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ABSTRACT 
Glucocorticoids play essential role in, development, growth, behavior, 

neuroendocrine regulation and metabolic processes that are mediated by the 
glucocorticoid receptor (GR). During stress, activation of the hypothalamic-
pituitary-adrenal (HPA) axis induces the release of high concentration of 
glucocorticoids which bind to GR through the central nervous system to 
maintain homeostasis. Although, the GR has been considerably studied in 
mammals, little is known about the distribution of GR in amphibians. Thus, the 
aim of the present study was to localize the GR-expressing cells in the 
diencephalon and telencephalon within the brain of frog Rana ridibunda. We
demonstrate by Immunohistochemical process that GR-immunoreactive cells 
are widely distributed in the anterior preoptic area (Poa) of hypothalamus, a 
homolog of the mammalian supraoptic and paraventricular nucleus (PVN) and 
known to contain corticotrophin-releasing factor (CRF), and in the organum 
vasculosum known as the supraoptic crest.  Also, in the telencephalon, several 
limbic system regions contain GR-immunoreactive neurons distributed notably 
in the medial pallium (mp, homolog of the mammalian hippocampus), lateral 
pallium, medial amygdala, lateral amygdala, and ventral amygdale, and Bed 
nucleus of the pallial commissure. Moreover, we observed GR-
immunoreactivity in thalamic structures such as dorsal habenular nucleus, 
ventral habenular nucleus, thalamic eminence, and the ventromedial thalamic 
nucleus. In most GR-immunoreactive cells, the immunostaining was observed 
in both the cytoplasm and the nucleus. These results support the idea that the 
general patterns of glucocorticoid receptor distribution in the neuroendocrine 
nuclei and limbic system of the central nervous system are highly conserved 
among vertebrates. Thus GR is likely to play roles in mediating the effects of 
corticosteroids on frog brain similar to those in mammals, suggesting that the 
basic regulatory pathways for modulating the responsiveness of the stress axis 
may be an evolutionary conserved mechanism in vertebrates. Our data 
represent the first step to map the distribution of GR in the brain of the frog 
Rana ridibunda.

Key words: Glucocorticoid receptor, Immunohistochemistry, Rana 
ridibunda, Stress, HPA axis, Limbic system, 
Amygdala. 
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Introduction 
Steroid hormones are produced by endocrine glands, including 

adrenal cortex, gonad and placenta. They exert a large array of 
biological effect in vertebrate. In particular, they play an important 
role in the development, growth, differentiation, proliferation, and 
maturation of the central and peripheral nervous system (1-5. for a 
review. see 6, 7). In addition, circulating steroid hormones play also a 
pivotal role in the control of a number of behavioral, neuroendocrine 
and metabolic processes such as regulation of food intake, locomotor 
activity, aggressiveness, anxiety, sexual activity, depression, stress , 
body temperature and blood pressure (8-10. for a review see 6,7). The 
production of glucocorticoids by adrenocortical cells (interrenal 
glands in amphibians) is largely controlled by pituitary 
adrenocorticotropic hormone (ACTH), whose synthesis and secretion 
is under hypothalamic regulation exerted by corticotropin releasing 
factor (CRF) and arginine vasopressin hormone (AVP) (for review. 
see 11-13 ). 

During stress, activation of the hypothalamic-pituitary-adrenal 
(HPA) axis causes the release of high concentration of glucocorticoids 
which bind to glucocorticoid receptors through the central nervous 
system (CNS) to coordinate physiological and behavior adjustments to 
maintain homeostasis (for review. See 11-12). In fact, Elevated 
concentration of glucocorticoids exerts negative feed-back control at 
multiple levels of the Hypothalamic-pituitary-adrenal axis and 
suprahypothalamic limbic regions, such as the hippocampus and 
amygdala, to prevent continued activation (14-16). Feedback is 
mediated by the action of glucocorticoids at two types of steroid 
receptors, type I or mineralocorticoid receptors (MR) and type II or 
glucocorticoid receptor (GR). Both types of receptors have been 
extensively studied in the CNS of man (17-19), rat (20-21), dog (22) 
and mouse (23). These receptors belong to the nuclear receptor 
superfamily (24, 25) where its members act as ligand-dependent 
transcription factors. In the absence of ligand, the GR is located in the 
cytosol associated with heat shock proteins and immunophilins (26). 
Ligand binding causes disassociation of the protein complex and 
translocation of GR into the nucleus, where GR regulates transcription 
of its target genes (24-25, 27). In mammals, the MR is hypothesized to 
control the basal level and the circadian rhythm of circulating 
glucocorticoids, whereas glucocorticoid-depending physiological 
changes that occurs in response to stressors, and feedback regulation 
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by glucocorticoids is thought to be mediated by GR (28, for review. 
see 11, 29).  

Moreover, the localization of GR receptor protein and mRNA was 
achieved in the brain of several vertebrate species such as Rhesus 
(30), mice (31), rat (32), chicken (1), Rainbow trout (33-34), and 
Xenopus Laevis (35).  The highest Immunohistochemical staining of 
GR was found in the hippocampal region, hypothalamic 
paraventricular nucleus (PVN), preoptic nucleus, medial and central 
nucleus of the amygdala, Locus coeruleus, cerebellar cortex, olfactory 
pyramidal layers, and granule layer of the cerebellar cortex (31-36).  
The hippocampus expresses the highest level of GR in mammal brain, 
and glucocorticoid actions here evoke a tonic inhibition of 
neurosecretory neurons in the PVN via descending inhibitory 
projection to down-regulate HPA axis function (37). Also, the PVN 
neurons contain a high level of GR and thus they are a direct target for 
circulating glucocorticoids (15). Glucocorticoids affect also fear and 
cognition via their action in hippocampus and amygdala (38-40).  

However, In spite of the good model of frog brain for the 
regulation of steroids biosynthesis and neuroendocrine regulation (41), 
the distribution of GR in the central nervous system of amphibian is 
relatively very little known. In the present study, we have attempted to 
demonstrate the distribution of glucocorticoid receptors (GR) in brain 
of a non-mammal vertebrate, the frog Rana ridibunda, especially in 
the diencephalon, and telencephalon nuclei, to localize the 
glucocorticoid targets in the central nervous system of frog, and to 
clarify the role of the different nuclei components of the limbic system 
in steroid regulation of HPA axis. Also our present study represents 
the first step to map the distribution of GR in the brain of frog Rana 
ridibunda .

Materials and methods 
Animals 

Adult male frogs (Rana ridibunda) of 50-60 g body weight were 
obtained from a commercial source. The animals were housed in a 
temperature-controlled room (8±1°C) under running water, on a 12 h 
light/dark schedule (lights on from 6:00 A.M. to 6:00 P.M.), for at 
least 1 week before use. To limit possible variations of steroid 
biosynthesis attributable to circadian rhythms, all animals were killed 
between 9:30 A.M. and 10:30 A.M. 

Immunohistochemical Procedure 
Animals were anesthetized by immersion in 0.1% of MS222 (3-

aminobenzoic acid ethyl ester) and immediately perfused  



Damascus University Journal for BASIC SCIENCES Vol. 26, No 1, 2010 

37

transcardially via the aortic bulb, first with 30 ml of 0.1M phosphate 
buffer solution (PBS, PH 7.4) containing 0.025g xylocaine, then with 
50 ml of 4% paraformaldehyde in PBS supplemented with sodium 
metaperiod as previously described (42-44). The brain were quickly 
removed and postfixed overnight at 4 Cº in the same fixative solution. 
Then, the tissues were rinsed overnight in PBS containing 15% 
sucrose and then transferred into a 30% sucrose solution for at least 24 
hours. Brain were placed in an embedding medium (O.C.T. Teck, 
Rrichert-Jung S.A. Wien, Austria) and frozen at -80Cº until use. 
Sections were cut at 8µm-thick on a cryostat ,taken on glass lames and 
processed for indirect Immunohistochemical procedure as previously 
mentioned (42-43). Briefly, consecutive tissue sections were 
incubated overnight at 4Cº in a humid atmosphere with the first 
antibody directed against glucocorticoid receptors (anti-GR 1:50 
dilution) in PBS containing 0.3% Triton X-100 and 1% BSA. The 
antibody is a polyclonal antiserum raised in rabbit against Xinopus 
laevis glucocorticoid receptors, purified and tested for its efficiently 
as previously described (44). The sections were rinsed in three baths 
of PBS (10mM) and prepared for Immunoreactive reactions with a 
biotinylated secondary antibody using Vectastatin Elite ABC (rabbit) 
and Vector VIP substrate Kits, following the manufacturer's 
instructions (both Kits from Vector, Burlingame, CA; 0.5µg/ml 
affinity-purified polyclonal rabbit anti-xGR IgG). Finally, the sections 
were rinsed in PBS, mounted in PBS-glycerol (1/1), coverslipped, and 
examined on a Leitz orthoplan microscope equipped with 1300R fast 
digital camera and linked with a computer. Brightness, contrast, and 
evenness of illumination were adjusted uniformly for images shown in 
the figures using Adobe Photoshop. The specificity of the 
immunoreaction was controlled either by substituting the primary 
antisera with PBS or by preabsorption with the antigenic xGR peptide 
as previously published (44).  

Results 
The distribution of GR in the brain of Rana ridibunda was 

analyzed by indirect immunohistochemical procedure. The analysis 
showed that the GR- immunoreactive cells are widely distributed in 
the diencephalon and telencephalon of the frog Rana ridibunda. In 
most GR-immunoreactive cells, the immunoreactivity was localized in 
both the cytoplasm and the nucleus, and in some regions the 
immunostaining was higher in the cytoplasm than in the nucleus. The 
anatomical drawings of frog brain regions schematized in figure-1 are 
from Yao et al 2008 and Do-rego et al (44, 57).  
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 The distribution of GR-immunoreactive cells in the studied regions 
of the sections of frog brain is described as below: 

1- Diencephalon:  In particular, the GR-expressing cells are 
located in high density in the neuroendocrine component of the brain, 
notably the anterior preoptic area (Poa), homologues of the supraoptic 
and paraventricular nuclei (PVN) of mammal's brain, as shown in 
figure 2. In more caudal regions of the Poa, GR-immunoreactive cells 
were observed in the ventral part of magnocellular preoptic nucleus 
(Mgv) and the dorsal part of the magnocellular preoptic nucleus 
(Mgd) as illustrated in figure 3. The GR-immunoreactivity in these 
cells was found in both the nucleus and cytoplasm. In addition, GR-
immunoreactivity was also seen in several structures of the thalamus 
of frog brain, including the dorsal habenular nucleus (Hd), the ventral 
habenular nucleus (Hv) as shown in figure 4, and in the thalamic 
eminence (TE), and in the ventromedial thalamic nucleus (VM) as 
shown in figure 5.  We also observed a strong immunoreactivity in the 
organum vasculosum (OV) which represents one of the 
circumventricular of the third ventricle of the brain (see figure 5). 

2- Telencephalon: The sites showing GR-immunoreactivity in 
telencephalon were localized in neurons of the medial pallium (MP), a 
homolog of the mammalian hippocampus, as shown in figure 6, in the 
lateral pallium (LP), and to a lesser extent but identifiable 
immunostaining cells were seen in the dorsal pallium (DP) as 
illustrated in figures 6. Also, a strong GR-immunoreactivity was 
localized in the Bed nucleus of the pallial commissure (BN), in the 
medial amygdale (MA), and in the lateral amygdale (LA) as shown in 
figures 7 and 8. In most cases, the immunoreactivity was distributed 
both in the nucleus and in the cytoplasm. We observed in several 
cases that some epithelial cells of the third and lateral ventricles 
demonstrated also a strong GR-immunoreactivity.  
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Fig.1. Anatomical illustration for the regions studied in the brain of frog Rana 
ridibunda to localize the distribution of GR-immunoreactive cells. The 
drawings are fromYao et al 2008 (44), and Do Rego et al 2007(57). The 
drawing at the left top of the figure shows a lateral view section of the 
frog brain.  
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Fig.2. Photomicrographs of two transverse sections on the brain of the frog 
Rana ridibunda through the diencephalon showing the distribution of 
glucocorticoid receptor-immunoreactive cells in the anterior preoptic 
area. (A: X10, B: X40). Also, the third ventricle (IIIV) appeared in the 
two sections. 
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Fig.3. Photomicrographs of two transverse sections on the brain of the frog 
Rana ridibunda through the diencephalon showing the distribution of 
glucocorticoid receptor-immunoreactive cells. C: in the dorsal part of 
magnocellular preoptic nuleus (Mgd), and D: in the ventral part of 
magnocellular preoptic nuleus (Mgv). X10. 
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Fig.4. Photomicrographs of two transverse sections on the brain of the frog 
Rana ridibunda through the diencephalon showing the distribution of 
glucocorticoid receptor-immunoreactive cells in: E, the dorsal habenular 
nucleus (Hd), and F, the ventral habenular nucleus (Hv). X10. 
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Fig.5. Photomicrographs of three transverse sections on the brain of the frog 
Rana ridibunda through the diencephalon showing the distribution of 
glucocorticoid receptor-immunoreactive cells: g (X40): in the 
ventromedial thalamic nucleus (VM), and H(X10), in the thalamic 
eminence (TE), and I, in the organum vasculosum (OV). X40. 
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Fig.6. Photomicrographs of three transverse sections on the brain of the frog 
Rana ridibunda through the telencephalon showing the distribution of 
glucocorticoid receptor-immunoreactive cells. J (X40) in the medial 
pallium (MP), K(X40); in the dorsal pallium (DP), and L(X40): in the 
lateral pallium (LP). 
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Fig.7. Photomicrographs of two transverse sections on the brain of the frog 
Rana ridibunda through the telencephalon showing the distribution of 
glucocorticoid receptor-immunoreactive cells. M; in the Bed nucleus of 
the pallial commissure (BN), and N, in the medial amygdale ( MA).X40 
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Fig.8. Photomicrographs of two transverse sections on the brain of the frog 
Rana ridibunda through the telencephalon showing the distribution of 
glucocorticoid receptor-immunoreactive cells in lateral amygdala (LA). 
O: X10, P: X40.  

Discussion 
Stress activates hypothalamic-pituitary-adrenal (HPA) axis which 

initiates a series of neuronal responses, and causes the release of high 
concentration of glucocorticoids that bind to glucocorticoid receptors 
(GR) through the central nervous system (CNS) to coordinate 
physiological and behavior adjustments and to prepare the organism to 
adapt to new environmental challenges. In the present study, we found 
that the glucocorticoid receptor-expressing cells are located in high 
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density in the neuroendocrine component of the brain of the frog Rana 
ridibunda, notably in the anterior preoptic area (Poa), homologues of 
the supraoptic and paraventricular nuclei (PVN) of the brain of 
mammals. The GR-immunoreactivity in these cells was found in both 
the nucleus and cytoplasm. These data are in accordance with 
previous studies conducted on fish (33-34) and Xenopus laevis (35, 
44-46) which showed that the glucocorticoid receptor (GR) is widely 
distributed in these regions of the brain. Neurons in these regions 
contain and secrete a number of neuropeptides including CRF and 
vasotocin (46-48). The high expression of GR in preoptic neurons 
suggests a direct effect of circulating glucocorticoids on these 
neurons. This is further supported by the finding that CRF and GR are 
colocalized in the Poa of amphibian Xenopus laevis (48). Thus, 
glucocorticoids induce negative feedback control on neurosecretory 
CRF neurons in the frog similar to that in mammals and fish (for a 
review see 49). 

A significant difference between the distributions of GR in the brain 
of the frog Rana ridibunda and that of birds and mammals is that we 
found a high density of GR-immunoreactivity in the dorsal part of 
magnocellular preoptic nucleus (Mgd) and less, but albeit identifiable 
GR-expressing cells in the ventral part of the magnocellular preoptic 
nucleus (Mgv), whereas no GR-immunoreactivity was detected in the 
magnocellular division of the PVN in intact rat or Japanease quail (50). 
Also, high GR-immunoreacitivity was detected in rainbow trout and 
kokanee salmon (33,51). These findings of high GR in the 
magnocellular of Poa in the frog and in fish and their absence from the 
homologous regions of the bird or mammals could be related to the 
aquatic vs. terrestrial life histories of these species. In addition, we 
observed a strong immunoreactivity in the organium vasculousum 
(supraoptic crest) which is known as one of the circumventricular 
organs of the brain and is strongly interconnected with the median 
preoptic nucleus of the hypothalamus (the nucleus medianus). This 
structure form together with the subfornical organ and area postrema 
the anterior and ventral region of the third ventricle known as AV3V. 
The AV3V region is very important in the regulation of fluid and 
electrolyte balance, by controlling thirst, sodium excretion, blood 
volume regulation, and vasopressin secretion. Thus, glucocorticoid 
receptors of frog brain, as in mammals, regulate a number of 
behavioral, neuroendocrine and metabolic processes. Furthermore, we 
have observed a positive immunoreactivity in many regions of the 
limbic system of frog brain, notably in the medial pallium (mp), which 
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is the amphibian and fish homologous of the mammalian hippocampus. 
Also, we found GR-immunoreactivity in the medial and lateral 
amygdala (MA, LA), and in the Bed nucleus of the pallial commissure 
(BN). In support of these data, the presence of GR-immunoreactivity in 
the limbic structure of mammals, such as hippocampus, dentate gyrus, 
and amygdala, is well documented (31,32). In addition, similar 
distribution of GR-Immunoreactivity detected in frog medial pallium 
was observed in fish brain (33-34, 51). 

Moreover, many studies conducted in mammals have demonstrated 
that the amygdala is involved in stress-related reactions and in the 
regulation of the HPA axis (52-54). The amygdala contains high levels 
of CRF, and CRF-containing fibers have been traced from the amygdala 
to the lateral hypothalamus and may directly innervate CRF-containing 
neurons within the PVN (53-56). Thus, glucocorticoids can negatively 
regulate the activity of PVN neuron secreting CRF in mammals via a 
descending inhibitory pathway originating from hippocampus and 
amygdala (55-56). Thus, our present findings showing that 
glucocorticoid receptors (GR) are distributed in the homologous regions 
of the brain of the frog Rana ridibunda , medial pallium, and amygdala, 
and the study demonstrated that CRF and GR are colocalized in the Poa 
of amphibian (48) suggest that these structures could play a similar 
function in frog as they do in mammals. 

In fact, autoregulation of glucocorticoid receptor in the central 
nervous system by circulating glucocorticoids is considered as the 
more important mechanism to regulate the hypothalamic-pituitary-
adrenal (HPA) axis during stress in man and all mammals studied 
until now. 

In conclusion, our results support the idea that the general patterns 
of glucocorticoid receptor distribution in the neuroendocrine nuclei 
and limbic system of the central nervous system are highly conserved 
among vertebrates. Thus glucocorticoid receptor is likely to play roles 
in mediating the effects of corticosteroids on frog brain similar to 
those in mammals, suggesting that the basic regulatory pathways for 
modulating the responsiveness of the stress axis may be an 
evolutionary conserved mechanism in vertebrates. 
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