(Mv Mw)

Mv Mw PB PP .PVC PA-HDPE

.[η] $\mathbf{M}\mathbf{w} = \mathbf{X} \cdot \mathbf{M}\mathbf{v}$ () :

 \mathbf{X} Mv

η

 $\mathbf{M}\mathbf{w} = \mathbf{v}$. $\mathbf{M}\mathbf{v}$ () : ()

 $\mathbf{M}\mathbf{w}$

Mv[η] Mv

Study of the Molecular Weight (Mw, Mv) Variations During the Formation of Some Polymers According to Cole - Cole Representations Under Variable Temperature, Dynamic Frequencies

Fawaz- Al Deri; Adnan Chehadeh; Fayez Fallouh; Nizar Fallouh; and Ahmad Nizam Aldine

Department of Chemistry -Faculty of science- Damascus University-Syria
Received / /
Accepted / /

Abstract

The molecular weight (Mw, Mv) variations according to Cole - Cole representations were studied by applying variable temperature degrees, dynamic frequencies on a number of polymers: polypropylene (PP) isotactic, polybutene (PB), polyamide- (PA-), high density polyethylene (HDPE).

The rheometer system of Kepes was used to determine the Newtonian viscosity (η) under a deformation angle () and an Abel-Hood viscometer was used to determine the intrinsic viscosity $[\eta]$.

An empirical formula was suggested and used: Mw = X. Mv () where: Mw - The weight average molecular weight, Mv - The viscosity average molecular weight, X - constant.

Then the constant (X) was calculated by using Mw and Mv, which were determined from the Newtonian viscosity (η) by using Cole - Cole representations and the intrinsic viscosity [η] for four polymers PP, PB, PA- and HDPE. and it was found to be X = . So that formula () became: $Mw = \frac{1}{2} Mv = \frac{1}{2} Mv = \frac{1}{2} Mv$

In order to test the reliability of this formula it was applied on polyvinyl chloride by determining its weight average molecular weight Mw by using the Newtonian viscosity (η) method and calculating Mv from formula (). The determination of the viscosity average molecular. weight Mv of the polyvinyl

chloride by using the intrinsic viscosity $[\eta]$, showed good agreemenl between the calculated values according to formula () and those experimentally determined values.

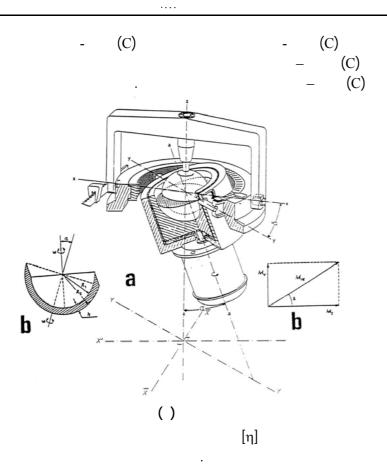
Key words: Variation of molecular weights of Polymers, polyproplene, polybutene, polyamide- . high density polyethylene and polyvinyl chloride.

()

.

.

()


Tg ()

.[]

[].

[][][][][]

 $^{\text{-}}$ - [HZ] $$\eta$$ - (C) : $$\alpha$$

() κ α

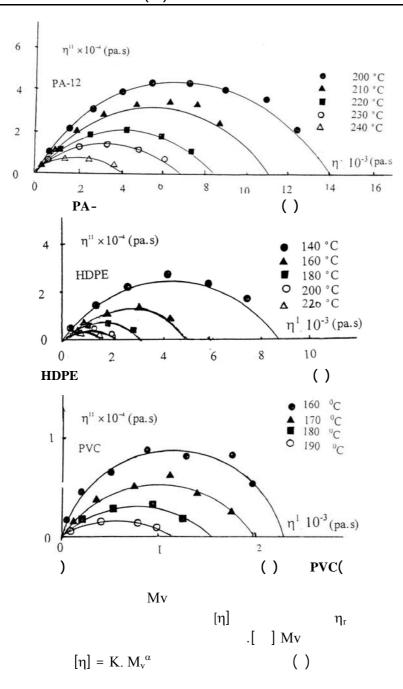
	α	κ	C	
PP		-		
PB		-		
PA -				
HDPE		-		
PVC				

PB PP: C.D.F-Chimie HDPE PA-PVC

η η^{\prime} .[] η" $\eta = \eta' - j \eta''$ () $\eta' = Mv \cdot Cv$ () $\eta''=M_E$. Cv() M_E Mv Cv:

η" :

 $\boldsymbol{\eta'}$


[] η .[].

η

.(PP)			η			()		
						С		
						η (Pa.s)		

	(PB)	η		()
					С
					η (Pa.s)

.... () (PA -) η С η (Pa.s) (HDPE) () η С η (Pa.s) • 186 C ■ 196 °C ■ 206 °C ○ 216 °C △ 226 °C □ 236 °C × 246 °C $\eta^{11} \times 10^{-4} \text{ (pa.s)}$ 4 2 $\eta^1 \ 10^{\text{-3}} \ (\text{pa.s})$ 12 10 14 2 () PP 146 °C 156 °C 166 °C 176 °C 186 °C 196 °C 206 ° 216 °C $\eta^{\shortparallel} \times 10^{\dashv} \, (pa.s)$ 6 4 2 10-3 (pa.s) 0 10 12 14 18 () PB


```
(Mv Mw) ....
```

() $K\ \alpha$: η .[]. Mw () $\eta = A. M_w$: A $\eta = C_{w}$ () Mw Zw() Mw = w. Zw /w : : () W () () Zw MwZw Mv(PB) (PP) (HDPE) () Mv $\mathbf{M}\mathbf{w}$ C Mw g/mol Mv g/mol

Zw

			()	1				
		Mv		Mw				()
					•			С
								Mw g/mol Mv g/mol
								Zw
		Mv		Mw				()
							С	
							Mw g/m Mv g/m	
							Zw	
		Mv		Mw				()
			•			C		
						Mw g/n		
						Mv g/n Zw	101	
	_			Mw				-
:								Mv
	My	w = x. N	1v				()	
			Mv	Mw	7			X :
	()		×			()	
		$\frac{Mv}{Mv}$	$\frac{V}{V} = X$					
Mw	Mw	Mw	Mw	Mw	Mw	Mw	Mw	
Mv	Mv	Mv	Mv	Mv	Mv	Mv	Mv	

X

```
(Mv Mw)
```

.... () X : () () Mw =. Mv Mw(() η Mv.() [η] η <u>(</u>Pa.s) () Mv $\mathbf{M}\mathbf{w}$ [η] () Mw g.mol g. mol - . () Mv g. mol ⁻ [η] Mv Zw () Mv() η η

. Mw . Mw . $[\eta]$. Mw . Mw = Mw : Mv

 $[\eta]$ Mw

.

REFERENCES

•	Anderson, A. J., Dawes, E. A. Microbial Re., () .	
	Sharma, R., & Ray, R. A., j. Macromol. SciRev., C ()() .	
	King, P. P., J. Chem. Tech. Biotechnol. () .	
•	A. Kepes, Etude rhéologique des Polyméres, Mazingarbe (France) Octobre .	
	T. E. R. Jones, K.Walters, Brit. J. Phys. () .	
	M.yamamoto, Communication Privée, Société Contraves, Zurich (suiss)).
	J. F. May, Techniques de L'ingénieur, Plastiques. () .	
	F. C. Bawden, N.W. Prie, Unpul. Advan. Enzymol ().	
	O. Bodman, D,Kanz; G.V. Schulz, Makromol. Chem. () .	
•	M. Kurata; Y.Tsunashima; M.iwama; K.kamaday Viscosity molecule Weight relationships and Unperturbed dimensions of Linear Chemolecules, in "Polymer hand book"; P. IV-, J. Brandrup, E. Immergut, Eds. John Wiley and Sons. new york ().	ain
	T. Skedberg, I,B,Eriksson, J.Am. Chem. Soc ().	
•	M. Mikaliev and M.Natov. Techniques de l'ingénieur, Plalstiques. P. ().	-
•	J.Delale; R.Genillon; J.F.MAY et Setytre. Eur. Poly. J. vol N. ()
	J. Guillet; A. Maazouz et J. F. May. Eur. Polym. J. vol. No ()
	K.S. Cole et R. H. Cole. J. Chem. Phys., () .	
	R. S. Lenk. Polymer Rheology. Applied Seince. LTD . London ()	
	C.Carrot. These, Université Jean Monnet, Saint - Etienne, France ()
	•	