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ABSTRACT

Interior point methods are considered the most powerful tools for solving
linear, quadratic and nonlinear programming. In each iteration of interior
point method (IPM) at least one linear system has to be solved. The main
computational effort of IPMs consist in the computational of these linear
systems. That drives many researchers to tackle this subject, which make this
area of research very active. The issue of finding a preconditioner for this
linear system was investigated in many papers.

In this paper, we provide a preconditioner for interior point methods for
quadratic programming. This preconditioner makes the system easier to be
solved comparing with the direct approach.

The preconditioner used follows the ideas, which is used for linear
approach. An explicit null space representation of linear constraints is
constructed by using a non-singular basis matrix identified from an estimate of
the optimal partition. This is achieved by means of efficient basis matrix
factorisation techniques used in implementations of the revised simplex
method.

Keywords: Interior Point Methods, Quadratic Programming,
Preconditioner, Indefinite System.
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1 - Introduction

We are concerned in this paper with the use of the primal-dual
interior point method (IPM for short) to solve large-scale quadratic
programming problems. The primal-dual method is applied to the
primal-dual formulation of the quadratic program

Primal Dual
min CT_"{-F%KTQK max bT3?+%:~:TQx
st Ax=b, s.t. ATy +s—-Qs=c,
x=0 y free, s=0

where AeRmxn, QeRnxn, x,s,ceRn and y,beRm. We assume
that m< n and A has full row rank. The primal-dual algorithm is
usually faster and more reliable than the pure primal or pure dual
method. The main computational cost of this algorithm is the
computation of the primal-dual Newton direction. Applying standard
transformations (Andersen et al. 1996 and Wright, 1997) leads to the
following linear system that must be solved at each iteration

-D7+Q A [ﬂ-“'} _ H (1)
A ollayl le

Where D = X%/“S7%/2 and X and S are diagonal matrices in
Rnxn with the elements of vectors x and s respectively on the
diagonal, u is the average complementarity gap u = x's/n

f=c—ATy+Qx —pX~'e and g=b— Ax.

Solving the linear systems which arise from interior point method
dominates the computation time, especially when large-scale problems
are considered. Furthermore, these linear systems become extremely
ill-conditioned as the IPM approaches the solution, which leads to
numerical instability in the final iterations of IPM. This ill-
conditioning is due to that some elements of D go to zero while the
others go to infinity. From the complementarity condition, we know
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that either x; or s; go to zero Vi €{1,2,...,n}, see (Wright, 1997).
These facts make us concentrate our attention on solving the final
iterations of IPM. In this paper we propose a block triangular
preconditioner for a modified augmented system and solve the final
iterations of IPM iteratively.

Recently many researchers introduce a certain type (class) of
preconditioners, the ones which try to guess a “basis”, a non-singular
sub-matrix of A, (Al-Jeiroudi et al., 2009 and 2008, Bergamaschi
et al., 2007 and 2004, Chai et al. 2007, Dollar et al. 2006, 2005 and
2004, Keller et al., 2000 and Gill et al., 1992). There has been
recently a growing interest in such preconditioners, because these
types of preconditioners try to overcome the problem of ill
conditioning of the linear system. In (Al-Jeiroudi et al., 2008) the
authors propose a successful block triangular preconditioner to solve
the augmented system which arises from the linear programming
problems. This preconditioner works well at the final iterations of
IPM, as they used the ill-conditioning problem as an advantage in
designing their preconditioner. In order to get the standard augmented
system (1) the term As is eliminated. However, in this paper we will
eliminate Ax instead of As. That leads to spread the matrix D in all
sub-matrices of the modified augmented system matrix, which spread
the ill-conditioning to all sub-matrices of the augmented system.
However, we can overcome this problem by applying a similar
strategy to one used in (Al-Jeiroudi et al., 2008) to construct our
preconditioner. The paper is organised as follows. In Section 2, we
briefly review the primal-dual interior point method for quadratic
programming. In Section 3, we introduce the block triangular
preconditioner.

2-The interior point method for quadratic programming

It 1s widely accepted that the primal-dual interior point method is
the most efficient variant of interior point method (Andersen et al.,
1996 and Oliveira et al., 1997). The usual transformation in interior
point methods consists of replacing inequality constraints by the
logarithmic barrier. The primal barrier problem becomes:
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n
min ¢'x+ é:\:IQx —u Z Inx.
2 s
5. L. Ax=b,
Where p> 0 is a barrier parameter. The Lagrangian associated with
this problem has the form:

Lixy,p) =cx+x"TQx—v (Ax—b) —u Z In x.
i=1

and the conditions for a stationary point are

V.L(xyvu) =c+Qu— ATy —uX"le =0

V. Lxy u) = Ax—Db =0

Where X! =diag{x;", =7 .., x "} Denoting s= uX ‘e ie.
XSe = pe, where S = diag{s,,s.,...,5,} and e = (1,1, ...,1)7 , the
first order fptim}?lity conditions (for the barrier problem) are:

AX =

Aly+s—-Qx =r¢,

()

XS5e = ue,

(x,5) =0

The interior point algorithm for quadratic programming applies
Newton’s method to solve this system of nonlinear equations and
gradually reduces the barrier parameter p to guarantee convergence to
the optimal solution of the original problem. The Newton direction is
obtained by solving the system of linear equations:

AAx=b—Ax (3)
ATy +As-Qax=c-ATy-s-Qx (4)
SAx+XAs = pe — XSe. (5)

Usually the term As is eliminated from the previous equations to
obtain the standard augmented system. In this paper, we eliminate Ax
instead. That is to have the augmented matrix in a particular form in

29



Al-Jeiroudi-Inexact Approach for Interior Point Methods for Large Scale Quadratic Optimization

order to construct our preconditioner (see next section). Eliminating

Ax from (5) gives
Ax=-5"1XAs+uS le—x (6)
Substituting this in (3) and (4) gives the following equations:
AST'XAs=-b+pAsle (7)
(1+QS ™X)As+ATAy =c—ATy—s+uQSle. (8)
Let us introduce the vectors t, and t, such that
As=X"1iglZe . Ay= t.

Substituting these in (7) and (8) leads to the following equations:
ASTUVEXY e =—b+uAsSle
1 1
(1+XY3s7V2Q s M2 Y2), + X V3§23 ATe = X3S 2(c— ATy — s+ uQ S 7).
That leads to the following indefinite augmented system of linear
equations

n R ©

where f= X257V (c—ATy—s+uQS~%e) and g= b+ pAS e
3- Block triangular preconditioner

We use a similar strategy which is used in (Al-Jeiroudi et al., 2008)
for LP to design a block triangular preconditioner for quadratic
programming.

In (Al-Jeiroudi et al., 2008) the following reasoning has been used
to find the preconditioner for KKT system. From the complementarity
condition we know that at the optimum x,y, = 0, Vje {1, 2, ..., n}.

Primal dual interior point methods usually identify a strong optimal
partition near the optimal solution. If at the optimal solution x,—0

and s, %, then the corresponding element D, —0 If, on the other hand,
x,—%, and s,—0, then the corresponding element D,—»oo.

In fact, the optimal partition is closely related (but not equivalent
to) the basic-nonbasic partition in the simplex method. That is due to
that simplex method iterations move from vertex to vertex until the

30



Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

optimal solution is found. So the simplex method has exactly m basic
variables (variables belong to B) and n-m nonbasic variables
(variables belong to N). However, interior point methods approach the
optimal solution by moving through the interior of the feasible region.
Consequently, interior point methods have m basic variable and n - m
nonbasic variables on its limit only. If at the optimal solution jeB,
then x,—%, and s,—0,. hence the corresponding element D, —co. If at

the optimal solution jeN, then x,—»0 and s,—5, and D,—+0. Summing up,

(oo if jeB
“lo, ifjeN

This property of interior point methods is responsible for a number
of numerical difficulties. In particular, it causes the linear systems (9)
to become very ill-conditioned when an interior point method
approaches the optimal solution, see (Andersen et al. 1996). However,
it may be used to advantage when constructing a preconditioner for
the iterative method, see (Al-Jeiroudi et al., 2008).

We partition the matrices and vectors as has been done in (Al-

Jeiroudi et al., 2008):

_ “Ps O] o_[em @
a=lag &) p=[E J] o=[2 29,

according to the partition of {1,2,....,n} into sets B and N. With this
notation, from (10) we conclude that D, & 0 and D' ® 0.

D. (10)

x=[xg xyl. s=[sg syl

Consequently, the matrix in the augmented system (9) can be

approximated as follows:

I+ DBQT.IDE DBQ—].ZDN DEA‘E I+ DEQIIDE DBQ‘IJD!I DBABT
DHQZ'IDB I+DHQ22DN Dnﬁur N DHQIIDB 1 0 ’ (11)
A‘EDH A'HDII 0 ABDB Y 0

If the matrix Ag were square and nonsingular then equations (11)
would suggest obvious preconditioner for the augmented system.
However, there is no guarantee that this is the case. On the contrary, in
practical applications it is very unlikely that the matrix Agp
corresponding to the optimal partition is square and nonsingular.
Moreover, the optimal partition is known only when an IPM
approaches the optimal solution, see (Al-Jeiroudi et al., 2008). To
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construct a preconditioner to (9) with a structure similar to the
approximation (11) we need to guess an optimal partition and,
additionally, guarantee that the matrix B which approximates Agp is
nonsingular. We exploit the difference in magnitude of elements in D
to design a preconditioner. We sort the elements of D in non-
increasing order: D, =D, =--= D,. We select the first m

linearly independent columns of the matrix A, when permuted
according to the order of Dj, and we construct a nonsingular matrix B
from these columns. The submatrix of A corresponding to all the
remaining columns is denoted by N. Therefore we assume that a
partition A = [B, N] is known such that B is nonsingular and the
entries D; corresponding to columns of B are chosen from the largest

elements of D, while the entries D, corresponding to columns of N

are chosen from the smallest elements of D. According to this
partitioning of A, Q and D (and after a symmetric row and column
permutation) the indefinite matrix in (9) can be rewritten in the
following form
I+ DgQy,Dp DgQ4.Dy DEBT
K=| DyQ:Dg I+DyQ,,Dy DNNT
BDg ND, 0
By construction, the elements of D N are supposed to be among
the smallest elements of D, hence we may assume that D N~ 0. The
following easily invertible block-triangular matrix

(12)

[+DgQyDg DgQy;Dy DgB”
P =] DyQyDg I 0
BD, 0 0
Is a good approximation to K. Hence P is an attractive
preconditioner for K. The preconditioner inverse is

(13)

0 0 D B!
Pt = 0 I —DNQHB"* .
B_TDB_I _B_TQj.ZDN B_T(_DB_L —Qu +Qy DN'Q:ﬂB_i
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Naturally there are further requirements that a successful
preconditioner should satisfy: it should be easily invertible and it
should capture the numerical properties of (12). P is easily invertible
because it is block-triangular with non-singular diagonal blocks ED; ,

Iand D, BT. In the next section, we give an explicit formulae for the
solution of equations with the preconditioner (13).

4- Solving equations with P
The matrix (13) is block triangular and its diagonal blocks EDy , I

and D, B'and are invertible.
Let d = [ dg, dy,d,] and r = [ 15,7, 7] and consider the system

of equations
[+DgQuDs DgQ:Dy DgBT|[ds e
DnQ2iDg I 0 [[dx]= [r“ (14)
BD, 0 0 ||dy Ty

The solution of (14) can easily be computed by exploiting the
block-triangular structure of the matrix:

BDydz=r, = d, =D, 'B7'r,
dy + DyQzyDpdg=ry = dy = ry— Dy Q2 Dgds
DgBTd, +DgQy,Dydy + (1+ DgQyDg)dg =15 = d,= B7 Dy '(rg
—Dg Qy; Dydy — (I + DgQyy Dg)dg)-
The operation d = P~ "1 involves solving two equations (one with B
and one with BT) and a couple of matrix-vector multiplications. These

operations will be performed at every iteration of the iterative solver
procedure hence they should be implemented in the most efficient way.
The issues of choosing a well-conditioned basis matrix B with sparse
factored inverse are addressed in (Al-Jeiroudi et al., 2008).

5 - Analysing the Preconditioner P

At each iteration of interior point method for quadratic
programming, the linear system (9) is required to be solved. This
system can be solved using iterative solver preconditioned with the
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preconditioner (13). Searching for good preconditioner is an essential
step in solving any linear system iteratively. In this section we address
what makes (13) a good preconditioner. In order to get good
preconditioner, the preconditioner should satisfy the following
conditions: Firstly, the preconditioner should be well approximated to
original matrix. Secondly, it should be easy to solve an equation with
the preconditioner, see (Bjorck, 1996 ).

Section 3 shows that the preconditioner P is a good approximation
to the original matrix K, as we construct P by eliminating the elements
of D which are close to zero. Section 4 shows that it is easy to solve
an equation with the preconditioner P. In the iterative solver, we
require to solve an equation with P. This approach however, does not
require to solve any equation with the original matrix K. In the
following Table we provide numerical results to compare solving an
equation with P to an equation with K. In practice, the system with K
is usually reduced to smaller system (its size is m by m). This system
is called by normal equation, its matrix is A (D2 + @) *AT. In
Section 4, we mentioned that to solve a system with P, we require to
solve a system with B and a system with B, so we need to factorise B

only. Cholesky factorization is used to solve the normal equation and
the LU factorization is used to solve a system with B.

In practice, most problems are sparse, so we save the problems in
sparse form. The following Table shows the saving in term of
computer storage comparing (the number of nonzero element in the
off-diagonal matrix of the Cholesky factorization for the normal
equation’s matrix) to (the number of nonzero element in the LU
factorization for the matrix B).

The problem size nnz for Cholesky | nnz for LU Savin
problem Factorization of | Factorization g

m n |nnz of A| , (D2 + Q) AT of B %
probleml| 27 | 79 129 107 53 50.5
Problem2| 402 | 1456 | 8450 4096 970 76.3
Problem3| 402 | 1456 | 5810 3252 1094 66.4
Problem4| 616 | 1092 | 3467 2658 1798 324
Problem5|2953| 7335 | 21252 40288 14711 63.5

Note: we denote by nnz the number of nonzero elements.
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We notice that, we save more than 50% of the storage in most
cases. The matrix Q in all previous problems are diagonal matrices. In
probleml, if we take Q a non-diagonal matrix the number of nonzero
elements in Cholesky factorization will become 298, while the number
of nonzero elements of LU factorization of B will still the same. In
this case will save 82% of the saving storage.

6 - Conclusions

In this paper, we provide a preconditioner for the linear system
which arise from IPM for quadratic programming. All the researches
which have been made in this area study the linear system (1).
However, we suggest to solve the linear system (9). Nobody has
driven or used this linear system before. The matrix D appears in most
terms of the system (9), which makes the system unstable, that is
because some elements of D go to zero and the other go to infinity.
We use this instability as an advantage to design our preconditioner.
Hence we replace the elements, which go to zero, with zeros in the
preconditioner. The result is a nice block triangular matrix. The
constraint matrix A is partitioned into [B, N], where B is m by m non-
singular matrix. B is produced from m linearly independent columns
of A, which correspond to small D.
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