfying the condition (E) for $C \rightarrow X$. Let u consider the 0_{X1} – ideal J' : = Image ($\mu^*_1 J \rightarrow 0_{X1}$).

Since $J \subseteq I_{C1}$, we have $J' \subseteq O_{X_1}(-E_1)$.

Take the maximal integer λ such that

 $J' \subseteq O_{X_1}(-\lambda E_1)$ and let $J_1 := J' \otimes O_{X_1}(\lambda E_1) \to O_{X_1}$. we shall prove that the J_1 satisfies the condition (E) for

 $C_1 \rightarrow X_1$. Since (J $\otimes O_C$ / torsion) is ample on C,

($J{'\!\!\otimes\!} O_C\,/\,\text{torsion}$) is also ample on C_1 .

Now we have a natural homomorphism.

 $J' \otimes 0_{C1} \rightarrow 0_{X1} (-LE_1) \otimes 0_{C1} \otimes 0_{C1} \stackrel{\scriptstyle {}_{\scriptstyle \sim}}{=} M^{\otimes \lambda}$

Since deg M \leq 0, this homomorphism must be zero. Therefore

 $J_1 \subseteq I_{C1}$. On the other hand, $(J_1 \otimes 0_{C1}/torsion)$ is ample, since $\begin{array}{l} J_1 \otimes \mathbf{0}_{C1} \cong (J' \otimes \mathbf{0}_{C1} \) \otimes (\mathbf{0}_{X1} \ (lE_1 \) \otimes \mathbf{0}_{C1} \) \\ \cong (J' \otimes \mathbf{0}_{C1} \) \otimes M^{\otimes (-\lambda)}. \end{array}$ Therefore J_1 satisfies the condition (E).

2.7. proposition .

Let $C \subseteq X$ be an exceptional curve and let J be an O_X -ideal satisfying the condition (E) for $C \subseteq X$.

Then it is impossible to construct an infinite descending filtration $I^{(K)}$ (k ≥ 0) of the defining ideal I_C which satisfies the following two conditions (a) and (b) :

(a) $I^{(k)}$ is a coherent 0_X – ideal for all $k \ge 0$ and $J \subseteq \bigcap_{k\ge 0} I^{(k)}$

(b) $I^{(K)} / I^{(K+1)}$ is an 0_C – invertible sheaf and not ample for all $K \ge 0$

Proof: By (a), we can take the maximal integer k such that

 $I\ \subseteq\ I^{(k)}$. Then we have an injection $J/J \cap I^{(k+1)} \to I^{(k)}/I^{(k+1)}$ since $(J \ 0_C / \text{torsion})$ is ample, $J/J \cap I^{(k+1)}$ is also ample.

This contradicts (b).

REFERENCES

- 1- Alwadi,Y." Simple and quasi-homogeneus singngulenities" Journal of Damascus University for Basic sciences (2002)
- 2- Ando, T. "on the normal of the isolated Ip¹", preprint 1987.
- 3- Artin, M. "Algebraization of formal moduli II; Existence of formal modificatcatons", Ann. of Math. 91 (1970), 88-135.
- 4- Fujiki, A. "on the blowing down of analytic spaces", publ. RIMS, Kyoto Univ, 10(1975), 473-507.
- 5- Laufer, H. "on CP¹ as an exceptional set, in recent develop –ments in several comalex variables", Ann .of math. Stad 100 Princton University Press (1981), 261-275.
- 6- Reid, M."minimal models of canonical 3-folds, in Algebraic varieties and Analytic varieties", Adv .Stud .in pure math.1, Kinokuniya and North-Holland (1983),131-180.
- 7- Roczen, M. "some properties of the canonical reslutions of the 3-dimensional singularities An, Dn En over a field of chararacteristic $\neq 2$ ", LNM 1056, Springer (1984), 297-365.