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ABSTRACT 

Interior point methods are considered the most powerful tools for solving 
linear, quadratic and nonlinear programming. In each iteration of interior 
point method (IPM) at least one linear system has to be solved. The main 
computational effort of IPMs consist in the computational of these linear 
systems. That drives many researchers to tackle this subject, which make this 
area of research very active. The issue of finding a preconditioner for this 
linear system was investigated in many papers. 

In this paper, we provide a preconditioner for interior point methods for 
quadratic programming. This preconditioner makes the system easier to be 
solved comparing with the direct approach.  

The preconditioner used follows the ideas, which is used for linear 
approach. An explicit null space representation of linear constraints is 
constructed by using a non-singular basis matrix identified from an estimate of 
the optimal partition. This is achieved by means of efficient basis matrix 
factorisation techniques used in implementations of the revised simplex 
method. 
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طرائق النقاط الداخلية غير المباشرة لحل مسائل الحل الأمثل 

 التربيعية الضخمة

 
 غصون الجيرودي

   سورية– جامعة دمشق– كلية العلوم–قسم الرياضيات 
  

11/10/2010تاريخ الإيداع   

07/03/2011 قبل للنشر في  

 

ملخّصال  
ائق المستخدمة لحل مـسائل الحـل       تعد طريقة النقاط الداخلية في الوقت الراهن واحدة من أهم الطر          

في كل خطوة من خطوات خوارزمية هذه الطريقة نحتاج على الأقـل            . التربيعية واللاخطية ، الأمثل الخطية 
ممـا دفـع   . من الزمن الكلي لتشغيل البرنامج   % 90-60ويشغل حل هذا النظام نحو      . إلى حلّ نظام خطي   

ديد من الباحثين أن حل هذا النظام بـشكل غيـر مباشـر             وجد الع . العديد من الباحثين لدراسة هذا النظام     
غيـر أن الطرائـق غيـر       . يؤدي إلى تسريع البرنامج بشكل ملحوظ     ) باستخدام طريقة التقريب بالتتالي   (

في السنوات الأخيرة قدمت العديد من البحوث مكيفات لطرائق النقاط          . المباشرة الفعالة تحتاج إلى مكيفات    
  . الداخلية

. قمنا بتصميم مكيف جديد لطريقة النقاط الداخلية وذلك من أجل البـرامج التربيعيـة             ، قالةفي هذه الم  
صمم المكيف لأنظمة   . لتشمل البرامج التربيعية  ، وقد قمنا بتوسيع المكيفات المستخدمة في البرامج الخطية       

هذه الأنظمة إلى   هذا المكيف حول عدم الاستقرار من نقطة ضعف في          . متناظرة غير معرفة وغير مستقرة    
حيث قمنـا بتمديـد عـدم       ، في هذه المقالة أول مرة ينظر إلى النظام الخطي من زاوية جديدة           . نقطة قوة 

اعتمدنا في هذا التـصميم علـى فكـرة         . الاستقرار إلى معظم أجزاء النظام ومن ثم قمنا بتصميم المكيف         
طريقـة  ( ما بين الطـريقتين      نا نوعاً بحيث دمج . المتحولات الأساسية التي تستخدم في طريقة السمبلكس      

ذُكرت خواص المكيف الجيد و خلال المقالـة قمنـا       ، فضلاً عما سبق  ). النقاط الداخلية وطريقة السمبلكس   
  . بإثبات أن المكيف المطروح هو مكيف جيد

  
الأنظمة غير  ، المكيفات، البرامج التربيعية ، طرائق النقاط الداخلية  : الكلمات المفتاحية 

  .ةالمعرف
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1 - Introduction 

We are concerned in this paper with the use of the primal-dual 
interior point method (IPM for short) to solve large-scale quadratic 
programming problems. The primal-dual method is applied to the 
primal-dual formulation of the quadratic program 

Primal                                                            Dual 

 

 

 

where A∈Rm×n, Q∈Rn×n, x,s,c∈Rn and y,b∈Rm. We assume 
that m≤ n and A has full row rank. The primal-dual algorithm is 
usually faster and more reliable than the pure primal or pure dual 
method. The main computational cost of this algorithm is the 
computation of the primal-dual Newton direction. Applying standard 
transformations (Andersen et al. 1996 and Wright, 1997) leads to the 
following linear system that must be solved at each iteration 

 
Where  and X and S are diagonal matrices in 

Rn×n with the elements of vectors x and s respectively on the 
diagonal, µ is the average complementarity gap          

 
Solving the linear systems which arise from interior point method 

dominates the computation time, especially when large-scale problems 
are considered. Furthermore, these linear systems become extremely 
ill-conditioned as the IPM approaches the solution, which leads to 
numerical instability in the final iterations of IPM. This ill-
conditioning is due to that some elements of D go to zero while the 
others go to infinity. From the complementarity condition, we know 

(1)
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that either   or    go to zero ∀ i ∈{1,2,...,n}, see (Wright, 1997). 
These facts make us concentrate our attention on solving the final 
iterations of IPM. In this paper we propose a block triangular 
preconditioner for a modified augmented system and solve the final 
iterations of IPM iteratively. 

Recently many researchers introduce a certain type (class) of 
preconditioners, the ones which try to guess a ”basis”, a non-singular 
sub-matrix of A, (Al-Jeiroudi et al., 2009 and 2008, Bergamaschi 
et al., 2007 and 2004, Chai et al. 2007, Dollar et al. 2006, 2005 and 
2004, Keller et al., 2000 and Gill et al., 1992). There has been 
recently a growing interest in such preconditioners, because these 
types of preconditioners try to overcome the problem of ill 
conditioning of the linear system. In (Al-Jeiroudi et al., 2008) the 
authors propose a successful block triangular preconditioner to solve 
the augmented system which arises from the linear programming 
problems. This preconditioner works well at the final iterations of 
IPM, as they used the ill-conditioning problem as an advantage in 
designing their preconditioner. In order to get the standard augmented 
system (1) the term ∆s is eliminated. However, in this paper we will 
eliminate ∆x instead of ∆s. That leads to spread the matrix D in all 
sub-matrices of the modified augmented system matrix, which spread 
the ill-conditioning to all sub-matrices of the augmented system. 
However, we can overcome this problem by applying a similar 
strategy to one used in (Al-Jeiroudi et al., 2008) to construct our 
preconditioner. The paper is organised as follows. In Section 2, we 
briefly review the primal-dual interior point method for quadratic 
programming. In Section 3, we introduce the block triangular 
preconditioner. 

 
2-The interior point method for quadratic programming 

It is widely accepted that the primal-dual interior point method is 
the most efficient variant of interior point method (Andersen et al., 
1996 and Oliveira et al., 1997). The usual transformation in interior 
point methods consists of replacing inequality constraints by the 
logarithmic barrier. The primal barrier problem becomes: 
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Where µ≥ 0 is a barrier parameter. The Lagrangian associated with 

this problem has the form: 

 
and the conditions for a stationary point are 

 

 
Where  . Denoting    i.e. 

XSe = µe, where    and  , the 
first order optimality conditions (for the barrier problem) are: 
  

                                                                                                         

 
 

The interior point algorithm for quadratic programming applies 
Newton’s method to solve this system of nonlinear equations and 
gradually reduces the barrier parameter µ to guarantee convergence to 
the optimal solution of the original problem. The Newton direction is 
obtained by solving the system of linear equations: 

 

 

 
Usually the term ∆s is eliminated from the previous equations to 

obtain the standard augmented system. In this paper, we eliminate ∆x 
instead. That is to have the augmented matrix in a particular form in 

 

                                                   (2) 
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order to construct our preconditioner (see next section). Eliminating 
∆x from (5) gives 

 
Substituting this in (3) and (4) gives the following equations: 

 
 

Let us introduce the vectors   and    such that 

 
Substituting these in (7) and (8) leads to the following equations: 

 

 
That leads to the following indefinite augmented system of linear 

equations 

 

 

3- Block triangular preconditioner 

We use a similar strategy which is used in (Al-Jeiroudi et al., 2008) 
for LP to design a block triangular preconditioner for quadratic 
programming. 

In (Al-Jeiroudi et al., 2008) the following reasoning has been used 
to find the preconditioner for KKT system. From the complementarity 
condition we know that at the optimum , ∀j∈{1, 2, …, n}. 

Primal dual interior point methods usually identify a strong optimal 
partition near the optimal solution. If at the optimal solution    
and , then the corresponding element  If, on the other hand, 

 and , then the corresponding element    
In fact, the optimal partition is closely related (but not equivalent 

to) the basic-nonbasic partition in the simplex method. That is due to 
that simplex method iterations move from vertex to vertex until the 

(9)
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optimal solution is found. So the simplex method has exactly m basic 
variables (variables belong to B) and n-m nonbasic variables 
(variables belong to N). However, interior point methods approach the 
optimal solution by moving through the interior of the feasible region. 
Consequently, interior point methods have m basic variable and n - m 
nonbasic variables on its limit only. If at the optimal solution j∈B, 
then  and . hence the corresponding element  If at 
the optimal solution j∈N, then  and  and Summing up, 

 
This property of interior point methods is responsible for a number 

of numerical difficulties. In particular, it causes the linear systems (9) 
to become very ill-conditioned when an interior point method 
approaches the optimal solution, see (Andersen et al. 1996). However, 
it may be used to advantage  when constructing a preconditioner for 
the iterative method, see (Al-Jeiroudi et al., 2008). 

We partition the matrices and vectors as has been done in (Al-
Jeiroudi et al., 2008): 

 
according to the partition of {1,2,...,n} into sets B and N. With this 

notation, from (10) we conclude that and DB   
Consequently, the matrix in the augmented system (9) can be 
approximated as follows: 

 

If the matrix AB were square and nonsingular then equations (11) 
would suggest obvious preconditioner for the augmented system. 
However, there is no guarantee that this is the case. On the contrary, in 
practical applications it is very unlikely that the matrix AB     
corresponding to the optimal partition is square and nonsingular. 
Moreover, the optimal partition is known only when an IPM 
approaches the optimal solution, see (Al-Jeiroudi et al., 2008). To 

(11)
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construct a preconditioner to (9) with a structure similar to the 
approximation (11) we need to guess an optimal partition and, 
additionally, guarantee that the matrix B which approximates AB is 
nonsingular. We exploit the difference in magnitude of elements in D 
to design a preconditioner. We sort the elements of D in non-
increasing order: . We select the first m 
linearly independent columns of the matrix A, when permuted 
according to the order of Dj, and we construct a nonsingular matrix B 
from these columns. The submatrix of A corresponding to all the 
remaining columns is denoted by N. Therefore we assume that a 
partition A = [B,  N] is known such that B is nonsingular and the 
entries corresponding to columns of B are chosen from the largest 
elements of D, while the entries corresponding to columns of N 
are chosen from the smallest elements of D. According to this 
partitioning of A, Q and D (and after a symmetric row and column 
permutation) the indefinite matrix in (9) can be rewritten in the 
following form 

 
By construction, the elements of D_N are supposed to be among 

the smallest elements of D, hence we may assume that D_N≈ 0. The 
following easily invertible block-triangular matrix 

 

 
Is a good approximation to K. Hence P is an attractive 

preconditioner for K. The preconditioner inverse is 
 

 
 

 (12)   

 (13)  
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Naturally there are further requirements that a successful 
preconditioner should satisfy: it should be easily invertible and it 
should capture the numerical properties of (12). P is easily invertible 
because it is block-triangular with non-singular diagonal blocks , 
I and . In the next section, we give an explicit formulae for the 
solution of equations with the preconditioner (13). 

4- Solving equations with P 
The matrix (13) is block triangular and its diagonal blocks , I 

and  and are invertible. 
Let and and consider the system 

of equations 

 
The solution of (14) can easily be computed by exploiting the 

block-triangular structure of the matrix: 

 

 

 
 

The operation  involves solving two equations (one with B 
and one with ) and a couple of matrix-vector multiplications. These 
operations will be performed at every iteration of the iterative solver 
procedure hence they should be implemented in the most efficient way. 
The issues of choosing a well-conditioned basis matrix B with sparse 
factored inverse are addressed in (Al-Jeiroudi et al., 2008). 

 
5 - Analysing the Preconditioner P 

At each iteration of interior point method for quadratic 
programming, the linear system (9) is required to be solved. This 
system can be solved using iterative solver preconditioned with the 

 (14) 
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preconditioner (13). Searching for good preconditioner is an essential 
step in solving any linear system iteratively. In this section we address 
what makes (13) a good preconditioner. In order to get good 
preconditioner, the preconditioner should satisfy the following 
conditions: Firstly, the preconditioner should be well approximated to 
original matrix. Secondly, it should be easy to solve an equation with 
the preconditioner, see (Bjorck, 1996 ). 

Section 3 shows that the preconditioner P is a good approximation 
to the original matrix K, as we construct P by eliminating the elements 
of  D which are close to zero. Section 4 shows that it is easy to solve 
an equation with the preconditioner P.  In the iterative solver, we 
require to solve an equation with P. This approach however, does not 
require to solve any equation with the original matrix K. In the 
following Table we provide numerical results to compare solving an 
equation with P to an equation with K. In practice, the system with K 
is usually reduced to smaller system (its size is m by m). This system 
is called by normal equation, its matrix is . In 
Section 4, we mentioned that  to solve a system with P, we require to 
solve a system with B and a system with , so we need to factorise B 
only. Cholesky factorization is used to solve the normal equation and 
the LU factorization is used to solve a system with B.  

In practice, most problems are sparse, so we save the problems in 
sparse form. The following Table shows the saving in term of 
computer storage comparing (the number of nonzero element in the 
off-diagonal matrix of the Cholesky factorization for the normal 
equation’s matrix) to (the number of nonzero element in the LU 
factorization for the matrix B).    

The problem size 
problem m n nnz  of  A 

nnz for Cholesky 
Factorization of 

 

nnz  for  LU 
Factorization 

of B 

Saving 
% 

problem1 27 79 129 107 53 50.5 
Problem2 402 1456 8450 4096 970 76.3 
Problem3 402 1456 5810 3252 1094 66.4 
Problem4 616 1092 3467 2658 1798 32.4 
Problem5 2953 7335 21252 40288 14711 63.5 

           Note: we denote by nnz the number of nonzero elements. 
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We notice that, we save more than 50% of the storage in most 
cases. The matrix Q in all previous problems are diagonal matrices. In 
problem1, if we take Q a non-diagonal matrix the number of nonzero 
elements in Cholesky factorization will become 298, while the number 
of nonzero elements of LU factorization of B will still the same. In 
this case will save 82% of the saving storage.  

 

6 - Conclusions 

In this paper, we provide a preconditioner for the linear system 
which arise from IPM for quadratic programming. All the researches 
which have been made in this area study the linear system (1). 
However, we suggest to solve the linear system (9). Nobody has 
driven or used this linear system before. The matrix D appears in most 
terms of the system (9), which makes the system unstable, that is 
because some elements of D go to zero and the other go to infinity. 
We use this instability as an advantage to design our preconditioner. 
Hence we replace the elements, which go to zero, with zeros in the 
preconditioner. The result is a nice block triangular matrix. The 
constraint matrix A is partitioned into [B, N], where B is m by m non-
singular matrix. B is produced from m linearly independent columns 
of A, which correspond to small D. 
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