Generalized Right Bear Rings

Hamze Hakimi and Mohamed Al-Cheikh

Department of Mathematics-Faculty of Sciences- DamascusUniversity

Received 11/03/2004 Accepted 28/05/2005

ABSTRACT

The object of this paper is to study the relationship between certain ring R and endomorphism rings of free modules over R. Specifically, the basic problem is to describe ring R, which is endomorphism ring of all free R-module, as a generalized right Bear ring. Call a ring R a generalized right Bear ring if any right annihilator contains a nonzero idempotent. A structure theorem is obtained: endomorphism ring of a free module F is a generalized right Bear ring if and only if every closed submodule of F contains a direct summand of F. It is shown that every torsionless R-module contains a projective R-module if endomorphism ring of any free R-module is a generalized right Bear ring.

Ley words: Projective module, Torsinoless module, Closed module, Bear ring, Endomorphism ring.

Throughout this paper R means an associative ring with identity element, and modules mean unitary R-modules.

For any non-empty subset A of a ring R, we denote the right annihilator of A in R by $r(A) = \{a : a \in R; Aa = 0\}$. Similarly, the left annihilator of A in R denoted by $l(A) = \{a : a \in R; aA = 0\}$. A right ideal of the form r(X) for some non-empty subset X of R, is called a right annihilator. A left annihilator is defined similarly.

Now, we begin with the following lemma.

Lemma 1. For any ring R, the following statements are equivalent:

(1)- For any non-empty subset A of R there exists an idempotent $1 \neq f \in R$ (resp. $0 \neq f \in R$) such that $l(A) \subseteq Rf$ (resp. $f \in l(A)$).

(2)- For any non-empty subset B of R there exists an idempotent $0 \neq e \in R$ (resp. $1 \neq e \in R$) such that $e \in r(B)$ (resp. $r(B) \subseteq eR$).

(3)- For any non-empty subset D of R there exists an idempotent $1 \neq g \in R$ such that a = ag (resp. a = ga) for all $a \in D$.

Proof. (1)⇒ (2). *Let B be a non-empty subset of R and b* ∈ *r*(*B*). *Then* yb = 0 *and* $y \in l(b)$ *for all* $y \in B$. *By* (1) *there exists an idempotent* $1 \neq f \in R$ *such that* $l(b) \subseteq Rf$. *Thus* y(1-b) = 0 *for all* $y \in B$. *Therefore* $(1-f) \in r(B)$ *and* 1-*f is a nonzero idempotent of R*.

(2) \Rightarrow (3). Let *D* be a non-empty subset of *R*, by (2), *r*(*D*) contains a nonzero idempotent *e*, therefore De = 0 and a = a(1-e) for all $a \in D$, where $1 \neq 1 - e \in R$ is an idempotent.

 $(3) \Rightarrow (1)$. It is clear.

Definition. We call a ring R a generalized right (resp. left) Baer ring if it satisfies the equivalent conditions of lemma 1. A ring, which is both generalized right and left, is called generalized Baer ring.

Following [1], we call a ring R Baer ring if every annihilator right ideal of R is generated by an idempotent, or equivalently, every annihilator left ideal of R is generated by an idempotent. It is clear every Baer ring is a generalized Baer ring.

Lemma 2. If R is a generalized right (resp. left) Baer ring, so is the ring eRe for all idempotent e of R.

Proof. Let A be a non-empty subset of eRe, write for $l_e(A)$ the left annihilator of A in eRe. Note that $l_e(A) = eRe I \ l(A)$. Since, $A \subseteq R$ and R is a generalized right Baer ring, there exists an idempotent $f \neq 1$ in R such that $l(A) \subseteq Rf$. On the other hand, $(1-e) \in l(A)$, therefore $(1-e) \in Rf$ and (1-e) = rf = rff = (1-e)f for some $r \in R$. So that f = ef + (1-e) from which follows fe = efe. Thus $g = fe \neq 1$ is an idempotent in eRe. Suppose $x \in l_e(A) = l(A) \cap eRe$, then $x \in l(A) \subseteq Rf$ and x = xf, $x = xe = xfe = xg \in eReg$. Therefore $l_e(A) \subseteq eReg$.

For any R-module M, M^* denotes $Hom_R(M, R)$ and S denotes $End_R(M)$. Also for any submodule A of M, and for any non-empty subset I of S, we denote

$$K(A) = \{ y : y \in M ; Iy = 0 \}, \ N(A) = \{ f : f \in S ; f(A) = 0 \}, \\ Q(A) = \{ \psi : \psi \in S ; \psi(M) \subseteq A \}, \ A' = \{ \mu : \mu \in M^* ; \mu(A) = 0 \}, \\ A'' = \{ y : y \in M ; A'y = 0 \}$$

It is easy to see that K(A) is a submodule of M, N(A) is a left ideal in S and $A \subseteq A'', A''$ is a submodule of M.

Following [2], let A be a submodule of R-module M, we call a submodule A" a closer to A. And A is called a closed submodule if A = A". We will need some results from paper [2] which are mentioned throughout the following lemma.

Lemma 3. If A is a submodule of a free R -module F then: (1)- $A'' = K(N(A)) = \prod_{x_{\alpha} \in N(A)} Kerx_{\alpha}$ [1, lemma 4]. (2)- Let $I = \{x_{\alpha}\}$ be a subset of S, then - If $A = \sum_{x_{\alpha} \in I} Im x_{\alpha}$, then l(I) = N(A) [1, lemma 5]. - If $D = \prod_{x_{\alpha} \in I} Kerx_{\alpha}$, then r(I) = Q(D) [1, lemma 6]. (2) K(N(A)) = A if and only if $A = \prod_{x_{\alpha} \in I} Kerx_{\alpha}$ for some subset \tilde{A}

(3)- K(N(A)) = A if and only if $A = \prod_{\sigma_{\alpha} \in \mathfrak{I}} Ker \sigma_{\alpha}$ for some subset \mathfrak{I} in *S*. [1, corollary 3].

in 5. [1, corollary 5].

Proposition 4. Let *F* be a free *R*-module and $I = \{x_{\alpha}\}$ be a subset of $S = End_{R}(F)$, then the following conditions are equivalent:

(1)- $l(I) \subseteq Se$ for some idempotent e of S.

(2)- The closer to $A = \sum_{x_{\alpha} \in I} \operatorname{Im} x_{\alpha}$ contains a direct summand of F.

Proof. (1) \Rightarrow (2). Assume $l(I) \subseteq Se$ for some idempotent e of S. By lemma 3(2) we have l(I) = N(A) where $A = \sum_{x_{\alpha} \in I} \operatorname{Im} x_{\alpha}$. Therefore

by lemma 3(1)

$$A'' = K(N(A)) = \prod_{\sigma_{\alpha} \in N(A)} Ker \, \sigma_{\alpha} = \prod_{\sigma_{\alpha} \in l(I)} Ker \sigma_{\alpha}$$

Let $\sigma_{\alpha} \in l(I)$, then $\sigma_{\alpha} = \lambda e$ for some $\lambda \in S$ and $Kere \subseteq Ker\sigma_{\alpha}$ for all $\sigma_{\alpha} \in l(I)$. This shows that $Kere \subseteq \prod_{\sigma_{\alpha} \in l(I)} Ker\sigma_{\alpha} = A''$, where

Ker e is a direct summand of F.

 $(2) \Rightarrow (1)$. Suppose that F_0 is a direct summand of F, and $F_0 \subseteq A''$. Then $F = F_0 \oplus P$ where P a submodule of F. Let e be the projection of F onto P, then it is easy to see that e is an idempotent of S and e(x) = x for all $x \in P$. Let $g \in l(I)$ by lemma 3 $g \in l(I) = N(A) = N(A'')$, and g(A'') = o. Since $F_o \subseteq A''$ follows $g(F_o) = o$. Let $y \in F$, then $y = y_1 + y_2$ where $y_1 \in F_o, y_2 \in P$, therefore

$$g(y) = g(y_1) + g(y_2) = g(y_2)$$

but $ge(y) = ge(y_1) + ge(y_2) = ge(y_2) = g(y)$. Thus g(y) = ge(y)for all $y \in F$. From this fact follows $g = ge \in Se$. Thus our proof is completed.

Proposition 5. Let *F* be a free *R*-module and $I = \{x_{\alpha}\}$ be a subset of $S = End_{R}(F)$, then the following conditions are equivalent:

- (1)- There exists an idempotent f of S such that $r(I) \subseteq fS$.
- (2)- There exists an idempotent e of S such that $e \in l(I)$.
- (3)- The submodule $A = \sum_{x_{\alpha} \in I} \operatorname{Im} x_{\alpha}$ contained in a direct summand

of F.

Proof. (1) \Leftrightarrow (2) *it follows from lemma 1.*

 $(2) \Rightarrow (3). Let e be an idempotent of S such that e \in l(I), and let$ $x_{\alpha} \in I, then ex_{\alpha} = o, so Im x_{\alpha} \subseteq Kere for all x_{\alpha} \in I. Thus$ $A = \sum_{x_{\alpha} \in I} Im x_{\alpha} \subseteq Kere, where Ker e is a direct summand of F.$

(3) \Rightarrow (2). Assume $A = \sum_{x_{\alpha} \in I} \operatorname{Im} x_{\alpha} \subseteq F_0$ where F_o a direct summand

of F. Then $F = F_o \oplus P$ where P a submodule of F. Suppose $f: F \to P$ the projection of F on to P. Thus $f(F_o) = 0$, f(A) = o by lemma 3(2) $f \in N(A) = l(I)$.

Proposition 6. Let *F* be a free *R* -module and $I = \{x_{\alpha}\}$ be a subset of $S = End_{R}(F)$, then the following conditions are equivalent:

- (1)- There exists an idempotent f of S such that $f \in r(I)$.
- (2)- $B = \prod_{x_{\alpha} \in I} Kerx_{\alpha}$ contains a direct summand of F.

Proof. (1) \Rightarrow (2). Let f be an idempotent of S such that $f \in r(I)$, by lemma 3(2) $f \in r(I) = Q(B)$ where $B = \prod_{x_{\alpha} \in I} Kerx_{\alpha}$. Thus

Im $f \subseteq B$ and Imf is a direct summand of F.

 $(2) \Rightarrow (1)$. Let F_o be a direct summand of F such that $F_o \subseteq B$, then $F = F_o \oplus P$ where P a submodule of F. Suppose f the projection of F onto F_o , then f is an idempotent of S and $\operatorname{Im} f = F_o \subseteq B$. Thus by lemma 3(2) $f \in Q(B) = r(I)$.

Theorem 7. Let *F* be a free *R*-module and $S = End_R(F)$, then the following conditions are equivalent:

(1)- $(\sum_{x_{\alpha} \in I} \operatorname{Im} x_{\alpha})''$ contains a direct summand of F, for any subset $I = \{x_{\alpha}\}$ of S.

(2)- The submodule $\begin{bmatrix} Kerx_{\alpha} \text{ contains a direct summand of } F \end{bmatrix}$

for any subset $I = \{x_{\alpha}\}$ of S.

(3)- Every closed submodule of F contains a direct summand of F.

(4)- The ring S is a generalized right Baer ring.
Proof. (1)⇔(2) it follows from proposition 4.
(2)⇔(4) it is clear by using proposition 6.

(3) \Rightarrow (4). Let $B = \prod_{x_{\alpha} \in I} Kerx_{\alpha}$, then by lemma 3(3), B = K(N(B))

therefore B = B'', thus B is closed submodule of F, by our hypothesis B contains a direct summand of F. by proposition 6 there exists an idempotent f of S such that $f \in r(I)$. Thus, we have that S a generalized Baer ring.

(4) \Rightarrow (3). Let A be a closed submodule of F, then A = A'', by lemma 3, A = A'' = K(N(A)), therefore $B = \prod_{x_{\alpha} \in I} Kerx_{\alpha}$ for some

subset $I = \{x_{\alpha}\}$ of S. Since S is a generalized Baer ring there exists an idempotent e of S such that $e \in r(I)$. Thus by proposition 6, $B = \prod_{x_{\alpha} \in I} Kerx_{\alpha}$ contains a direct summand of F.

Theorem 8. Let *F* be a free *R*-module and $S = End_R(F)$, then the following conditions are equivalent:

(1)- The submodule $\sum_{x_{\alpha} \in I} \operatorname{Im} x_{\alpha}$ contained in a direct summand of F, for any subset $I = \{x_{\alpha}\}$ of S.

(2)- Every submodule of F contained in a direct summand of F.
(3)- The ring S is a generalized Baer ring. Proof. (1)⇔(3) it follows from proposition 5.
(2)⇒(1) it is clear.

 $(1) \Rightarrow (2)$ it follows from the fact, that any submodule of F can be considered as sum of images of some subset of S.

REFERENCES

Kaplansky, I. (1968). Rings of Operator, New York: Amsterdam: W.A.Benjamin inc.

Tsukerman, G. M. (1966). Rings of Endomorphisms of free module, Siberian. Math. J.7,923-927.

Goodearl, K. R. (1976). Ring Theory, Non-Singular Rings and modules, Pure and Appl. Math. N33, Dekker (new york).