On ($\Delta-, \nabla-$, I-) semipotent and the total of rings and modules

Hakmi Hamza
Department of Mathematics, Faculty of Sciences, Damascus University, Syria.

Received 18/04/2010
Accepted 27/09/2010

Abstract

Let M and N be two modules over a ring R. The object of this paper is the study of substructures of hom $_{R}(M, N)$ such as, radical, the singular, and co-singular ideal and the total. The new obtained results include necessary and sufficient conditions the total of a ring R to equal some ideal of R. The main result states that: (a) $\operatorname{Tot}[M, N]=\Delta[M, N]$ if and only if, $[M, N]$ is Δ-semipotent, for any $M, N \in \bmod -R$. (b) $\operatorname{Tot}[M, N]=\nabla[M, N]$ if and only if, $[M, N]$ is ∇ - semipotent, for any $M, N \in \bmod -R$. (c)If for a module $M \in \bmod -R, \Gamma(M)=\{0\}$ then $\operatorname{Tot}[M, N]=I[M, N]$ if and only if, $[M, N]$ is $I-$ semipotent, for any $N \in \bmod -R$. (d)If for a module $N \in \bmod -R, \Gamma(N)=\{0\}$ then $\operatorname{Tot}[M, N]=I[M, N]$ if and only if, $[M, N]$ is I - semipotent, for any $M \in \bmod -R$. Also, we characterize the modules V and W for which : (a) $\operatorname{Tot}[M, W]=\Delta[M, W]$ and $\operatorname{Tot}[V, N]=\Delta[V, N]$ for all $M, N \in \bmod -R$. (b) $\operatorname{Tot}[M, W]=\nabla[M, W]$ and $\operatorname{Tot}[V, N]=\nabla[V, N]$ for all $M, N \in \bmod -R$. (c) $\operatorname{Tot}[M, W]=I[M, W]$ and $\operatorname{Tot}[V, N]=I[V, N]$ for all $M, N \in \bmod -R$.

Key Words: ($\Delta-, \nabla-, \mathrm{I}-)$ Semipotent Rings, I_{0}-Rings, I_{0}-modules, The total, Jacobson radical, (co) singular ideal, Endomorphism rings, $\operatorname{hom}_{R}(M, N)$.

حط الحلةت والموحولات (- , , I, -)

مشبه الجلمة والتونال

حم ـزة حلكم مي
 قم الربلضيلت -كلية اللومٍ -جالمعة دثق-سوربة

> فلـل اللشرف الإياع 2010/04/18/09/27

المالخص

ليكن M, Nمودولينفوق الحفة R. لـ الغليةمن هنه الورقة هومتلبهة درلمة البغه الجزئي ـة

 يساوي مثاليآمعيناً لهه الحلفة. النتائع الرئيسيةفي هذا الهلل هي: ($\operatorname{Tot}[M, N]=\Delta[M, N]$. 1 . $M, N \in \bmod -R$ لي
 . $M, N \in \bmod -R$ لي
Tot $[M, N]=I[M, N] \quad$ 3. إناكلن لألـل الم ودطل عنما وشٌ عندا [Tot $[M, N]=I[M, N] \quad$ فإلن

-M, N $\cdot \bmod -R$ وذك لألِ أي T و $\operatorname{Cot}[V, N]=I[V, N]=I[M, W]$. 3
 I 0

1- Introduction

In this paper rings R are associative with identity unless otherwise indicated. All modules over a ring R unitary right modules. A submodule N of a module M is said to be small in M if $N+K \neq M$ for any proper submodule K of M, [4]. A submodule N of a module M is said to be large (essential) in M if $N \cap K \neq 0$ for any nonzero submodule K of M, [4]. If M is an R-module, the radical of M. denoted by $J(M)$, is defined to be the intersection of all maximal submodules of M. Also, $J(M)$ coincides with the sum of all small submodules of M. It my happen that M has no maximal submodules in which case $J(M)=M,[11]$. Thus, for a ring $R, J(R)$ is the Jacobson radical of R. For a submodule N of a module M, we use $N \subseteq \subseteq^{\oplus} M$ to mean that N is a direct summand of M, and we write $N \leq_{e} M$ and $N \ll M$ to indicate that N is a large, respectively small, submodule of M. If M_{R} is a module, we use the notation $E_{M}=\operatorname{End}_{R}(M)$ and we write:
$\Delta E_{M}=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Ker}(\alpha) \leq_{e} M\right\}, \nabla E_{M}=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \ll M\right\}$ and $I\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \subseteq J(M)\right\}$. It is will known that $\Delta E_{M}, \nabla E_{M}$ and $I\left(E_{M}\right)$ are ideals in E_{M}, [4]. It is easy to see that $\nabla E_{M} \subseteq I\left(E_{M}\right)$. If M_{R} and N_{R} are modules, we use $[M, N]=\operatorname{hom}_{R}(M, N)$. Thus $[M, N]$ is an $\left(E_{N}, E_{M}\right)$-bimodule. Our main concern is about the substructures of $\operatorname{hom}_{R}(M, N)$ and the $(\Delta-, \nabla-, \mathrm{I}-)$ semipotent of $\operatorname{hom}_{R}(M, N)$ (see [14]).

The total is a concept that was first introduced by F. Kasch 1982, 2002[5], and Y. Zhou [14] in 2009. In the study of the total, one of the interesting questions is when the total equals the Jacobson radical, the singular ideal and the co-singular ideal. In section, (2) it is proved that $\operatorname{Tot}(R)=I$ if and only if, R is an I-semipotent ring and the ideal I contains no nonzero idempotents. In section (3), it is proved that a quasi-projective module P is a semipotent if and only if, E_{P} is anIsemipotent ring. Interesting corollaries are obtained in this section. In particular, $\operatorname{Tot}[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.

In section (5), it is proved that [M, N] is Δ-semipotent if and only if, $\operatorname{Tot}[M, N]=\Delta[M, N]$. Also, in this section we characterize the modules V and W for which $\operatorname{Tot}[V, N]=\Delta[V, N]$ and $\operatorname{Tot}[M, W]=\Delta[M, W]$ for all $N, M \in \bmod -R$. The main result states that E_{V} is Δ-semipotent if and only if, $\operatorname{Tot}[V, N]=\Delta[V, N]$ for all $N \in \bmod -R$. Also, in this section it is proved that $[M, N]$ is ∇ - semipotent if and only if, $\operatorname{Tot}[M, N]=\nabla[M, N]$. Also, in this section, we characterize the modules V and W for which $\operatorname{Tot}[V, N]=\nabla[V, N]$ and $\quad \operatorname{Tot}[M, W]=\nabla[M, W]$ for all $M, N \in \bmod -R$. The main result states that E_{V} is ∇ - semipotent if and only if, $\operatorname{Tot}[V, N]=\nabla[V, N]$ for all $N \in \bmod -R$ if and only if, $\operatorname{Tot}[M, V]=\nabla[M, V]$ for all $M \in \bmod -R$.

2- (I -) Semipotent Rings

Recall that a ring R is a semipotent ring, also called I_{0}-ring by Nicholson [6], Hamza [3], if every principal left (resp. right) ideal not contained in $J(R)$ contains a nonzero idempotent. Examples of these rings include: (a) Exchange ring (see [8, Proposition 1.9], a ring R is exchange if for each $a \in R$ there exists $e^{2}=e \in R$ such that $a-e \in\left(a^{2}-a\right) R$). (b) Endomorphism rings of injective modules (see [6, Proposition 1.4]). (c) Endomorphism ring of regular modules in the sense Zelmanowitez [15], (see [3, Corollary 3.6]). Let N and L are submodules of a module $M_{R} . N$ is called a supplement of L in M if $N+L=M$ and $N \cap L$ is small in $N . N$ is said to be a supplement submodule of M if N is a supplement of some submodule of M.

Theorem 2.1. For any ring R the following conditions are equivalent:
(1) R is a semipotent ring.
(2) For any $a \in R$ there exists $0 \neq x \in R$ such that $R / a x R$ has a projective cover (as a right R-module).
(3) For any $a \in R$ there exists $0 \neq x \in R$ such that axR has a supplement in R_{R} (as a right R - module) which also has a supplement.

Proof. (1) \Rightarrow (2). Let $a \in R$, if $a \in J(R)$ then for any $x \in R$ the natural epimorphism $R \rightarrow R / a x R$ is a projective cover of $R / a x R$. Suppose $a \notin J(R)$ then $x=x a x$ for some $x \neq 0$. Let $e=a x$, then $e \neq 0$ is an idempotent in R and $a x R=e R$. Since $(1-e) R \cong R / a x R$ we have $R / a x R$ has a projective cover. (2) \Rightarrow (3) follows by [2, Proposition 1.4]. (3) \Rightarrow (1). Let $a \in R, a \notin J(R)$ then there exists $y \in R$ such that ayR has a supplement L which has also a supplement, by [2, Proposition 1.4], ayR has a supplement K which is a direct summand of R. Thus $R=a y R+K$ and by [2, Proposition 1.2] there exists a direct summand $e R$ of $R, e R \subseteq a y R \subseteq a R$, where e is a nonzero idempotent of R. Thus, R is a semipotent ring.

If T is a left ideal or right ideal of R, we say that idempotents lift module T if, whenever $a^{2}-a \in T, a \in R$ there exists $e^{2}=e \in R$ such that $e-a \in T$. Nicholson in [9] gave an example of a commutative semipotent ring where idempotents do not lift modulo $J(R)$, (See [9, Example 25]). Therefore, we extend this notion as follows:

Lemma 2.2. The following statements are equivalent for a right ideal T of R :
(1) If $a^{2}-a \in T$ there exists $e^{2}=e \in a R, e \notin T$.
(2) If $a^{2}-a \in T$ there exists $e^{2}=e \in R a, e \notin T$.

Proof. Suppose (1) holds. Then $e^{2}=e=a x$ for some $x \in R$ and $e \notin T$. We put $y=x a x$ then $f=y a$ is an idempotent of R and $f \in R a$ and $f \notin T$. (2) \Rightarrow (1) is analogous.

We say that a right ideal T of a ring R is weakly lifting, or that idempotents lift weakly modulo T, if the conditions in lemma 2.2 are satisfied. The definition for left ideals is analogous.

Proposition 2.3. For any ring R the following conditions are equivalent:
(1) R is a semipotent ring.
(2) $\bar{R}=R / J(R)$ is a semipotent ring and $J(R)$ is weakly lifting.

Proof. Suppose (1) holds. It is clear that $R / J(R)$ is a semipotent ring. Let $a^{2}-a \in J(R)$ then $a \in R, a \notin J(R)$ and $x=x a x$ for some
$0 \neq x \in R$. Thus, $e=a x \in a R$ and $0 \neq e^{2}=e \in R$. This shows that $J(R)$ is a weakly lifting. (2) $\Rightarrow(1)$. Let $a \in R, a \notin J(R)$, since \bar{R} is semipotent there exists $0 \neq \bar{f}^{2}=\bar{f} \in \bar{a} \bar{R}$ therefore $f=a r+x$ for some $r \in R, \quad x \in J(R)$. By our hypothesis there exists $0 \neq e^{2}=e \in f R$. Suppose $e=f y$ for some $y \in R$, then $e=a r y+x y$. On the other hand, since $x y \in J(R)$ then $1-x y$ has an inverse $b \in R$. Thus, $e b=a r y b+x y b, \quad e b e=a r y b e-(1-b) e$ and $e=$ earybe. Suppose $g=$ arybe then $0 \neq g^{2}=g \in a R$, so R is semipotent.

The semipotent rings are generalized as following:
Lemma 2.4. [9, Lemma 19]. The following conditions are equivalent for an ideal I of a ring R :
(1) If $T \not \subset I$ is a right (resp. left) ideal there exists $e^{2}=e \in T \backslash I$.
(2) If $a \notin I$ there exists $e^{2}=e \in a R \backslash I$ (resp. $e^{2}=e \in R a \backslash I$).
(3) If $a \notin I$ there exists $x \in R$ such that $x=x a x \notin I$.

Let R be a ring and I is an ideal of R, recall R is an I - semipotent [9], if the conditions in lemma 2.4, are satisfied.

Corollary 2.5. Let I be an ideal of a ring R. If R is I - semipotent then $J(R) \subseteq I$.

Proof. Suppose $J(R) \not \subset I$ there exists $a \in J(R), a \notin I$, so $x=x a x \notin I$ for some $x \in R$. Since $x \neq 0$ then $0 \neq(a x)^{2}=a x \in J(R)$ this is a contradiction.

Proposition 2.6. Let I be an ideal of a ring R. The following statements are equivalent:
(1) R is an I - semipotent ring.
(2) R / I is a semipotent ring with $J(R / I)=\overline{0}$ and I is weakly lifting.

Proof. Suppose (1) holds. First we prove that $J(R / I)=\overline{0}$. Assume $J(R / I) \neq \overline{0}$ then there exists $\overline{0} \neq \bar{a} \in J(R / I)$. So $a \in R, \quad a \notin I$ therefore $x=x a x \notin I$ for some $x \in R$. Thus, $\overline{0} \neq(\bar{a} \cdot \bar{x})^{2}=\bar{a} . \bar{x} \in J(R / I)$ a contradiction, so $J(R / I)=\overline{0}$.It is clear that R / I is semipotent. Finally, we prove that I is a weakly lifting. Let $a^{2}-a \in I$ then $a \in R \backslash I$. Since R is I-semipotent there exists $y \in R, y=$ yay $\notin I$, so
$0 \neq(a y)^{2}=a y \in a R$, and $\quad a y \notin I$. (2) \Rightarrow (1). Let $\quad a \in R \backslash I$ then $\overline{0} \neq \bar{a} \in R / I$. Since R / I is semipotent and $J(R / I)=\overline{0}$ then $\bar{x}=\bar{x} \cdot \bar{a} \cdot \bar{x}$ for some $0 \neq \bar{x} \in R / I$. Since ($a x)^{2}-a x \in I$ and I is a weakly lifting there exists $0 \neq e^{2}=e \in a x R \subseteq a R$ and $e \notin I$, so R is I- semipotent.

Following [14], the total of a ring R is
$\operatorname{Tot}(R)=\{a: a \in R ; a R$ contains no nonzero idempotents $\}$
$\operatorname{Tot}(R)=\{a: a \in R ; R a$ contains no nonzero idempotents $\}$
Y. Zhou, proved that, for a ring R, $\operatorname{Tot}(R)=J(R)$ if and only if R is a semipotent, [14، Theorem 2.2]. For an I- semipotent ring we have:

Theorem 2.7. Let I be an ideal of a ring R. The following statements are equivalent:
(1) $\operatorname{Tot}(R)=I$.
(2) R is an I-semipotent ring and I contains no nonzero idempotents.
(3) R / I is a semipotent and $J(R / I)=\overline{0}$ with I contains no nonzero idempotents and I is weakly lifting.

Proof. (1) \Rightarrow (2). It is clear that I contains no nonzero idempotents. Let $a \in R \backslash I$ then $\mathrm{a} \notin \operatorname{Tot}(R)$. So aR contain a nonzero idempotent. This shows that R is an I - semipotent ring. $(2) \Rightarrow(1)$. Suppose that $\operatorname{Tot}(R) \neq I$, Since $I \subseteq \operatorname{Tot}(R)$ there exists $a \in \operatorname{Tot}(R)$ such that $a \notin I$. So, for some $x \in R, x=x a x \notin I$ and $0 \neq(a x)^{2}=a x \in a R, a$ contradiction. (2) \Leftrightarrow (3). By proposition 2.6.

3- Semipotent Modules

Let M_{R} be a module and $K \subseteq{ }^{\oplus} M$, then $K \subseteq J(M)$ if and only if $K \cap J(M)=J(K)$. Putting $\Gamma(M)=\left\{K: K \subseteq^{\oplus} M ; J(K)=K\right\}$. Note that for any projective module $P, \Gamma(P)=\{0\}$. In addition to, if $J(M) \ll M$ (or M is finitely generated) for some $M \in \bmod -R$ then $\Gamma(M)=\{0\}$.

Let M_{R} be a module, letting $I=I\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \subseteq J(M)\right\}$.

It is clear that $I=I\left(E_{M}\right)$ is an ideal in E_{M} and $I\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \beta \alpha \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in E_{M}\right\} \quad I\left(E_{M}\right)=\left\{\alpha: \alpha \in E_{M} ; \alpha \beta \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in E_{M}\right\}$

Recall a module M_{R} is a semipotent module also, called I_{0} module [3], weakly regular module [1] if, each submodule of M not contained in $J(M)$ contains a direct summand N of $M, N \notin \Gamma(M)$.

Lemma 3.1. Let M_{R} be a semipotent module. The following holds:
(1) Every submodule N of M such that $J(N)=N \cap J(M)$ is semipotent.
(2) Every direct summand of M is semipotent.
(3) Every supplement submodule of M is semipotent.

Proof. (1). Let N be a submodule of M with $J(N)=N \cap J(M)$ and A be a submodule of $N, A \not \subset J(N)$ then A is a submodule of M and $A \not \subset J(M)$. So there exists $K \subseteq{ }^{\oplus} M, K \notin \Gamma(M)$ and $K \subseteq A$ therefore $M=K \oplus D$ for some submodule D of M. Since $K \subseteq A \subseteq N$ then $N=K \oplus(N \cap D)$. Thus, $K \subseteq{ }^{\oplus} N$ and $K \notin \Gamma(N)$. So N is semipotent. (2). Since for any direct summand H of M $J(H)=H \cap J(M)$ then by (1), H is semipotent. (3). Let N be a supplement submodule of M, by $[13,41.1]$ we have $J(N)=N \cap J(M)$, by (1), N is semipotent.

A module P_{R} is called a quasi-projective module [12] if given an epimorphism $\beta \in[P, M]$ and any morphism $\alpha \in[P, M]$ there exists $\lambda \in E_{P}$ such that $\beta \lambda=\alpha$. For a quasi-projective module we have the following:

Theorem 3.2. For any quasi-projective module P_{R} the following statements are equivalent:
(1) P is a semipotent module.
(2) For any $\alpha \in E_{P}, \alpha \notin I\left(E_{P}\right)$, Im(α) contains a direct summand N of P such that $N \notin \Gamma(P)$.
(3) E_{P} is an I- semipotent ring.

Proof. (1) \Rightarrow (2). It is clear. (2) \Rightarrow (3). Let $\alpha \in E_{P} \backslash I\left(E_{P}\right)$ then $\operatorname{Im}(\alpha) \not \subset J(P)$ and there exists $N \subseteq^{\oplus} P, N \subseteq \operatorname{Im}(\alpha)$ and $N \notin \Gamma(P)$. Let γ be the projection of P on to N, then $\operatorname{Im}(\gamma \alpha)=N$, so there exists $\beta \in E_{P}$ such that $\gamma \alpha \beta=\gamma$. We put $\mu=\beta \gamma$, then $\mu \alpha \mu=\mu \notin I\left(E_{P}\right)$. Because if $\mu \in I\left(E_{P}\right)$ then $\gamma=\gamma \gamma=\gamma \alpha \beta \gamma \in$ $I\left(E_{P}\right)$ that is $N \in \Gamma(P)$ a contradiction. So, E_{P} is I-semipotent. (3) $\Rightarrow(1)$. Let A be a submodule of $P, A \not \subset J(P)$ then $A \not \subset D$ for some maximal submodule D of P, and $A+D=P$. By [10, Lemma 1.1] there are $f, g \in E_{P}$ such that $1=f+g$ and $\operatorname{Im}(f) \subseteq A$, $\operatorname{Im}(g) \subseteq D$. It is clear that $f \notin I\left(E_{P}\right)$. By assumption there exists $\varphi \in E_{P} \quad$ such that $\quad \varphi=\varphi f \varphi \notin I\left(E_{P}\right)$.Since $(f \varphi)^{2}=f \varphi$ then $\operatorname{Im}(f \varphi) \subseteq{ }^{\oplus} P, \quad \operatorname{Im}(f \varphi) \subseteq^{\oplus} A$ and $\operatorname{Im}(f \varphi) \notin \Gamma(P)$. So, P is semipotent.

Corollary 3.3. For any quasi-projective module P the following are equivalent:
(1) P is a semipotent module and $\Gamma(P)=\{0\}$.
(2) E_{P} is an I- semipotent ring and $\Gamma(P)=\{0\}$.
(3) $\operatorname{Tot}\left(E_{P}\right)=I\left(E_{P}\right)$.

Proof. (1) \Leftrightarrow (2). By Theorem 3.2. (2) \Leftrightarrow (3). By Theorem 2.7 because $\Gamma(P)=\{0\}$ if and only if $I\left(E_{P}\right)$ contains no nonzero idempotents.

Corollary 3.4. Let P be a quasi-projective module with $J(P) \ll P$. The following statements are equivalent:
(1) P is a semipotent module.
(2) For any $\alpha \in E_{P}, \alpha \notin J\left(E_{P}\right)$ there exists $0 \neq N \subseteq^{\oplus} P, N \subseteq \operatorname{Im}(\alpha)$.
(3) E_{P} is a semipotent ring.
(4) $\operatorname{Tot}\left(E_{P}\right)=J\left(E_{P}\right)=\nabla E_{P}=I\left(E_{P}\right)$.

Proof. (1) $\Leftrightarrow(2) \Leftrightarrow(3)$. As in Theorem 3.2، because for a quasiprojective module with $J(P) \ll P, J\left(E_{P}\right)=\nabla E_{P}=I\left(E_{P}\right)$ by [11, Lemma 2]. (3) \Leftrightarrow (4) By [14, Theorem 2.2].

A module P_{R} is called a direct-projective module [8] if, given any direct summand N of P with projection $\pi: P \rightarrow N$ and any epimorphism $\alpha: P \rightarrow N$ there exists $\beta \in E_{P}$ such that $\alpha . \beta=\pi$. If P is a direct-projective module then $\nabla E_{P} \subseteq J\left(E_{P}\right)$ (see [8, Theorem 3.1]). For direct projective modules we have the following:

Proposition 3.5. Let P_{R} be a direct-projective module. If P is semipotent then:
(1) E_{P} is an I-semipotent ring.
(2) $J\left(E_{P}\right) \subseteq I\left(E_{P}\right)$.

Proof. (1). Let $\alpha \in E_{P}, \alpha \notin J\left(E_{P}\right)$ then there exists $N \subseteq{ }^{\oplus} P$, $N \notin \Gamma(P)$ and $N \subseteq \operatorname{Im}(\alpha)$. Let γ be the projection of P on to N, then $N=\operatorname{Im}(\gamma)=\operatorname{Im}(\gamma \alpha)$. Since P is a direct-projective there exists $\beta \in E_{P}$ such that $\gamma \alpha \beta=\gamma$. Putting $\mu=\beta \gamma$ then $0 \neq \mu \in E_{P}$, $\mu \alpha \mu=\mu \quad$ and $\mu \notin I\left(E_{P}\right)$, because if, $\mu \in I\left(E_{P}\right)$ then $\gamma=\gamma \alpha \beta \gamma \in I\left(E_{P}\right)$, thus $N=\operatorname{Im}(\gamma) \subseteq J(P)$ this means that $N \in \Gamma(P)$, a contradiction. This shows that E_{P} is I- semipotent. (2). By Corollary 2.5.

Corollary 3.6. Let P_{R} be a direct-projective module. If P is a semipotent and $J(P) \ll P$ then E_{P} is a semipotent ring.

Proof. We have by [8, Theorem 3.1], $\nabla E_{P} \subseteq J\left(E_{P}\right)$ and by proposition 3.5, $J\left(E_{P}\right) \subseteq I\left(E_{P}\right)$. Since $J(P) \ll P$ then $I\left(E_{P}\right)=\nabla E_{P}$ thus $J\left(E_{P}\right)=\nabla E_{P}=I\left(E_{P}\right)$, so E_{P} is a semipotent ring.

A module P_{R} is called π-projective [10] if, for any two submodules U, V of P with $P=U+V ; E_{P}=[P, U]+[P, V]$. For a π - projective modules we have the following:

Proposition 3.7. Let P_{R} be a π-projective module. The following statements are equivalent:
(1) P is a semipotent module.
(2) For any $\alpha \in E_{p}, \quad \alpha \notin I\left(E_{P}\right)$ there exists $N \subseteq^{\oplus} P$, $N \notin \Gamma(P)$ and $N \subseteq \operatorname{Im}(\alpha)$. Proof. (1) \Rightarrow (2). It is clear. (2) \Rightarrow (1). Let A be a submodule of $P, A \not \subset J(P)$ then there exists a maximal submodule M of $P, A \not \subset M$ therefore $P=A+M$. Since P is $a \pi-$ projective there are $\alpha, \beta \in E_{P}$ such that $1=\alpha+\beta$ and $\operatorname{Im}(\alpha) \subseteq A$, $\operatorname{Im}(\beta) \subseteq M$. It is clear that $\operatorname{Im}(\alpha) \not \subset J(P)$, because if $\operatorname{Im}(\alpha) \subseteq$ $J(P)$. we have $P=\operatorname{Im}(\alpha)+\operatorname{Im}(\beta) \subseteq J(P)+M \subseteq M \subseteq P$ thus $P=M, a$ contradiction. By assumption $\operatorname{Im}(\alpha) \subseteq A$ contains a direct summand N of $P, N \notin \Gamma(P)$. So P is a semipotent module.

Corollary 3.8. Let P_{R} be a π-projective module. If E_{P} is an I - semipotent ring the following hold:
(1) For any $\alpha \in E_{P}, \alpha \notin I\left(E_{P}\right)$ there exists $N \subseteq^{\oplus} P, N \notin \Gamma(P)$ and $N \subseteq \operatorname{Im}(\alpha)$.
(2) P is a semipotent module.

Proof. (1). Let $\alpha \in E_{P} \backslash I\left(E_{P}\right)$ then there exists $\gamma \in E_{P} \backslash I\left(E_{P}\right)$ such that $\gamma=\gamma \alpha \gamma$. Since $0 \neq(\alpha \gamma)^{2}=\alpha \gamma \in E_{p}$ then $\operatorname{Im}(\alpha \gamma) \subseteq^{\oplus} P$, $\operatorname{Im}(\alpha \gamma) \notin \Gamma(P)$ and $\operatorname{Im}(\alpha \gamma) \subseteq \operatorname{Im}(\alpha)$. (2). By (1) and proposition 3.7.

Proposition 3.9. For any projective module P_{R} the following statements are equivalent:
(1) P is a semipotent module and $J(P) \ll P$.
(2) E_{P} is a semipotent ring.
(3) For any $\alpha \in E_{P}, P / \operatorname{Im}(\alpha \beta)$ has a projective cover for some $0 \neq \beta \in E_{P}$.
(4) For any $\alpha \in E_{p}, \operatorname{Im}(\alpha \beta)$ has a supplement which also has a supplement for some $0 \neq \beta \in E_{P}$.

Proof. (1) \Leftrightarrow (2). By[3, Theorem 3.5]. (2) \Rightarrow (3). Suppose that E_{P} is a semipotent then by theorem 2.1 for any $\alpha \in E_{P}$ there exists $0 \neq \beta \in E_{P}$ such that $E_{P} /(\alpha \beta) E_{P}$ has a projective cover and by [2, Proposition 2.9] $P / \operatorname{Im}(\alpha \beta)$ has a projective cover. (3) \Rightarrow (2)
follows immediately from [2، Proposition 2.9] and theorem 2.1. (3) \Leftrightarrow (4). By [2, Proposition 1.4].

Lemma 3.10. Let M_{R} be a module with E_{M} is a semipotent ring then:
(1) $\nabla E_{M} \subseteq J\left(E_{M}\right)$ and $\Delta E_{M} \subseteq J\left(E_{M}\right)$.
(2) If $\Gamma(M)=\{0\}$ then $I\left(E_{M}\right) \subseteq J\left(E_{M}\right)$.
(3) If $J(M) \ll M$ then $\nabla E_{M}=I\left(E_{M}\right) \subseteq J\left(E_{M}\right)$.

Proof. (1). Let $\alpha \in \nabla E_{M}$ then $\operatorname{Im}(\alpha) \ll M$. Suppose that $\alpha \notin J\left(E_{M}\right)$ then $\beta=\beta \alpha \beta$ for some $0 \neq \beta \in E_{M}$. Let $\gamma=\alpha \beta$ then $0 \neq \gamma^{2}=\gamma \in E_{M} \quad$ and $\quad \operatorname{Im}(\gamma) \ll M$, hence $\operatorname{Im}(\gamma) \subseteq \operatorname{Im}(\alpha)$. Therefore $\operatorname{Im}(\gamma)=\operatorname{Im}(\gamma) \cap \operatorname{Im}(1-\gamma)=0$, thus $\gamma=0$ this is a contradiction, hence $\alpha \in J\left(E_{M}\right)$ and $\nabla E_{M} \subseteq J\left(E_{M}\right)$. Let $g \in \Delta E_{M}$ then $\operatorname{Ker}(g)$ is large in M. Suppose that $g \notin J\left(E_{M}\right)$ then $\mu=\mu g \mu$ for some $0 \neq \mu \in E_{M}$. Let $v=\mu g$ then $0 \neq v^{2}=v \in E_{M}$ and $\operatorname{Ker}(g) \subseteq \operatorname{Ker}(v)$, therefore $\operatorname{Ker}(g) \cap \operatorname{Im}(v)=0 \quad$ thus $\operatorname{Im}(v)=0$, hence $\operatorname{Ker}(g)$ is large in M and $v=0$ this is a contradiction, hence $g \in J\left(E_{M}\right)$ and $\Delta E_{M} \subseteq J\left(E_{M}\right)$.
(2). Suppose that $\Gamma(M)=\{0\}$. Let $\alpha \in I\left(E_{M}\right)$ then $\operatorname{Im}(\alpha) \subseteq J(M)$. Suppose that $\alpha \notin J\left(E_{M}\right)$ then $\gamma=\gamma \alpha \gamma$ for some $0 \neq \gamma \in E_{M}$. We put $g=\alpha \gamma$ then $0 \neq g^{2}=g \in E_{M}, \operatorname{Im}(g) \subseteq^{\oplus} M$ and $\operatorname{Im}(g) \subseteq J(M)$ therefore $\operatorname{Im}(g) \in \Gamma(M)=\{0\}$, so $\operatorname{Im}(g)=0$ and $g=0$ this is a contradiction. Thus $\alpha \in J\left(E_{M}\right)$. (3). It is clear.

It is known that for any module $M_{R}, \nabla E_{M} \subseteq I\left(E_{M}\right)$. No, if E_{M} is an I- semipotent ring we have the following:

Lemma 3.11. Let M_{R} be a module with E_{M} is an I-semipotent ring then: $J\left(E_{M}\right) \subseteq I\left(E_{M}\right)$ and $\Delta E_{M} \subseteq I\left(E_{M}\right)$.

Proof. By Corollary 2.5 we have $J\left(E_{M}\right) \subseteq I\left(E_{M}\right)$. Let $\alpha \in \Delta E_{M}$ then $\operatorname{Ker}(\alpha) \leq_{e} \quad$. Suppose $\alpha \notin I\left(E_{M}\right)$ then $\quad \gamma=\gamma \alpha \gamma$ for some $0 \neq \gamma \in E_{M}, \gamma \notin I\left(E_{M}\right)$. Let $v=\gamma \alpha$ then $0 \neq v^{2}=v \in E_{M}$ and
$\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(v)$, therefore $\operatorname{Ker}(g) \cap \operatorname{Im}(v)=0$ thus $\operatorname{Im}(v)=0$, so $v=0$ this is a contradiction, hence $\alpha \in I\left(E_{M}\right)$ and $\Delta E_{M} \subseteq I\left(E_{M}\right)$.
4. Semipotent $[M, N]$.

Following [14], let $M_{R}, \quad N_{R}$ are modules and $[M, N]=\operatorname{hom}_{R}(M, N)$, then $[M, N]$ is an $\left(E_{N}, E_{M}\right)$-bimodule.

- The Jacobson radical.
$J[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in J\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$
$J[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in J\left(E_{N}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$
Thus $J[M, M]=J\left(E_{M}\right)$. In particular $J[R, R]=J(R)$.
- The singular ideal.
$\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \operatorname{Ker}(\alpha) \leq_{e} M\right\}$
- The co-singular ideal.
$\nabla[M, N]=\{\alpha: \alpha \in[M, N] ; \operatorname{Im}(\alpha) \ll M\}$
- The total.
$\operatorname{Tot}[M, N]=\{\alpha: \alpha \in[M, N] ;[N, M] \alpha$ contains no nonzero idempotent \}
$\operatorname{Tot}[M, N]=\{\alpha: \alpha \in[M, N] ; \alpha[N, M]$ contains no nonzero idempotent \}

Lemma 4.1. Let M_{R}, N_{R} be modules then:
(1) $\operatorname{Tot}[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)\right.$ for all $\beta \in[N, M]\}$.
(2) $\operatorname{Tot}[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \operatorname{Tot}\left(E_{M}\right)\right.$ for all $\beta \in[N, M]\}$.

Proof. (1). Let $\alpha \in \operatorname{Tot}[M, N]$. suppose that $\beta \alpha \notin \operatorname{Tot}\left(E_{M}\right)$ for some $\beta \in[N, M]$ then there exists $\gamma \in E_{M}$ such that $0 \neq \gamma(\beta \alpha)=[\gamma(\beta \alpha)]^{2} \in E_{M}$. Since $\gamma \beta \in[N, M]$ then $0 \neq \gamma(\beta \alpha)=[(\gamma \beta) \alpha]^{2} \in[N, M] \alpha$, a contradiction. Let $\alpha \in[M, N]$ such that $\beta \alpha \in \operatorname{Tot}\left(E_{M}\right)$ for all $\left.\beta \in[N, M]\right\}$. Suppose that $\alpha \notin \operatorname{Tot}[\mathrm{M}, \mathrm{N}]$ then $[N, M] \alpha$ contains a nonzero idempotent. So
there exists $\gamma \in[N, M]$ such that $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$ and $\gamma \alpha \in(\gamma \alpha) E_{M}$, so $\gamma \alpha \notin \operatorname{Tot}\left(E_{M}\right)$, is a contradiction. Similarly (2) holds.

Lemma 4.2. [14, Lemma 2.1]. Let M_{R}, N_{R} be modules. The following statements are equivalent:
(1)If $\alpha \in[M, N] \backslash J[M, N]$ there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$.
(2)If $\alpha \in[M, N] \backslash J[M, N]$ there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$.
(3) If $\alpha \in[M, N] \backslash J[M, N]$ there exists $\gamma \in[N, M]$ such that $\gamma \alpha \gamma=\gamma \notin J[N, M]$.

Following [14], recall that $[M, N]$ is a semipotent if, the conditions in lemma 4.2, are satisfied.

Lemma 4.3. Let M_{R}, N_{R} be modules and $[M, N]$ is semipotent then:
(1) $\Delta[M, N] \subseteq J[M, N]$ and $\nabla[M, N] \subseteq J[M, N]$.
(2) If $\Gamma(M)=\{0\}$ then $I[M, N] \subseteq J[M, N]$.
(3) If $\Gamma(N)=\{0\}$ then $I[M, N] \subseteq J[M, N]$.

Proof. Suppose that $[M, N]$ is semipotent.
(1). Let $\alpha \in \Delta[M, N]$ then $\operatorname{Ker}(\alpha) \leq_{e} M$. Suppose that $\alpha \notin J[M, N]$ then there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. Since $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta \alpha)$ then $\operatorname{Ker}(\alpha) \cap \operatorname{Im}(\beta \alpha) \subseteq \operatorname{Ker}(\beta \alpha) \cap \operatorname{Im}(\beta \alpha)=0 . \quad$ Thus, $\operatorname{Im}(\beta \alpha)=0$ and $\beta \alpha=0$ this is a contradiction. Hence $\alpha \in J[M, N]$. (2). Suppose that $\Gamma(M)=\{0\}$. Let $\alpha \in I[M, N]$ then $\operatorname{Im}(\alpha) \subseteq J(N)$. Assume that $\alpha \notin J[M, N]$ then there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. So $\operatorname{Im}(\beta \alpha) \subseteq{ }^{\oplus} M$ and $\operatorname{Im}(\beta \alpha) \subseteq J(M)$ thus $\operatorname{Im}(\beta \alpha) \in \Gamma(M)=\{0\}$, so $\beta \alpha=0$ is a contradiction. Thus $\alpha \in J[M, N]$. Similarly, (3) holds.

Proposition 4.4. Let M_{R}, N_{R} be modules, the following hold:
(1) If $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$ then $\operatorname{Tot}[M, N]=J[M, N]$.
(2) If $\operatorname{Tot}\left(E_{N}\right)=J\left(E_{N}\right)$ then $\operatorname{Tot}[M, N]=J[M, N]$.
(3) If E_{M} is a semipotent ring then $[M, N]$ is a semipotent.
(4) If E_{N} is a semipotent ring then $[M, N]$ is a semipotent.

Proof.(1). Suppose that $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$. It is clear that $J[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ then by lemma 4.1 for any $\beta \in[N, M], \quad \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$ so $\alpha \in J[M, N]$. The proof of (2) is analogous. (3) Suppose that E_{M} is a semipotent ring then by [14, Theorem 2.2], $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$ and by (1) $\operatorname{Tot}[M, N]=J[M, N]$ a gain by [14, Theorem 2.2], $[M, N]$ is semipotent. The proof of (4) is analogous.

Remark. Y. Zhou [14], gave an example of two modules M_{R}, N_{R} such that $[M, N]$ is semipotent, but neither E_{M}, nor E_{N} is semipotent, (See [14, Example 4.9]). So in general, if $\operatorname{Tot}[M, N]=J[M, N]$ then $\operatorname{Tot}\left(E_{M}\right) \neq J\left(E_{M}\right)$ and $\operatorname{Tot}\left(E_{N}\right) \neq J\left(E_{N}\right)$.

Following [14]. Let
$\Phi(R)=\{M \in \bmod -R: \operatorname{Tot}[M, N]=J[M, N] \quad$ for all $N \in \bmod -R\}$
$\Gamma(R)=\{N \in \bmod -R: \operatorname{Tot}[M, N]=J[M, N]$ for all $M \in \bmod -R\}$

Corollary 4.5. [14, Theorem 4.5]. The following hold:
(1) $\Phi(R)=\left\{M \in \bmod -R: E_{M}\right.$ is a semipotent ring $\}$.
(2) $\Gamma(R)=\left\{N \in \bmod -R: E_{\mathrm{N}}\right.$ is a semipotent ring $\}$.
(3) $\Phi(R)=\Gamma(R)$.

Proof. $(1)(\Rightarrow)$. If $M \in \Phi(R)$ then $\operatorname{Tot}\left(E_{M}\right)=J\left(E_{M}\right)$, so E_{M} is semipotent by [14، Theorem 2.2]. (\Leftarrow). Let $M \in \bmod -R$ with E_{M} is a semipotent ring then for any $N \in \bmod -R ;[M, N]$ is semipotent by proposition 4.4, so $M \in \Phi(R)$. Similarly (2) holds. (3) By (1) and (2).

5. ($\Delta-, \nabla-$, I-) Semipotent $[M, N]$

Proposition 5.1. Let M_{R}, N_{R} be modules.
(a) The following hold:
(1) $\Delta[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\Delta[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) If $\operatorname{Tot}[M, N]=\Delta[M, N]$ then
(1) $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.

Proof. (a). (1) Let $\alpha \in \Delta[M, N]$ then $\operatorname{Ker}(\alpha) \leq_{e} M$, since for any $\beta \in[N, M], \quad \operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta \alpha)$ then $\operatorname{Ker}(\beta \alpha) \leq_{e} M$ thus $\beta \alpha \in \Delta E_{M}$. (2) Let $\alpha \in \Delta[M, N]$ then $\operatorname{Ker}(\alpha) \leq_{e} M$. Let $\beta \in[N, M]$ and K be a submodule of N such that $\operatorname{Ker}(\alpha \beta) \cap K=0$. Since $\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}(\alpha \beta)$ then $\operatorname{Ker}(\beta) \cap K=0$. Let $y \in \operatorname{Ker}(\alpha) \cap \beta(K)$ then $y \in \operatorname{Ker}(\alpha)$, so $\alpha(y)=0 \quad$ and $y \in \beta(K)$ therefore $y=\beta(x)$ for some $x \in K$. So $0=\alpha(y)=\alpha \beta(x)$ thus $x \in \operatorname{Ker}(\alpha \beta), \quad x \in K$, so $x \in \operatorname{Ker}(\alpha \beta)$ $\cap K=0$ thus $x=0$, so $y \in \beta(x)=0$ thus, $\operatorname{Ker}(\alpha) \cap \beta(K)=0$. Since $\operatorname{Ker}(\alpha) \leq_{e} M \quad$ follows that $\beta(K)=0 \quad$ so $\quad K \subseteq \operatorname{Ker}(\beta)$ thus $K=\operatorname{Ker}(\beta) \cap K=0$ so $\operatorname{Ker}(\alpha \beta) \leq_{e} N$ thus $\alpha \beta \in \Delta E_{N}$.
(b). Suppose that $\operatorname{Tot}[M, N]=\Delta[M, N]$. (1) We have by (a)
$\Delta[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$
Let $\alpha \in[M, N]$ such that $\beta \alpha \in \Delta E_{M}$ for all $\beta \in[N, M]$, suppose $\alpha \notin \Delta[M, N]$ then $\alpha \notin \operatorname{Tot}[M, N]$ so there exists $\gamma \in[N, M]$ such that $\quad 0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M} \quad$ therefore $\quad M=\operatorname{Im}(\gamma \alpha) \oplus \operatorname{Ker}(\gamma \alpha)$. Since $\operatorname{Ker}(\gamma \alpha) \cap \operatorname{Im}(\gamma \alpha)=0$ and $\operatorname{Ker}(\gamma \alpha) \leq_{e} M$ follows $\operatorname{Im}(\gamma \alpha)=0$, so $\gamma \alpha=0$ a contradiction. Thus, $\alpha \in \Delta[M, N]$. Similarly (2) holds.

Lemma 5.2. Let M_{R}, N_{R} be modules. The following statements are equivalent:
(1) If $\alpha \in[M, N] \backslash \Delta[M, N]$ there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. (2) If $\alpha \in[M, N] \backslash \Delta[M, N]$ there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$.
(3) If $\alpha \in[M, N] \backslash \Delta[M, N]$ there exists $\gamma \in[N, M]$ such that $\gamma \alpha \gamma=\gamma \notin \Delta[N, M]$. Proof. Suppose (1) holds. Then $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ for some $\beta \in[N, M]$. Let $\gamma=\beta \alpha \beta \in[N, M]$ we have $\gamma \alpha \gamma=\gamma \neq 0$ and $\gamma \notin \Delta[N, M]$ because $0 \neq \alpha \gamma=(\alpha \gamma)^{2}$, giving (3). Suppose (3) holds, then $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$ for some $\gamma \in[N, M] \backslash \Delta[N, M]$ gives (1). Similarly, the equivalence (2) \Leftrightarrow (3) holds.

We call that $[M, N]$ is Δ-semipotent if the conditions in lemma 5.2 are satisfied.

Theorem 5.3. Let M_{R}, N_{R} be modules. Then $[M, N]$ is $\Delta-$ semipotent if and only if, $\operatorname{Tot}[M, N]=\Delta[M, N]$. In particular, E_{M} is a Δ-semipotent if and only if, $\operatorname{Tot}\left(E_{M}\right)=\Delta E_{M}$.

Proof. (\Rightarrow). Suppose that $\operatorname{Tot}[M, N] \neq \Delta[M, N]$. Since $\Delta[M, N] \subset \operatorname{Tot}[M, N]$, there exists $\alpha \in \operatorname{Tot}[M, N]$ such that $\alpha \notin \Delta[M, N]$. So, for any $\beta \in[N, M]$ either $\alpha \beta=0$ or $\alpha \beta \neq(\alpha \beta)^{2}$. Hence $[M, N]$ is not Δ-semipotent. (\Leftarrow). If $\alpha \in[M, N] \backslash \Delta[M, N] \quad$ then $\alpha \notin \operatorname{Tot}[M, N]$. So $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$ for some $\beta \in[N, M]$. This shows that $[M, N]$ is Δ - semipotent.

Let
$\Delta \Phi(R)=\{M \in \bmod -R: \operatorname{Tot}[M, N]=\Delta[M, N]$ for all $N \in \bmod -R\}$
$\Delta \Gamma(R)=\{N \in \bmod -R: \operatorname{Tot}[M, N]=\Delta[M, N]$ for all $M \in \bmod -R\}$
We define the following two sets:
(a) $\Delta S \Phi(R)$ the set of all modules $M \in \bmod -R$ which satisfies the following two properties:
(1) E_{M} is a Δ - semipotent ring.
(2) For any $N \in \bmod -R$;
$\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) $\Delta S \Gamma(R)$ the set of all modules $N \in \bmod -R$ which satisfies the following two properties:
(1) E_{N} is a Δ - semipotent ring.
(2) For any $M \in \bmod -R$;
$\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.
Theorem 5.4. The following hold:
(1) $\Delta \Phi(R)=\Delta S \Phi(R)$.
(2) $\Delta \Gamma(R)=\Delta S \Gamma(R)$.
(3) $\Delta \Phi(R)=\Delta \Gamma(R)$.

Proof. (1) (\Rightarrow). Let $M \in \Delta \Phi(R)$ then for any $N \in \bmod -R$; $\operatorname{Tot}[M, N]=\Delta[M, N]$ by proposition $5.1(b)$. We have $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \Delta E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$ and it is clear that E_{M} is a Δ-semipotent ring, so $M \in \Delta S \Phi(R)$.
(\Leftarrow). Let $M \in \Delta S \Phi(R)$. We have for any $N \in \bmod -R$, $\Delta[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ then by lemma 4.1 for any $\beta \in[N, M] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)$. Since E_{M} is Δ - semipotent then by theorem 5.3, $\operatorname{Tot}\left(E_{M}\right)=\Delta E_{M}$, so $\beta \alpha \in \Delta E_{M}$ for all $\beta \in[N, M]$ thus, $M \in \Delta \Phi(R)$.
$(2)(\Rightarrow)$. Let $\quad N \in \Delta \Gamma(R) \quad$ then for any $\quad M \in \bmod -R$; $\operatorname{Tot}[M, N]=\Delta[M, N]$ by proposition $5.1(\mathrm{~b})$. we have $\Delta[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \Delta E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$ and E_{N} is a Δ - semipotent ring, so $N \in \Delta S \Gamma(R)$.
(\Leftarrow). Let $N \in \Delta S \Gamma(R)$ then for any $M \in \bmod -R$ we have $\Delta[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ by lemma 4.1 for any $\beta \in[N, M] ; \alpha \beta \in \operatorname{Tot}\left(E_{N}\right)$. Since E_{N} is a Δ-semipotent ring then by theorem 5.3, $\operatorname{Tot}\left(E_{N}\right)=\Delta E_{N}$ so $\alpha \beta \in \Delta E_{N}$ for all $\beta \in[N, M]$ by assumption $\alpha \in \Delta[M, N]$. Thus, $N \in \Delta \Phi(R)$. (3). By (1) and (2).

Proposition 5.5. Let M_{R}, N_{R} be modules.
(a) The following hold:
(1) $\nabla[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \nabla E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\nabla[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \nabla E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) If $\operatorname{Tot}[M, N]=\nabla[M, N]$ then
(1) $\nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \nabla E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $\nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \nabla E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.

Proof. (a). (1) Let $\alpha \in \nabla[M, N]$ then $\operatorname{Im}(\alpha) \ll N$, so for any $\beta \in[N, M], \operatorname{Im}(\beta \alpha) \ll M$ thus $\beta \alpha \in \nabla E_{M}$.
(2) Let $\alpha \in \nabla[M, N]$ then $\operatorname{Im}(\alpha) \ll N$, since for all $\beta \in[N, M]$ $\operatorname{Im}(\alpha \beta) \subseteq \operatorname{Im}(\alpha)$
then $\operatorname{Im}(\alpha \beta) \ll N$ so $\alpha \beta \in \nabla E_{N}$.
(b). Suppose that $\operatorname{Tot}[M, N]=\nabla[M, N]$. (1) We have by (a)
$\nabla[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \nabla E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$.
Let $\alpha \in[M, N]$ such that $\beta \alpha \in \nabla E_{M}$ for all $\beta \in[N, M]$, suppose $\alpha \notin \nabla[M, N]$ then $\alpha \notin \operatorname{Tot}[M, N]$ so there exists $\gamma \in[N, M]$ such that $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M} \quad$ therefore $0 \neq \operatorname{Im}(\gamma \alpha) \subseteq^{\oplus} M$. Since $\gamma \alpha \in \nabla E_{M} ; \operatorname{Im}(\gamma \alpha) \ll M$ so $\operatorname{Im}(\gamma \alpha)=0$ a contradiction. Thus, $\alpha \in \nabla[M, N]$. Similarly (2) holds.

Lemma 5.6. Let M_{R}, N_{R} be modules. The following are equivalent:
(1) If $\alpha \in[M, N] \backslash \nabla[M, N]$ there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. (2) If $\alpha \in[M, N] \backslash \nabla[M, N]$ there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$. (3) If $\alpha \in[M, N] \backslash \nabla[M, N]$ there exists $\gamma \in[N, M]$ such that $\gamma \alpha \gamma=\gamma \notin \nabla[N, M]$. Proof. (1) \Rightarrow (3). Let $\alpha \in[M, N] \backslash \nabla[M, N]$, then $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ for some $\beta \in[N, M]$. Let $\gamma=\beta \alpha \beta$ then $\gamma \in[N, M]$ and $\gamma \alpha \gamma=\gamma \notin \nabla[N, M]$ because $\beta \alpha \notin \nabla E_{M}$. Suppose (3) holds، let $\alpha \in[M, N] \backslash \nabla[M, N]$ then $\gamma=\gamma \alpha \gamma$ for some $\gamma \in[N, M] \backslash \nabla[N, M]$ so $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M}$, gives (1). Similarly, the equivalence $(2) \Leftrightarrow$ (3) holds.

We call that $[M, N]$ is ∇-semipotent if the conditions in lemma 5.6 are satisfied.

Theorem 5.7. Let M_{R}, N_{R} be modules. [M, N] is ∇ - semipotent if and only if, $\operatorname{Tot}[M, N]=\nabla[M, N]$. In particular, E_{M} is a $\nabla-$ semipotent if and only if, $\operatorname{Tot}\left(E_{M}\right)=\nabla E_{M}$.

Proof. (\Rightarrow) Suppose that $\quad \operatorname{Tot}[M, N] \neq \nabla[M, N]$, Since $\nabla[M, N] \subset \operatorname{Tot}[M, N]$, there exists $\alpha \in \operatorname{Tot}[M, N]$ such that $\alpha \notin \nabla[M, N]$. So, for any $\beta \in[N, M]$ either $\alpha \beta \neq(\alpha \beta)^{2}$ or $\alpha \beta=0$. Hence $[M, N]$ is not ∇-semipotent. (\Leftarrow). If $\alpha \in[M, N] \backslash \nabla[M, N]$ then $\alpha \notin \operatorname{Tot}[M, N]$. So $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$ for some $\beta \in[N, M]$. This shows that $[M, N]$ is ∇-semipotent.

Let
$\nabla \Phi(R)=\{M \in \bmod -R: \operatorname{Tot}[M, N]=\nabla[M, N]$ for all $N \in \bmod -R\}$
$\nabla \Gamma(R)=\{N \in \bmod -R: \operatorname{Tot}[M, N]=\nabla[M, N]$ for all $M \in \bmod -R\}$
We define the following two sets:
(a) $\nabla S \Phi(R)$ the set of all modules $M \in \bmod -R$ which satisfies the following two properties:
(1) E_{M} is $a \nabla$ - semipotent ring.
(2) For any $N \in \bmod -R ; \nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \nabla E_{M}\right.$ for all $\beta \in[N, M]\}$.
(b) $\nabla S \Gamma(R)$ the set of all modules $N \in \bmod -R$ which satisfies the following two properties:
(1) E_{N} is a ∇ - semipotent ring.
(2) For any $M \in \bmod -R$;
$\nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in \nabla E_{N}\right.$ for all $\left.\beta \in[N, M]\right\}$.
Theorem 5.8. The following hold:
(1) $\nabla \Phi(R)=\nabla S \Phi(R)$.
(2) $\nabla \Gamma(R)=\nabla S \Gamma(R)$.
(3) $\nabla \Phi(R)=\nabla \Gamma(R)$.

Proof. (1) (\Rightarrow). Let $M \in \nabla \Phi(R)$ then for any $N \in \bmod -R$; $\operatorname{Tot}[M, N]=\nabla[M, N]$ by proposition $5.5(b)$ we have $\nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \nabla E_{M}\right.$ for all $\left.\beta \in[N, M]\right\}$. In addition to, E_{M} is a ∇-semipotent ring, so $M \in \nabla S \Phi(R)$. (\Leftarrow). Let $M \in \nabla S \Phi(R)$. We have for any $N \in \bmod -R$, $\nabla[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ then by lemma 4.1 for any $\beta \in[N, M] ; \beta \alpha \in \operatorname{Tot}\left(E_{M}\right)$. Since E_{M} is ∇-semipotent then by theorem 5.7 $\operatorname{Tot}\left(E_{M}\right)=\nabla E_{M}$, so $\beta \alpha \in \nabla E_{M}$ for all $\beta \in[N, M]$ thus, $M \in \nabla \Phi(R)$.
$(2)(\Rightarrow)$. Let $\quad N \in \nabla \Gamma(R) \quad$ then for any $\quad M \in \bmod -R$; $\operatorname{Tot}[M, N]=\nabla[M, N] \quad$ by proposition $5.5(b)$ we have $\nabla[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in \nabla E_{N} \quad\right.$ for all $\left.\beta \in[N, M]\right\}$. In addition to, E_{N} is a ∇ - semipotent ring, so $N \in \nabla S \Gamma(R)$.
(\Leftarrow). Let $N \in \nabla S \Gamma(R) \quad$ then \quad for any $\quad M \in \bmod -R \quad$ we have $\nabla[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ by lemma 4.1 for any $\beta \in[N, M] ; \alpha \beta \in \operatorname{Tot}\left(E_{N}\right)$. Since E_{N} is a ∇-semipotent ring then by theorem 5.7, $\operatorname{Tot}\left(E_{N}\right)=\nabla E_{N}$ so $\alpha \beta \in \nabla E_{N}$ for all $\beta \in[N, M]$ by assumption $\alpha \in \nabla[M, N]$. Thus, $N \in \nabla \Phi(R)$. (3). By (1) and (2).

Let $M_{R}, \quad N_{R}$ be modules. We put $I[M, N]=\{\alpha: \alpha \in[M, N] ; \operatorname{Im}(\alpha) \subseteq J(N)\}$. Since any small submodule of N contained in $J(N)$ then $\nabla[M, N] \subseteq I[M, N]$. If $J(N) \ll N$ then $I[M, N]=\nabla[M, N]$. Thus
$I=I\left(E_{M}\right)=I[M, M]=\left\{\alpha: \alpha \in E_{M} ; \operatorname{Im}(\alpha) \subseteq J(M)\right\}$.
In particular for a ring $R, I(R)=I[R, R]=J[R, R]=J(R)$. A gain for a module M_{R} we put $\Gamma(M)=\left\{K ; K \subseteq \subseteq^{\oplus} M\right.$ and $\left.K \subseteq J(M)\right\}$.

Proposition 5.9. Let M_{R}, N_{R} be modules.
(a) The following hold:
(1) $I[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
(2) $I[M, N] \subseteq\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in I\left(E_{N}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) If $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(M)=\{0\}$ then
$I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
(c) If $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(N)=\{0\}$ then
$I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in I\left(E_{N}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
Proof.(a)(1). Let $\alpha \in I[M, N]$ then $\operatorname{Im}(\alpha) \subseteq J(N)$, so for any $\beta \in[N, M] ; \beta \alpha \in E_{M}$ and $\operatorname{Im}(\beta \alpha) \subseteq J(M)$. Thus, $\beta \alpha \in I\left(E_{M}\right)$.
(2) Let $\alpha \in I[M, N]$ then $\operatorname{Im}(\alpha) \subseteq J(N)$, so for any $\beta \in[N, M]$; $\alpha \beta \in E_{N}$ and $\operatorname{Im}(\alpha \beta) \subseteq J(N)$. Thus $\quad \alpha \beta \in I\left(E_{N}\right)$.
(b). Suppose that $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(M)=\{0\}$. Let $\alpha \in[M, N]$ such that $\beta \alpha \in I\left(E_{M}\right) \quad$ for all $\beta \in[N, M]$. Suppose $\alpha \notin I[M, N]$ then $\alpha \notin \operatorname{Tot}[M, N]$, so there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$, since $\operatorname{Im}(\beta \alpha) \subseteq J(M)$ and $\operatorname{Im}(\beta \alpha) \subseteq^{\oplus} M$ then $\operatorname{Im}(\beta \alpha) \in \Gamma(M)=\{0\}$, a contradiction.
(c). Suppose that $\operatorname{Tot}[M, N]=I[M, N]$ and $\Gamma(N)=\{0\}$. Let $\alpha \in[M, N]$ such that $\alpha \beta \in I\left(E_{N}\right)$ for all $\beta \in[N, M]$. Suppose $\alpha \notin I[M, N]$ then $\alpha \notin \operatorname{Tot}[M, N]$, so there exists $\gamma \in[N, M]$ such that $0 \neq \alpha \gamma=(\alpha \gamma)^{2} \in E_{N}$. Since $\operatorname{Im}(\alpha \gamma) \subseteq J(N)$ and $\operatorname{Im}(\alpha \gamma) \subseteq{ }^{\oplus} N$ then $\operatorname{Im}(\alpha \gamma) \in \Gamma(N)=\{0\}$, a contradiction. Thus $\alpha \in I[M, N]$.

Lemma 5.10. Let M_{R}, N_{R} be modules. The following statements are equivalent:
(1) If $\alpha \in[M, N] \backslash I[M, N]$, there exists $\beta \in[N, M]$; $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ and $\beta \alpha \notin I\left(E_{M}\right)$.
(2) If $\alpha \in[M, N] \backslash I[M, N]$, there exists $\beta \in[N, M]$; $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$ and $\alpha \beta \notin I\left(E_{N}\right)$.
(3) If $\alpha \in[M, N] \backslash I[M, N]$, there exists $\gamma \in[N, M]$; $\gamma \alpha \gamma=\gamma \notin I[N, M]$.

Proof. Suppose (1) holds. Then $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ and $\beta \alpha \notin I\left(E_{M}\right)$ for some $\beta \in[N, M]$. By letting $\gamma=\beta \alpha \beta \in[N, M]$ we
have $\gamma \alpha \gamma=\gamma \neq 0$ and $\gamma \notin I[N, M]$ because $\beta \alpha \notin I\left(E_{M}\right)$, giving (3). Suppose (3) holds. Then $0 \neq \gamma \alpha=(\gamma \alpha)^{2} \in E_{M} \quad$ and $\gamma \alpha \notin I\left(E_{M}\right)$ because $\gamma \notin I[N, M]$ gives(1). Similarly, the equivalence (2) \Leftrightarrow (3) holds.

We call that $[M, N]$ is I-semipotent if the conditions in lemma 5.10 are satisfied.

Theorem 5.11. Let M_{R}, N_{R} be modules then the following hold:
(1) If $\Gamma(M)=\{0\}$ then $\operatorname{Tot}[M, N]=I[M, N]$ if and only if, $[M, N]$ is I - semipotent.
(2) If $\Gamma(N)=\{0\}$ then $\operatorname{Tot}[M, N]=I[M, N]$ if and only if, $[M, N]$ is I - semipotent.
In particular, if $\Gamma(M)=\{0\}$ then $\operatorname{Tot}\left(E_{M}\right)=I\left(E_{M}\right)$ if and only if, E_{M} is an I- semipotent ring.
Proof. (1). Suppose that $\Gamma(M)=\{0\} . \quad(\Rightarrow)$ let $\alpha \in[M, N] \backslash I[M, N]$ then $\alpha \notin \operatorname{Tot}[M, N]$, so $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$ for some $\beta \in[N, M]$ and $\beta \alpha \notin I\left(E_{M}\right)$ because $\Gamma(M)=\{0\}$. This shows that $[M, N]$ is I-semipotent. (\Leftarrow) Since $\Gamma(M)=\{0\}$ it is easy to see that $I[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ and suppose $\alpha \notin I[M, N]$ so, for any $\beta \in[N, M]$, either $\alpha \beta=0$ or $\alpha \beta \neq(\alpha \beta)^{2}$. Hence $[M, N]$ is not I - semipotent. Similarly (2) holds.

Let
$I \Phi(R)=\{M \in \bmod -R: \Gamma(M)=\{0\}$ and
$\operatorname{Tot}[M, N]=I[M, N] ; \forall N \in \bmod -R\}$
$I \Gamma(R)=\{N \in \bmod -R: \Gamma(N)=\{0\}$ and $\operatorname{Tot}[M, N]=I[M, N] ; \forall$ $M \in \bmod -R\}$

We define the following two sets:
(a) I $S \Phi(R)$ the set of all modules $M \in \bmod -R$ which satisfies the following properties:
(1) $\Gamma(M)=\{0\}$.
(2) E_{M} is an I-semipotent ring.
(3) For any $N \in \bmod -R$;
$I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
(b) IS $\Gamma(R)$ the set of all modules $N \in \bmod -R$ which satisfies the following properties:
(1) $\Gamma(N)=\{0\}$.
(2) E_{N} is an I-semipotent ring.
(3) For any $M \in \bmod -R$;
$I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in I\left(E_{N}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$.
Theorem 5.12. The following hold:
(1) $I \Phi(R)=I S \Phi(R)$.
(2) $I \Gamma(R)=I S \Gamma(R)$.
(3) $I \Phi(R)=I \Gamma(R)$.

Proof. $\quad(1)(\Rightarrow)$. Let $\quad M \in I \Phi(R) \quad$ then $\quad \Gamma(M)=\{0\} \quad$ and $\operatorname{Tot}[M, N]=I[M, N]$ for all $N \in \bmod -R$. So, $\operatorname{Tot}\left(E_{M}\right)=I\left(E_{M}\right)$ and by theorem 5.11، E_{M} is an I-semipotent ring. On the other hand, by proposition $5.9(b)$ we have for any $N \in \bmod -R$; $I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \beta \alpha \in I\left(E_{M}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$. So, $M \in I S \Phi(R)$.
(\Leftarrow). Let $M \in I S \Phi(R)$ then $\Gamma(M)=\{0\}$. Let $N \in \bmod -R$ and $\alpha \in I[M, N]$ then $\operatorname{Im}(\alpha) \subseteq J(N)$. Suppose that $\alpha \notin \operatorname{Tot}[M, N]$ then there exists $\beta \in[N, M]$ such that $0 \neq \beta \alpha=(\beta \alpha)^{2} \in E_{M}$. So, $0 \neq \operatorname{Im}(\beta \alpha) \subseteq^{\oplus} M$ and $\operatorname{Im}(\beta \alpha) \in \Gamma(M)=\{0\}$, a contr-adiction. Thus, $I[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ and suppose that $\alpha \notin I[M, N]$, since $M \in I S \Phi(R)$ then there exists $\beta \in[N, M]$ such that $\beta \alpha \notin I\left(E_{M}\right)$. Since E_{M} is an I-semipotent ring there exists $\gamma \in E_{M} \quad$ such that $\quad \gamma(\beta \alpha) \gamma=\gamma \notin \quad I\left(E_{M}\right)$ thus, $0 \neq(\gamma \beta) \alpha=[(\gamma \beta) \alpha]^{2} \in E_{M}$ and $\gamma \beta \in[N, M]$, a contradiction, hence $\alpha \in \operatorname{Tot}[M, N]$, therefore $\alpha \in I[M, N]$. Thus، $\operatorname{Tot}[M, N]=I[M, N]$ for any $N \in \bmod -R$, so $M \in I \Phi(R)$.

$$
(2)(\Rightarrow) . \quad \text { Let } \quad N \in I \Gamma(R) \quad \text { then } \quad \Gamma(N)=\{0\} \quad \text { and }
$$

$\operatorname{Tot}[M, N]=I[M, N]$ for all $M \in \bmod -R$. So, $\operatorname{Tot}\left(E_{N}\right)=I\left(E_{N}\right)$ and by theorem 5.11, E_{N} is an I-semipotent ring. On the other hand, by proposition $5.9(\mathrm{c})$ we have for any $M \in \bmod -R$; $I[M, N]=\left\{\alpha: \alpha \in[M, N] ; \alpha \beta \in I\left(E_{N}\right)\right.$ for all $\left.\beta \in[N, M]\right\}$. So، $N \in I S \Gamma(R)$. Let $N \in I S \Gamma(R)$ then $\Gamma(N)=\{0\}$. Let $M \in \bmod -R$ and $\alpha \in I[M, N]$ then $\operatorname{Im}(\alpha) \subseteq J(N)$. Suppose that $\alpha \notin \operatorname{Tot}[M, N]$ then there exists $\beta \in[N, M]$ such that $0 \neq \alpha \beta=(\alpha \beta)^{2} \in E_{N}$. So, $0 \neq \operatorname{Im}(\alpha \beta) \subseteq{ }^{\oplus} N$ and $\operatorname{Im}(\alpha \beta) \in \Gamma(N)=\{0\}$, a cont-radiction. Thus, $I[M, N] \subseteq \operatorname{Tot}[M, N]$. Let $\alpha \in \operatorname{Tot}[M, N]$ and suppose that $\alpha \notin I[M, N]$, since $N \in I S \Gamma(R)$ then there exists $\beta \in[N, M]$ such that $\alpha \beta \notin I\left(E_{N}\right)$. Since E_{N} is an I - semipotent there exists $\gamma \in E_{N} \quad$ such that $\quad \gamma(\alpha \beta) \gamma=\gamma \notin \quad I\left(E_{N}\right)$ thus, $0 \neq(\alpha \beta) \gamma=[(\alpha \beta) \gamma]^{2} \in E_{N} \quad$ and $\quad \beta \gamma \in[N, M], a$ contradiction, hence $\alpha \in \operatorname{Tot}[M, N]$, therefore $\alpha \in I[M, N]$. Thus، $\operatorname{Tot}[M, N]=$ $I[M, N]$ for any $M \in \bmod -R$, so $N \in I \Gamma(R)$. (3). By (1) and (2).

REFERENCES

1- A. N. Abyzov: (2008), "Weakly regular modules over normal rings"; Siberain Math. J. V.49, N.4, 575-586.
2- G. Azumaya: (1991), " F - Semi-perfect modules "; J. Algebra, 136, p.73-85.
3- H. Hamza: (1998), " I_{0} - Rings and I_{0}-modules"; Math. J. Okayama Univ. Vol.40, p.91-97.
4- F. Kasch: (1982), "Modules and Rings"; Academic press, London.
5- F. Kasch: (2002), "Locally injective modules and locally projective modules"; Rocky Mountain J. Math. 32(4), 1493-1504.
6- W. K. Nicholson: (1975), " I - Rings"; Trans. Amer. Math. Soc.207, p.361373.

7- W. K. Nicholson: (1976), "Semi-regular modules and rings"; Canad. J. Math. V.28, N.5, 1105-1120.

8- W. K. Nicholson: (1977), "Lifting idempotents and exchange rings"; Trans. Amer. Math. Soc. 229, 269-278.
9- W. K. Nicolson, Y. Zhou: (2005), "Strong Lifting"; J. Algebra. 285, (2), 795818.

10- A. A. Tuganbaev: (2000), "Modules over hereditary notherian prime rings"; Math. Zametke. T.68, N.5, p.739-755. (in Russian).
11- R. Ware: (1971), "Endomorphism rings of projective modules"; Trans. Amer. Math. Soc. 155, p.233-256.
12- R. Ware and J. Zelmanowitz: (1970), "The Jacobson radical of the endomorphism ring of a projective module"; Proc. Amer. Math. Soc.V.26, N.1, 15-20.
13- R. Wisbauer: (1991), "Foundations of module and ring Theory"; Univ. of Dusseldorf, Cordon and Breach.
14- Y. Zhou: (2009), "On (Semi) regularity and total of rings and modules"; Journal of Algebra, 322, p.562-578.
15- J. Zelmanowitz:(1972), "Regular modules"; Trans. Amer. Math. Soc.163, 341-355.

