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ABSTRACT 
We extend the well Known Levi-Malcev decomposition theorem of finite 

dimensional  Lie algebras to the case of pro-finite dimensional  Lie algebras  
 L = nLlim  (n ∈  N). We also prove that every finite dimensional 
homomorphic image of the Cartesian product of finite dimensional nilpotent 
Lie algebras is also nilpotent. 
 
 
 
     Key Words:  Finite Lie algebras, Inverse limit, Lie groups. 
 



Ghandour, Al-Lahham, Nahlus - On the inverse limit of finite dimensional lie algebras 

 74 

  

 ي منتهية البعدـ لرعكوسة لجبوحول النهاية الم
 
 

)2(نحلوس ونزيه و )1(اللحام أنور و )1(غندور نادين  

  . ـ سوريةجامعة دمشق ـ كلية العلوم ـ قسم الرياضيات) 1(
  . قسم الرياضيات ـ كلية العلوم ـ الجامعة الأمريكية ـ بيروت)2(

 
14/08/2005تاريـخ الإيداع   
07/03/2006قبل للنشـر في   

 
 
 

صالملخ  
 

على النهاية المعكوسة ،  جبور لي منتهية البعدعن  Levi – Malcev في هذا البحث مبرهنة عممت 

  . لجبور لي منتهية البعد 

 منتهية البعد للجداء الديكارتي لمجموعة من homomorphic image أن كل صورة تشاكلية أُثبتكما 

  .اً عدومة  والمنتهية البعد هي أيضnilpotentجبور  لي  العدومة 

  

  . زمرة لي،النهاية المعكوسة، جبور لي المنتهية: الكلمات المفتاحية
 

  

    
 

  
 



Damascus University Journal for BASIC SCIENCES Vol. 22, No 1, 2006 

 75 

1. INTRODUCTION 
Most of the general theory on Lie algebras has been established for 

finite dimensional Lie algebras. However, little is known about the 
general theory of infinite dimensional Lie algebras. 

Important classes of such Lie algebras are the pro-finite 
dimensional Lie algebras L = iLlim  which are inverse limits of finite 
dimensional Lie algebras. Such Lie algebras appear as the Lie 
algebras of pro-affine algebraic groups which play an important role 
in the representation theory of Lie groups ([4], [5]). So it is of interest 
to extend the basic theory (found for example in ([1], [2]) concerning 
the finite dimensional Lie algebras to the category of pro-finite 
dimensional Lie algebras. 

In this paper, we generalize the Levi-Malcev decomposition 
theorem of finite dimensional Lie algebras to the inverse limit of finite 
dimensional Lie algebras L = nLlim (n ∈N). We prove that if             
L = nLlim  (n ∈  N), where the Ln  are finite dimensional Lie algebras, 
then L = R⊕S, where R is a pro-solvable ideal of L and S is a 
prosemisimple Lie sub-algebra. 

We also prove that every finite dimensional homomorphic image of 
the Cartesian product of finite dimensional nilpotent Lie algebras 

∏
∈

=
Ni

iNL   is also nilpotent. 

All Lie algebras in this paper are considered over a fixed 
algebraically closed field K of characteristic 0. (1) 

 
2. BASIC DEFINITIONS 

Definition 1. Let I be a set with a partial ordering  ≤. Suppose  I      
is directed upwards, i.e., for every  i ,  j ∈  I   there exists   k ∈  I   such 
that   i ≤ k   and   j ≤ k.  

Let S = {Si : i ∈  I} be a family of  sets such that for every          
pair  (i, j) ∈ I × I   with  j ≥ i, there is a map   jiπ : Sj  Si   satisfying 

                                                      
(1) 1991 Mathematics Subject Classification. 14L, 16W, 17B45. 1 
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the following two conditions: 

(i) iiπ  is the identity map for every   i ∈ I  

(ii) if    i ≤ j ≤ k,   then      kiπ = jiπ o kjπ     

Let      },,;):(:{ ijIjiSS ijjiji ≥∈→= πππ .     

Then (S, π )  is called an inverse system and the maps jiπ : Sj  Si 
are called the transition maps of the inverse system. The inverse limit 
of this system, denoted by iSlim , is the subset of the Cartesian 
product ∏

∈Ii
iS  consisting of all elements  s = (si)i∈ I such that  

jiπ  (sj) = si    for every   j ≥ i.  

In other words, iSlim  is the set of all elements  (si)i∈I  which are 

compatible with the transition maps  jiπ : Sj  Si.   

If (S, π ) is an inverse system, let iπ  : iSlim Si be the canonical 

projection sending (si)i∈I  to  si. Then  iπ  = jiπ o jπ  for every i ≤ j. 
 A surjective inverse system is an inverse system  (S, π ) whose 

transition maps   jiπ : Sj  Si   are surjective. 
Definition 2. Let I  be a directed poset (partially ordered set).          

A subset  J  of  I  is said to be cofinal in  I  if for each  i ∈  I  there 
exists   j ∈  J  such that   i ≤ j.  

Define a sequence of ideals of a Lie algebra L, called the derived 
series,by L(0)= L, L(1) = [L, L], L(2) = [L(1), L(1) ], …, L(i) = [L(i-1), L(i-1)]. 

 
Definition 3. A Lie algebra L is called solvable if L(n) = 0 for some 

n in N. 
 
Let S be a maximal solvable ideal of a Lie algebra  L. If  I  is any 

other solvable ideal of  L, then  I + S = S, or  I ⊂  S.  Thus  L  has a 
unique maximal solvable ideal which is called the radical of L and it is 
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denoted by  Rad L. 
 
Definition4.A Lie algebra L is called semi-simple if its radical is 0.    
 
Define a sequence of ideals of a Lie algebra L, called the 

descending central series, by 
L0 = L, L1  = [L, L], L2 = [L, L1 ], … , Li =   [L, Li-1 ]. 

 
Definition 5. A Lie algebra L is called nilpotent if  Ln = 0  for some   

n in N. 
 
Definition 6. A Lie algebra  L  is abelian if and only if   [L, L] = 0. 
 
Definition 7. A Lie algebra is called prosemisimple if it is the 

inverse limit of finite dimensional semi-simple Lie algebras. 
 
Definition 8. A Lie algebra is called pro-solvable if it is the inverse 

limit of finite dimensional solvable Lie algebras. 
 

3. PRELIMINARIES 
Proposition 1. If  X = iXlim  , i ∈ I    is an inverse limit of sets over 

a directed poset  I  and  J  is a cofinal subset of   I, then a compatible 
family {xj}j∈J ∈ jXlim  can be completed to a compatible family 
{xi}i∈ I ∈ iXlim  in a unique way. 

Proof. Given a compatible family {xj}j∈ J ∈ jXlim , then because J 
is cofinal in I, for every i in I there exists j in J such that j ≥ i,               
let xi = jiπ (xj). This is well defined because, if j1 and j2 are both 
greater than  i, and   xj1, xj2   are components of a compatible family 
{xj}j∈ J, then there exists j3 in J  such that   j3 ≥ j1   and   j3 ≥ j2.  So   
π j3, j1, π j3,j2     exist.  

Moreover, π j1,i(xj1) = π j2,i(xj2) = xi     because  
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 xi = π j3,i(xj3) = π j1,i (π j3,j1(xj3)) = π j1,i(xj1)     and  
 xi = π j3,i(xj3) = π j2,i (π j3,j2(xj3)) = π j2,i(xj2).  
Thus       {xi}i∈ I ∈ iXlim . 
This implies that   iXlim (i ∈  I)   is bijective to    jXlim (j ∈  J). 
 
Theorem 1. [1, p.65] Let  L  be a finite dimensional Lie algebra. 

Then:  
 (i) L = R ⊕  S, where  R  is the radical of  L  and  S  is a Levi        

subalgebra of  L.  
(ii) For a subalgebra  S  of  L  to be a Levi subalgebra, it is 

necessary  and sufficient that  S  is a maximal semisimple subalgebra 
of  L. 

(iii) Every ideal A of  L  can be written as  A =( A ∩ R) ⊕ ( A ∩ S). 
 
Theorem 2. [3, p.12] Let L be a finite dimensional Lie algebra. 

Then 
(i) If L is nilpotent, then so are all subalgebras and homomorphic 

images of L. 
(ii) L is nilpotent if and only if all elements of L are ad-nilpotent. 
(iii) If A  is a nilpotent ideal of  L  such that   L/A   is nilpotent, then  

L   itself is nilpotent. 
 
Proposition 2. Let I be a solvable ideal of a finite dimensional Lie 

algebra  L  such that  L/I  is semisimple. Then  I  is the radical of  L. 
 
Proof. Because  I  is solvable,  I + Rad L   is a solvable ideal of L. 

Thus   (I + Rad L)/I is a solvable ideal of  L/I, but   L/I   is semisimple, 
therefore     (I + Rad L)/I   is 0,   i.e.   I + Rad L = I   and   I = Rad L.  

 
Proposition 3. Let   f: L  L'    be a surjective homomorphism of 

finite dimensional Lie algebras. Then    f (Rad L) = Rad L'. 
 
Proof. Let    f ': L/Rad L     L'/f (Rad L)   be given by  
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f '(l + Rad L) = f(l) + f(Rad L), then  f '  is a well defined surjective 
Lie algebra homomorphism.     (L/Rad L)/Ker f ' ≅  L'/f(Rad L), but   
(L/Rad L)/Ker f '        is semisimple because       L/Rad L   is 
semisimple, thus   L'/f (Rad L)   is semisimple,   and by Proposition 2,     
f(Rad L) = Rad L'. 

 
Proposition 4. Let   f: L  L'    be a surjective homomorphism of 

finite dimensional Lie algebras, and let S  be a maximal semisimple 
Lie subalgebra of L. Then  f (S)  is a maximal semisimple Lie 
subalgebra of   L'. 

 
Proof. L = Rad L ⊕  S,  L' = f(L) = f(Rad L) + f(S) = Rad L' + f(S). 
But Rad L' is a solvable ideal of L' and f(S) is a semisimple 

subalgebra of   L', thus     Rad L' ∩ f(S) is {0}.  
Thus   L' = Rad L' ⊕  f(S)    and by Theorem 1   f(S)    is a maximal 

semisimple Lie subalgebra of   L'.  
 
Lemma 1. Let   f: L  L'    be a surjective homomorphism of finite 

dimensional Lie algebras. If S' is a maximal semisimple Lie 
subalgebra of L', then there exists a maximal semisimple Lie 
subalgebra   S  of   L   such that   f(S) = S'. 

 

Proof. According to Theorem 1, f 
-1

(S') can be written as                     
f 

-1
(S') = Rad [f 

-1
(S')] ⊕  S,   where S is a maximal semisimple Lie 

subalgebra of   f 
-1

(S'). Let M be a maximal semisimple Lie subalgebra 
of L containing S, i.e. S ⊂  M, then f(S) ⊂ f(M),  but   f(S) = S', 
because f (Rad [f 

–1
 (S’)]) = 0. Thus S’ ⊂  f(M), but  S’  is a maximal 

semisimple Lie subalgebra of L’, hence f(M) = S’, i.e. M ⊂  f –1(S’).  
But S is a maximal semisimple Lie algebra of f –1(S’) therefore M = 
S.  
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4. levi-malcev decomposition of the inverse limit of 
finite dimensional lie algebras 

Theorem 3.  Let L = nLlim ,(n ∈ N), be the inverse limit of a 
surjective inverse system of finite dimensional Lie algebras over K.  

Then L = R ⊕  S, where R = nRlim     and     S = nSlim    for a 
compatible family of Levi subalgebras   Sn  of   Ln. 

 
Proof. Let L0 = R0 ⊕  S0  be a Levi decomposition of    L0.    By 

Lemma 1, there exists a maximal semisimple Lie algebra  S1 of  L1  
such that π 1,0(S1) = S0 . Similarly, there exists a maximal semisimple 
Lie algebra S2  of   L2  such that  π 2,1(S2) = S1 , and so on we 
construct a compatible family of  Sn. Also, the   Rn   form a compatible 
subinverse system of   L  since the radical is unique.  

Let R = nRlim  and S = nSlim . Then,  L = R ⊕  S: for an arbitrary 
element  l  in L,    l = (ln) n∈N =   (rn + sn), where      rn ∈ Rn , sn ∈ Sn . 
If  ln+1 = rn+1 + s n+1,  ln = rn + sn   and   l n-1 = rn-1 + sn-1 ,   where s n-1,  sn  
and   s n+1   belong respectively to the elements   Sn-1 ,   Sn  and   Sn+1 of 
the compatible family   {Sn}. Then, because the  ln  are compatible,   

 π n+1,n-1(ln+1) = ln-1,  thus     π n+1,n-1(rn+1 + sn+1) = rn-1 + sn-1,   i.e.,      
 π n+1,n-1(rn+1)-rn-1=sn-1 -π  n+1,n-1(sn+1) = 0 , since Rn-1 ∩  Sn-1 = {0}.  
Thus,      π n+1,n-1(rn+1) = rn-1       and               π  n+1,n-1(sn+1) = sn-1.  
Thus the   rn   and the   sn   are compatible.  
Hence    l = (rn) + (sn)∈  R + S. Also R∩ S = {0}: Suppose there 

exists an element a = (an) in R∩ S. Then, for every n in N,                    
an ∈  Rn ∩  Sn, but Rn ∩  Sn  =  {0}, thus   an  = 0 for every n in N,  and 
consequently  a = (an ) = (0).   

Hence     R∩ S = {0}   and    L = R ⊕  S.  
We will call S a prolevi subalgebra of  L  and R  the proradical of   L. 
 
From the above theorem the following results follow directly: 
Proposition 5. Let L = R ⊕  S be the inverse limit of a surjective 

inverse system of finite dimensional Lie algebras over K, where R is 
the proradical of L and S is a prolevi subalgebra of L. Then: 



Damascus University Journal for BASIC SCIENCES Vol. 22, No 1, 2006 

 81 

      (i)R is the largest prosolvable ideal of L. 
(ii) S is a maximal prosemisimple subalgebra of L. 
Corollary 1. Let A be a closed ideal of a pro-finite dimensional Lie 

algebra  L = R ⊕  S. Then     A = (A ∩R) ⊕ ( A ∩ S). 
Proof. Let Sn, Rn and An be the nth projection of S, R and A 

respectively. Then, from Theorem 1, we know that 
An = ( An ∩  Rn )⊕  (An ∩  Sn.)   
Also because A is closed, A = nAlim . Thus,     
A= lim [(An∩Rn )⊕ ( An ∩  Sn )].    For an arbitrary element a in A,  
a = (an)n∈N = (rn + sn), where  rn ∈  An ∩  Rn  and   sn ∈  An ∩  Sn.     

If   an+1 = rn+1 + sn+1, an = rn + sn  and   an-1 = rn-1 + sn-1,   where   sn+1,   
sn and sn-1 belong respectively to the elements An-1 ∩  Sn-1, An ∩  Sn 
and An+1 ∩  Sn+1 of the compatible family {An ∩  Sn }. Then, because 
the an are compatible,  
π n+1,n-1(an+1) = an-1,  thus    π n+1,n-1(rn+1 + sn+1) = rn-1 + sn-1,      i.e.,  
π n+1,n-1(rn+1) + π n+1,n-1(sn+1)   =   rn-1 + sn-1, 
π n+1,n-1(rn+1) - rn-1   =  sn-1 - π n+1,n-1(sn+1)  =  0.  
Thus, π n+1,n-1(rn+1) = rn-1   and   π n+1,n-1(sn+1) = sn-1.   Thus the   rn  

and the   sn   are compatible.  Hence   a = (rn) + (sn). 
Thus, A= lim [(An∩Rn)⊕ (An ∩ Sn)]= lim (An∩ Rn)⊕ lim (An∩ Sn).  
But (An ∩  Rn)⊂  An      and      (An ∩  Rn )⊂  Rn,     for all n,    thus  
 lim (An ∩Rn)⊂  lim An = A and  lim (An ∩  Rn )⊂ lim Rn = R, 

hence lim (An ∩  Rn )⊂  (A ∩  R). 
 Similarly,  lim (An ∩  Sn )⊂ ( A ∩  S).      
Thus, A = lim (An ∩  Rn) ⊕  lim (An ∩  Sn) ⊂  (A∩R)⊕ (A ∩  S),   
and consequently A = (A ∩  R ) ⊕  (A ∩ S). 
Remark 1. Let L = lim Li, i ∈I, be the inverse limit of a surjective 

inverse system of finite dimensional Lie algebras over K, where I is a 
countable set with directed upwards partial ordering. Then, if I has a 
maximum element M, we get L ≅  LM. Otherwise, we can construct a 
cofinal subset J of I such that J ≅  N, i.e. the bijection between J and N 
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preserves the order. This is done as follows: Suppose I = (a1, a2,...). 
Let α1 = a1. Choose α2 to be Max(a2, α 1), .., α n to be Max(an, α n-1). 

Where:  

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥≥

≥
≥

=

jkik

jik

ijj

jii

ji

aaandaaWhere

comparablenotareaandaifa
aaifa
aaifa

aaMax
.;

;
;

),(  

 
ak   exists since   I   is directed upwards. 
 Let    J = {α 1, α 2, …, α n,....}.  
Then  J  is a cofinal subset of  I, and   J ≅  N.  
Thus,     L = lim Li, (i ∈  I) ≅  lim Ln, (n ∈  N). 
From the above Remark and using Proposition 1 and Theorem 3 we 

get the following result: 
Theorem 4. Let L = lim Li,(i∈I), be the inverse limit of a surjective 

inverse system of finite dimensional Lie algebras over K, where I is a 
countable set with directed upwards partial ordering, then L= R ⊕  S, 
where R= lim Ri, and S= lim Si   for a compatible family of  Levi 
subalgebras   Si   of   Li. 
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5. on the cartesian product of finite 
dimensional nilpotent lie algebras 

Lemma 2. Let ∏
∈

=
Ni

iNL  ,where the Ni are finite dimensional 

nilpotent Lie algebras. Suppose that  J  is an ideal of  L  such that  L/J 
is  finite dimensional and  J  contains every  Ni ,  and let  l = (bi)i∈N  

be an arbitrary element in  L \ (⊕
∈Ni

N i) . Then there exists a sequence 

of non-zero elements   (θi)i∈N    of   K   such that   (θi bi)i∈N      ∈  J. 
Proof. Let S be the subspace of L spanned by the vectors (xk)k∈N   

with  xk = ((1+i)k bi)i∈N  .  Then : 
1. the family   (xk)k∈N    is linearly independent. 

For if  ∑
∈Tk

λkxk = 0 and T is a finite subset of N then we have 

(P(i)bi)i∈N  = 0    with     P(j) = ∑
∈Tk

λk(j+1)k    and from the fact that  

{i : bi ≠ 0}  is infinite  (l ⊕∉ Ni)  we conclude that  P  has infinitely 

many zeros, that is P = 0  i.e. for every k,   λk = 0.  
2. J  ∩  S ≠ {0}: 
By 1 above, we have   dim S = + ∞  so the assumptions that  
(dim L/J ) <  + ∞    implies that      J ∩  S  ≠ {0}. 
3. Conclusion: 

Let a be any element of   (J ∩  S) \ {0}. Then    a = ∑
∈Vk

µkxk  and 

V is a finite subset of N and if we put   Q(x) = ∑
∈Vk

µk (x+1)k
 , we see 

that   a = (Q(i)bi) i∈N   . 
Since Q is a non-zero polynomial it has a finite number of zeros;  
Let   F = {i ∈ N : Q(i) = 0}   and let us define the sequence (θi)i∈N  

as follows:    θi= Q(i)   if   Q(i)  ≠  0    and     θi= 1  if   Q(i)  = 0. 
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In this case    [ (θi bi)i∈N      - a  ]∈⊕
∈Fi

 Ni   ⊂  J   and because  a ∈  J 

we conclude that     (θi bi)i∈N     ∈  J. 
Lemma 3. Let ∏

∈

=
Ni

iNL , where the Ni are finite dimensional 

nilpotent Lie algebras. If J is an ideal of L such that  L/J is  finite 
dimensional and J contains every Ni ,  then  L/J  is abelian.  

Proof. We shall prove that    [L, L] ⊂  J. For an arbitrary element 
[l, l'] in [L, L] we have [l, l']= [(bi),(bi')],   where  

(bi) = (b0, b1, b2,…); bi ∈  Ni;  and     (b'i) = (b'0, b'1, b'2 ,…);   bi' ∈  
Ni.  If only finitely many    bi   are non-zero, then    (bi) ∈  ⊕Ni⊂  J.        
But   J  is an ideal of    L, thus  [l, l'] = [(bi), (bi')] ∈  J.  

 Otherwise, by Lemma 2 there exists a sequence of non-zero 
elements (θi)i∈N    of   K    such that     (θi bi)i∈N      ∈  J. 

Thus [(θ ibi), (
i

ib
θ

'

)] ∈J. But  [(θ ibi), (
i

ib
θ

'

)]  =  [(bi), (b'i)] = [l, l']. 

Thus [l,l'] ∈  J. Hence for an arbitrary element   x   in   [L, L],  x   
which is a finite combination of   [l, l']    belongs to   J. This being true 
for every   x   in   [L, L] .  

Therefore  [L , L] ⊂  J, and hence   L/J   is abelian.  
Theorem 5. Let ∏

∈

=
Ni

iNL  ,where the Ni are finite dimensional 

nilpotent Lie algebras. If A is an ideal of L such that  L/A is  finite 
dimensional, then  L/A  is nilpotent. 

Proof. Suppose first that A contains every Ni,  then by the above 
Lemma, L/A is abelian and thus nilpotent. Otherwise, let V = ⊕Ni.     
Then A+V is an ideal of  L  that contains every  Ni,  and by Lemma 3,   
[L, L] ⊂  A + V. 

 Thus L/(A +V) is abelian. But  (L/A)/[(A + V)/A] ≈  L/(A + V)                  
and (A+V)/A   is nilpotent since  (A + V)/A ≈  V/(A ∩  V) which is 
nilpotent since it is of finite dimension and every element of V is ad-
nilpotent. Thus, by Theorem 2, L/A   is nilpotent as desired. 
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