
Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

9

Speeding Up Ontology-Based Free-Form
Service Request Recognition

M. J. Al-Muhammed
Department of Mathematics, Faculty of Science, Damascus University, Syria

Received 07/09/2010
Accepted 07/03/2011

ABSTRACT

We offered, in a previous paper, an ontology-based approach to recognize
constraints in free-form service requests and provide services for users. Our
system handles a service request by finding, from among many ontologies, the
domain ontology that best matches the request and then uses the matched
ontology to generate the service request constraints. Although our system is
powerful in recognizing constraints and therefore servicing requests, the
recognition process is a bottleneck due to the number of the tested ontologies
and the amount of computations involved. This paper provides a novel
approach to speed up the recognition process by (1) using ontology indexing
and (2) excluding inapplicable regular expressions early in the process and thus
reducing the number of applied regular expressions. Our experiments show
that our techniques are effective in significantly reducing the amount of
computations and therefore speeding up the recognition process.

Key words: Ontology-based recognition, Free-form service

requests, Process efficiency, Ontology indexing,
Light-weight process, Heavy-weight process

Al-Muhammed - Speeding Up Ontology-Based Free-Form Service Request…

 10

 ف طلبات الخدمة المعتمدة على الأنتولوجيتسريع تعرّ

 محمد جاسم المحمد
 سورية– جامعة دمشق – كلية العلوم –قسم الرياضيات

 07/09/2010تاريخ الإيداع
07/03/2011 قبل للنشر في

ملخّصال
ج اسـتخرا :من الأمثلة على هذا الاسـتخدام نـذكر . استخدم الباحثون الأنتولوجي لأغراض مختلفة

 بـين الكائنـات الذكيـة علـى الإنترنـت الاتصالتسهيل و، Data Extractionمعلومات من الإنترنت
Agent Communication والخدمات الحاسوبية ،Services .من الأهداف الأساسية لعلوم الحاسبات :

 وذلك من خلال وصف ؛تمكين المستخدمين العاديين من الحصول على خدمات من الحاسوب بسهولة .1
 .الخدمة المطلوبة فقط

 . الخدمات من تطوير هذه الخدمات بسرعة) مبرمجي(تمكين مطوري .2
 سابقة بتطوير نظام معتمد على الأنتولوجي يلبي هذين المتطلبين ويوفر العديـد مـن بحوثقمنا في

ت البيـع عمليا ، إقامة إجتماعات،)المحامين، الأطباء، إلخ (أخذ مواعيد من مخدمين : الخدمات نذكر منها
. ، وغيرها كثيـر ...)شراء بطاقات طائرات، حجز مكان الإقامة، (والشراء على الوب، تحضيرات السفر

ومن ثـم) الإنكليزية(بلغة طبيعية فيها هذا النظام المستخدمين من توصيف الخدمات التي يرغبون يمكّن
ن مطوري الخدمـة مـن تطـوير يمكّو. تخديم المستخدم من ثم يقوم النظام بتوليد الخدمة المطلوبة آلياً و

 .خدمة جديدة من خلال توصيف الأنتولوجي المناسب لهذه الخدمة فقط دون كتابة أي برامج حاسوبية
على الرغم من قوة نظامنا الحاسوبي في توفيرالخدمات بسهولة للمستخدمين، هناك مشكلة كبيرة مع هذا

هذه العملية تحتاج إلى وقت طويل بسبب العدد . جي المناسبالنظام تتعلق بعملية مطابقة طلب خدمة مع الأنتولو
من ثم و. فرة وعملية المحاكمة المنطقية اللازمة لتحديد الأنتولوجي المناسب للخدمة االكبير للأنتولوجيات المتو

ياً بــ هذه المشكلة معروفة علم (فرة للنظام اتقل كفاءة النظام بشكل كبير عندما تزداد أعداد الأنتولوجيات المتو
Scalability Problem .(نستخدم في هذا الحل تقنيتين لتقليل الزمن . يقدم هذا البحث حلاً فعالاً لهذه المشكلة

 التقنيـة الأولـى وتـسمى فهرسـة الأنتولوجيـات . اللازم لمطابقة طلب الخدمة مع الأنتولـوجي المناسـب
)Ontology Indexing (وهدفها تقليل عدد التعابير النظامية)Regular Expression(فـي المستخدمة

في هذه التقنية يجري تطبيق التعابير النظاميـة المـشتركة بـين . أثناء مطابقة طلب الخدمة مع الأنتولوجيات
. الأنتولوجيات مرة واحدة بدلاً من تطبيقها عدداً من المرات مساوياً لعدد الأنتولوجيات التي تحوي هذه التعابير

 التعابير النظامية التي استبعادوهدفها) Two-Pass Process(ر الطوى المطابقة الثنائية التقنية الثانية وتسم
نعلم أنها غير قابلة للتطبيق على طلب الخدمة الحالي وبزمن أقل بكثير من الزمن اللازم للتطبق علـى كامـل

ل فعـال ويقـوم بتـسريع أثبتت التجارب التي أجريت أن الحل المطروح في هذا البحث هو ح . التعبير النظامي
يمكن تلخيص . مما يزيد من قدرة النظام على التعامل مع أي عدد من الأنتولوجيات ؛عملية المطابقة بشكل كبير

 :الآتية العلمية لهذا البحث بالنقاط الإسهامات
لتقليل عدد التعابير النظامية المطبقة) Ontology Indexing(استخدام تقنية فهرسة الأنتولوجيات .1

 . تقليل الزمن اللازم للمطابقةمن ثملى طلب خدمة معين وع
لاكتشاف التعابير النظامية غير القابلة (Two-Pass Process) استخدام عملية مطابقة ثنائية الطور .2

 . تفادي تطبيقها الكامل على طلب الخدمةمن ثمللتطبيق على طلب الخدمة مبكراً وبزمن أقل و
ات الخدمة المعتمدة على الأنتولوجي، طلبات الخدمـة ف طلب تعر: الكلمات المفتاحيـة

الموصفة بلغة طبيعية، كفاءة المعالجـة، فهرسـة الأنتولوجيـات،
 .معالجة خفيفة الطور، معالجة ثقيلة الطور

Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

11

1. Introduction
Researchers have used ontologies for many purposes [9, 10, 11,

12]. Examples include data extraction from the web, agent
communications, and services. We described in previous papers [1, 2,
3, 4] a system that allows users to specify service requests and invoke
services. This approach is strongly based on domain ontologies and
supports a particular type of service whose invocation involves
establishing an agreed-upon relationship in the ontology. Examples of
these types of services include scheduling appointments, setting up
meetings, selling and purchasing products, making travel
arrangements, and many more.1

To help readers understand the problem we address in this paper,
we give a brief description about the system. Figure 1 shows a
simplified overview of the system architecture. The system
automatically generates software for different types of services. The
underlying technique that enables this automatic generation of a
service is domain knowledge known as domain ontology (ontology
described in Section 2). One of the interesting characteristics of our
system is it both (1) enables service providers to deliver services by
creating only domain ontologies describing these service without
writing any line of code and (2) it allows users to invoke services
using free-form specification rather than having to first find services
and invoke them.

When the system receives a service request from a user, it handles
the request as follows. It first matches a service request with a set of
domain ontologies known to the system, and finds a domain ontology
that best matches the request through a process called the recognition
process. Secondly, it utilizes the best matching ontology to generate a
formalism, which is a predicate calculus formula. Thirdly, it satisfies
the constraints in the formalism and provides a solution for the
request. In cases where there are too many solutions that satisfy all the
constraints or no solution that satisfies all the constraints, the system
negotiates solutions with users to reach an agreement on a solution
(satisfies all the constraints) or a near solution (violates at least one
constraint). The details of these processes are not the focus of this
paper and can be found elsewhere [3].

1 We intend the word “service” to be thought of in accordance with its typical meaning⎯“an act of
assistance or benefit.” Technically, we define a very special type of service (as described herein). We do
not intend our services to be thought of in other technical ways such as registering services with a broker
so that they can be found by expressing their functionality in terms of inputs, outputs, and capabilities.

Al-Muhammed - Speeding Up Ontology-Based Free-Form Service Request…

 12

Figure 1. A simplified overview of the system

Unfortunately, as the number of registered ontologies increases, the
recognition process suffers from a scalability problem and is a
bottleneck. As pointed out in [1, 3], the recognition process is the
most difficult and time-intensive process due to the huge amount of
computations required to find a domain ontology that best matches the
request. This paper addresses this problem and proposes a novel
approach that highly reduces the amount of required computations and
thus speeds up the recognition process. Our approach uses two
techniques to achieve this goal. First, it uses ontology indexing to
factor out shared regular expressions among the domain ontologies.
Consequently, a regular expression contained in many ontologies is
applied once instead of as many times as the number of ontologies
containing this regular expression. Second, it uses a two-pass process
to exclude inapplicable long, time-consuming regular expressions
early in the recognition process.

To this end, the paper makes the following contributions. First, it
provides an ontology indexing technique to ensure that each regular

Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

13

expression is applied only once regardless of how many ontologies
contain this regular expression. Second, it discovers inapplicable
regular expressions with significantly less time than applying full
regular expressions. Both techniques work synergistically with the
objective of reducing the time required by the recognition process.

We present our contributions as follows. Section 2 gives a brief
introduction to the notion of ontology and data frames. Section 3
briefly describes the recognition process. Section 4 presents our new
way to improve the time complexity of the ontology recognition in
Subsections 4.1 and 4.2, and presents the results of our evaluation of
the new techniques in Subsection 4.3. We conclude in Section 5 and
give directions for future work.

2. Domain Ontology
A domain ontology encodes domain knowledge through defining

among other things a set of concepts and relationships among these
concepts. In the context of our system, a domain ontology specifies
precisely the information required to provide a specific service in the
domain. For instance, to schedule an appointment with a service
provider, say a dermatologist, you would generally need information
about the appointment such as the date and the time of the
appointment along with the address of the service provider. As a
consequence, the domain ontology for scheduling appointments must
define a set of concepts including: Time, Date, and Address. (More on
ontologies can be found in [1, 2, 3]).

Distance
 internal representation: real

 text representation: \d+(\.\d+)?|(\.\d+)
 Right-context: miles?|kilometers?|...

 DistanceLessThanOrEqual(d1: Distance, d2: Distance)
 returns (Boolean)
 context keywords/phrases: (within|...)\s+{d2}|...
…

Figure 2. A data frame for the concept Distance. Part of the data frame is
shaded because of its relevancy to our discussion.

Each concept in a domain ontology has an associated data frame
[8], which describes instances for the concept. Data frames capture the

Al-Muhammed - Speeding Up Ontology-Based Free-Form Service Request…

 14

information about concept instances in terms of regular expressions
and other descriptors. Figure 2 shows a data frame for the concept
Distance. For the purpose of this paper, we focus only on the
highlighted part of the data frame in Figure 2. A regular expression
has a structure composed of three slots: left context, text
representation, and right context, which we call LTR-structure.
Generally speaking the text representation captures the actual
instances of a concept whereas the left and right contexts provide
information to more precisely describe the instances. Any of the left
context or right context can be an empty string (null). For example, in
Figure 2, the LTR-structure for the regular expression that describes
instances of the concept Distance is: the left context is null, text
representation is “\d+(\.\d+)?|(\.\d+)”, and the right context is
“miles?|kilometers?|...”. (The ellipses “...” indicate that there may be
more contextual keywords.)

To identify instances of a concept in a service request, the system
forms a full regular expression (also called an instance recognizer)
using the information in the data frame associated with the concept. In
particular, the system forms a full regular expression describing the
instances of a concept from a data frame by concatenating the three
parts left context, text representation, and right context respectively.
For instance, the full regular expression that can be formed to
recognize the instances of the concept Distance in Figure 2 is
“\d+(\.\d+)?|(\.\d+)\s*(miles?|kilometers?)”.2 Note this regular
expression identifies the appearance of distance instances such as “5
miles” or “8 kilometers” in a service request to which it is applied.

3. The Recognition Process
The ontology recognition process selects, from among potentially

many domain ontologies registered with our system, the (correct)
domain ontology for a service request. The recognition process takes
the set of available domain ontologies and a service request as input,
and returns the domain ontology that best matches with the service
request as output. The recognition process works in two steps. First,
for each domain ontology, the recognition process applies full regular
expressions formed from the data frames to the service request and
marks every concept that matches a substring in the service request.

2 The creation of full regular expressions from the LTR-structure is straightforward and is done
automatically by the system. The system pulls the left context, text representation, and right context from
the ontology and concatenates them in the same order.

Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

15

Second, the process computes a rank value for each domain ontology
with respect to the service request and then selects the domain
ontology with the highest rank value.

Details about how the process marks concepts of an ontology and
selects the best matching one is beyond the scope of this paper and
can be found elsewhere [2, 3, 4]. What is important for this paper is
how the recognition process works. As discussed above, the
recognition process applies all the regular expressions in the currently
processed ontology regardless whether these regular expressions from
previously applied ontologies have been already applied. This means
that a regular expression, say ri, contained in, say n ontologies, is
applied n times. In addition, there is no mechanism that helps identify
whether a full regular expression is applicable before applying this
regular expression. It appears in both cases that the recognition
process performs unnecessary computations.

We address this problem in Section 4 and show how our techniques
speed up the recognition process.

4. Improving Time Complexity for Recognition Process
According to the insights from Section 3, it appears that speeding

up the recognition process, requires reduction in the amount of
computations required by the recognition process. To reduce the
amount of computations, we need to discover the redundant
computations and eliminate them. As discussed in Section 3, there are
two main problems that negatively affect the performance of the
recognition process. First, the recognition process applies a regular
expression as many times as the number of ontologies containing the
regular expression. Second the recognition process applies full regular
expressions although these regular expressions may not be applicable.

In Subsection 4.1, we introduce a simple, but powerful, technique
called ontology indexing to factor out regular expressions and avoid
applying them more than one time. In Subsection 4.2 we develop two-
way processing to discover and exclude inapplicable regular
expressions

4.1. Ontology Indexing
First, before trying any ontology, the system loads available

ontologies and creates an ontology index for them. The ontology
index is a data structure similar to the one in Figure 3. Each entry in
the structure has a key, which is a regular expression; and a value,

Al-Muhammed - Speeding Up Ontology-Based Free-Form Service Request…

 16

which is a set of one or more ontologies containing this regular
expression. For instance, in Figure 3, the regular expression Regular
expression1 is a key corresponding to the value Ontology 1, ontology
3, ontology 100. The ontology index is built once at system
configuration time. When a new ontology is registered with our
system, the system inserts the newly added ontology to the index.
Regular Expressions Ontologies to which these regular expressions belong
Regular expression1 → Ontology 1, ontology 3, ontology 100
Regular expression2 → Ontology 3, ontology 10, ontology 30
. .
. .
Regular expressionn → Ontology 1, ontology 50, ontology 70, ontology 120, …

Figure 3. An ontology index.

The system currently uses a semi-automatic way to create the
ontology index. It automatically populates the index by extracting the
regular expressions from each ontology. If a regular expression is
contained in more than one ontology, the system lists all theses
ontologies containing this regular expression as a value for the regular
expression. For instance, as shown in Figure 3, Regular expression1
belongs to ontologies 1, 3, 100 and hence the system inserts these
ontologies as a value corresponding to this regular expression. With
this index, a regular expression, say regular expressionn, which
belongs to four different ontologies, is applied only once rather than
four times as performed in the previous process.

Determining whether two or more regular expressions are
equivalent is currently based on the string matching procedure. This of
course is prone to matching errors because equivalent regular
expressions can be written in different ways; a problem that string
matching cannot discover. Hence, we likely end up enumerating the
same regular expression many times in the index; the thing we should
avoid. Therefore, after the system automatically populates the
ontology index, we manually examine the index for potential errors.

Before leaving this section, we point out a situation in which each
ontology contains different regular expressions than the others (i.e. no
regular expression shared among ontologies). In this case, the
ontology index gives apparently no time improvement.
Philosophically, this cannot happen in practice, however, as domains
do have common information and likewise do ontologies. In fact, our
experience shows that for even moderate applications there is always a

Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

17

significant number of regular expressions shared between ontologies
representing the domains of these applications.

4.2. Two-Pass Process: Inapplicable Regular Expression Exclusion
Applying regular expressions to documents with the objective of

finding matches is time consuming. It has been shown in [7] that the
time for applying regular expressions greatly increases with both the
length of these regular expressions and length of a service request.3 As
such, we should avoid applying long regular expressions if there is a
way to discover in advance that they do not match anything in the text.

Our strategy to avoid applying inapplicable regular expressions is
based on performing a two-pass process. The first pass is called light-
weight process in which we exploit the LTR-structure of a regular
expression. Specifically, we apply either left context or right context
of a regular expression to a service request. If one of the contexts (left
or right) fails to match with a substring in the service request, we
exclude the whole regular expression to which this context belongs
from the following process since we know that the full regular
expression will be inapplicable. Since the time required for applying
regular expressions significantly increases with their lengths and the
contexts are far shorter than the full regular expression, the processing
time most likely decreases. The second pass, which we call heavy-
weight process, applies full regular expressions to the service request.
The idea is to create the full regular expressions, which are formed
from regular expressions that have not been excluded in the light-
weight process. This way we apply only full regular expressions that
are likely to match as opposed to arbitrarily applying all of them.

4.3. Performance Analysis
We have conducted many experiments to validate our techniques

for speeding up the ontology recognition process. We tried 20
different service requests. The average length of our requests is 130
characters.4 These requests cover the domains of the five ontologies
that we used in our experiments. The domain ontologies include
scheduling appointments, renting apartments, scheduling meeting,
purchasing cars, and purchasing electronic devices. Every ontology

3 The length of a regular expression (or a service request) is the number of characters and the special
symbols included in the regular expression.
4 For experimental purposes, we opened our system for people to use for 6 months. The log information
showed that most of the requests are of average of around 130 characters.

Al-Muhammed - Speeding Up Ontology-Based Free-Form Service Request…

 18

includes roughly 30 regular expressions on average. (In real-world
applications, ontologies may include more.)

In the first experiment, we used five ontologies. We gradually
increased the length of the service request by merging 2, 5, 10, 15, and
finally 20 service requests. The objective here is to study the
performance as the length of a service request increases (consequently
increasing the number of matches). The timing starts when the
recognition process is called and ends when this process successfully
returns.

Table 1 shows the time required for processing the different input
sizes and Figure 4 depicts graphically the required time. Generally
speaking the time numbers show that our new techniques performed
remarkably better than the old technique. Our new techniques have
significantly reduced the processing time. As seen in Table 1
(consequently also in Figure 4), the time required for processing
service requests is far less using the new techniques. For instance,
while the old technique needs 920 milliseconds to process an input of
two service requests, our new techniques need only 183 milliseconds
for processing the same number of requests; almost 5 times less. On
other end of the spectrum, Table 1 (Figure 4) shows that the old
techniques need 10100 milliseconds to process 20 service requests,
while our new techniques need only 1860 milliseconds to process the
20 service requests; again almost 8 times less.

It is probably worth noting also that for 2 requests the new
techniques were 5 times less while for 20 service requests our
techniques were 8 times less. This probably indicates a serious
problem with the old technique. Namely, the larger the request (in
terms of number of characters) to be processed is the longer the
required time becomes. In any case, we believe that the time gains in
our techniques are easily justifiable.

Table 1. The processing time for varying numbers of requests. The time

measurement starts when the system calls the recognition process
and ends when the recognition process successfully returns.

Number of Requests Time Old (in milliseconds) Time New (in milliseconds)
2 920 183
5 2305 324

10 2905 677
15 6000 918
20 10100 1860

Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

19

Figure 4. Time complexity for processing services requests in the old process

(Time Old) and the new techniques (Time New).

Specifically our techniques apply a smaller number of regular
expressions due to the ontology indexing and exclude, early in the
process, many inapplicable regular expressions due to two pass
processing technique.

For the sake of further discussing the performance of the new
techniques, we conducted another experiment. In this experiment, we
used an input of 10 service requests while gradually incrementing the
number of ontologies by one every time we run the recognition
process. Our objective here is to examine the processing time changes
as the number of ontologies gradually increases. The time figures are
shown in Table 2 and illustrated graphically in Figure 5.

Table 2. The processing time as the number of ontologies increases.
Number of Ontologies Time Old (in milliseconds) Time New (in milliseconds)

1 453 398
2 819 422
3 1346 461
4 2000 499
5 2898 668

Al-Muhammed - Speeding Up Ontology-Based Free-Form Service Request…

 20

Figure 5. Time complexity for processing services requests in the old process

(Time Old) and the new techniques (Time New).

As it can be seen, the old techniques and the new techniques show
different time-increase patterns. In the old techniques, the processing
time sharply increases as the number of ontologies gradually
increments. In contrast, in the new techniques, the processing time
slowly increases as the number of ontologies gradually increments.

Before leaving this section, we make the following point. Despite
the fact that our experiments by no means are enough for proving the
superiority of our new techniques, the time figures indicate better
performance than the old techniques. Generally speaking, the ontology
indexing insures that no matter how many ontologies involved in the
recognition process, our new techniques will not apply more regular
expressions than the old techniques. Actually, in the worst case
scenario the old techniques and our new techniques will apply the
same number of regular expressions. Additionally, it is likely that
some of the regular expressions will be excluded early in the
recognition process with less time through the light-weight process.
As such, we believe that there is clear evidence that our techniques
can significantly speed up the recognition process and the time
reduction will be even more significant as the number of ontologies
increases.

5. Conclusions and Future Work
We have proposed a new way to enhance the speed of the

recognition process. Experiments with our new techniques showed
that they improve the time complexity for the recognition process.
Thus, we believe that the time for servicing any request is much better
than before.

Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

21

We have two objectives for our future work. First, we should find
ways to determine whether two or more regular expressions are
equivalent. This helps us to automatically create the ontology index.
Knowing that two regular expressions are equivalent, however, is well
known to be a hard problem and it is a topic of our ongoing research.
Second, we want to conduct more experiments on the new techniques
before we integrate them into our service architecture.

We believe that it is possible to build ontologies to recognize
requests in Arabic. This also can be another objective to pursue in the
future work.

Acknowledgement

I appreciate Dr. James H. Matis in A&M University, Texas, USA, for his
valuable comments and suggestions that significantly improved this paper.

Al-Muhammed - Speeding Up Ontology-Based Free-Form Service Request…

 22

 REFERENCESالمراجع

1. Muhammed J. Al-Muhammed and David W. Embley. Resolving

Underconstrained and Overconstrained Systems of Conjunctive Constraints
for Service Requests. In Proceedings of the 18th International Conference on
Advanced Information Systems Engineering (CAiSE06), pages 223–238,
Luxembourg, June 2006.

2. Muhammed J. Al-Muhammed and David W. Embley. Ontology-Based
Constraint Recognition for Free-Form Service Requests. In Proceedings of
the 23rd International Conference on Data Engineering (ICDE 2007), pages
366–375, Istanbul, Turkey, April 2007.

3. Muhammed J. Al-Muhammed, David W. Embley, and Stephen W. Liddle.
Conceptual Model Based Semantic Web Services. In Proceedings of the 24th
International Conference on Conceptual Modeling (ER 2005), pages 288–303,
Klagenfurt, Austria, October 2005.

4. Muhammed J. Al-Muhammed, David W. Embley, Stephen W. Liddle, and
Yuri A. Tijerino. Bringing Web Principles to Services: Ontology-Based Web
Services. In Proceedings of the 4th International Workshop on Semantic Web
for Services and Processes (SWSP 2007), pages 73–80, Salt Lack City, Utah,
USA, July 2007

5. Yuri. Tijerino, Muhammed J. Al-Muhammed, and David W. Embley.
Toward a Flexible Human-Agent Collaboration Framework with Mediating
Domain Ontologies for the Semantic Web. In Proceedings of ISWC-04
Workshop on Meaning Coordination and Negotiation(MCN-04), pages 131–
42, Hiroshima, Japan, November 2004.

6. Muhammed J. Al-Muhammed and David W. Embley. Towards Enabling
Communication among Independent Agents in the Semantic Web. In
Proceedings of the 3rd International Workshop on Information Systems
Technology and their Applications, Salt Lake City, Utah, USA, July 2004.

7. R. Sidhu and V. K. Prasanna. Fast Regular Expression Matching Using
FPGAs. In Proceedings of the the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2001), pages 227–
238,Washington, DC, USA, 2001. IEEE Computer Society.

8. D. W. Embley. Programming with Data Frames for Everyday Items. In D.
Medley and E. Marie, editors, Proceedings of AFIPS Conference, pages 301–
305, Anheim, California, May 1980

9. D.W. Embley, S.W. Liddle, D. Lonsdale, G. Nagy, Y. Tijerino and et al.
Conceptual-Model-Based Computational Alembic for a Web of Knowledge.
The Conceptual Modeling Conference (ER08), October, 2008.

10. S. Kubicki, E. Dubois, G. Halin, and A. Guerriero. Towards a Sustainable
Services Innovation in the Construction Sector. Proceedings of the 21st
International Conference on Advanced Information Systems Engineering,
pages: 319-338, Amsterdam, Netherlands. 2009.

Damascus University Journal for BASIC SCIENCES Vol. 27, No 2, 2011

23

11. M. Sabesan and T. Risch. Adaptive Parallelization of Queries over

Dependent Web Service Calls. Proceedings of the 24rd International
Conference on Data Engineering (ICDE 2007), pages 1725-1732, Shanghai,
China, March - April 2009.

12. C. Tao, Y. Ding, and D. Lonsdale. Automatic Creation of Web Services
from Extraction Ontologies. The First International Workshop on Semantic
Web Applications: Theory and Practice (SWAT 2006) in conjunction with
ER 2006, Tucson, Arizona, November 2006.

