(2)

45) (Prunus persica Batsch)
(/Fe 20 10) / 7.5 5.0 2.5 : (% (% 6) Fe-EDDHA

2007 2006

20 / 7.5 /Fe

. :

121

Effect of Foliar Spray With Urea and Iron on Vegetative Growth and Mineral Contente of Peach Transplants cv. Dixired

J. M. Al-A'areji⁽¹⁾ and R. E.AL-Hamadany²

ABSTRACT

Peach (Prunus persica Batsch) transplants cv. Dixired were sprayed three times a season with three levels of urea (45% N) (2.5, 5.0 and 7.5 gm/ L), and two levels of iron (10 and 20 mg Fe/ L) using chelated iron Fe-EDDHA (6% iron), each alone or in combination. Meanwhile the control transplants sprayed with distilled water during 2006 and 2007 growing seasons, twenty days intervals between each spray and another, the first spray is done at the first week of May in both seasons. Results indicated that all spray treatments with urea and iron each alone or with each other significantly increased leaves N, K, Fe, chlorophyll and carbohydrate concentration, transplant leaves area, shoots number, transplants height, main stem diameter and vegetative and root dry weight. While leaves P concentration, significantly decreased with the foliar spray with two concentrations of iron alone, or in combination with all concentrations of urea. The best treatment was 7.5 gm urea/ L + 20 mg Fe/ L., which gave the highest means of all studied parameters, except leaves P concentration, which were the highest mean of it was in the control treatment at both seasons.

Key Words: Foliar spray, Urea, Iron, Transplants, Peach.

⁽¹⁾ Hort.& Land Scape Dept. (2) Soil Sci.&Water Dept. Faculty f Agriculture and Forestry, Mosul University, Iraq.

(Prunus persica Batsch) Rosaceae .(Bal, 2005) 15846.48 .(FAO, 2007) %75 .(1991) 1982) (2005 %4-2 () .(Havlin et al., 2005 Singh, 2003) Gooding and Davies, 1992;) (Johnson et al., 2001 Bondada et al., 2001

.(Bondada et al., 2001)

Johnson et al., 2001)
Cheng et al., 2002 et al., Dong 2002 Bl et al., 2003
.(2005 Hussain et al., 2007

(1989) pH (Lindsay, 1972)

Catalase Peroxidase .(Havlin *et al.*, 2005)

Hassan and Atawia, 1995)

Awad and Atawia, 1995 100

Fe 60 1998

998 25 1999 / Fe

1999 / Fe 20 10 2001 Fe 60 - 30 Anna

Tsipouridis et al., 2006 60

Al-Bamarny et al., 2010 Fe 100

Fe 60 Early Coronet

2007 2006

(/Fe 20 10) / 7.5 5.0 2.5 :

135-121 : (28) (2012) 1

17 18 35 15 9 (1)

(Page et al., 1982) .(2)

(1)

49	(/)	1.456	(/)
22	(/)	7.53	рН
130	(/)	1.71	(/)
2.5	(/)	462.55	(/)
84	(/)	230.90	(/)
28.94	(/)	306.55	(/)
97.3	(/)		_
		31.295	(/)

10 .)

(

.(

. 1 / 2.5 . 2

/ 5.0 . 3

/ 7.5 . 4

. 5 10

20 . 6

/ 2.5 . 7 /Fe 10 +

. /Fe 20 + / 2.5 . 8

. /Fe 10 + / 5.0 . 9 . /Fe 20 + / 5.0 . 10

. /Fe 10 + / 7.5 . 11

. /Fe 20 + / 7.5 . 12

RCBD

 $240 = 5 \times 4 \times 12$

(2)

* 2007 2006

2007 2000			
	()	()	(%)
1	1.6	11.1	78
2	6.4	15.3	76
3	8.5	21.4	65
4	13.8	25.2	69
5	17.4	33.2	47
2006 6	21.6	39.8	27
7	25.7	42.1	28
8	27.3	45.1	27
9	20.2	38.1	34
10	16.2	30.7	52
11	6.3	18.9	59
12	0.5	14.3	65
1	1.2	12.5	79
2	5.2	15.1	78
3	7.2	19.3	66
4	10.6	22.4	70
5	19.6	34.7	46
2007 6	23.4	40.6	31
7	27.1	43.7	25
8	26.3	43.4	31
9	20.9	38.8	29
10	15.5	32.6	40
11	8.0	23.0	53

135-121: (28)(2012)1 (%45) %6) Fe-EDDHA (30 % 0.1 (Tween - 20)50 25 50) 10 72 70 (Arnon, 1949) (Bhargava and Raghupathi, 1999) .(Herbert et al., 1971) (Patton, 1984) (Vernier) 5 () 70

. 0.1 (SAS, 1996) SAS .% 5

/ 20 / 7.5

Awad and Atawia, 1995) 2005

2004

2001 1999

.(Mayi 2007 2009

(3)

.*2007 2006

	(%) K		(%) P			(%) N					
	2007	2006		2007	2006		2007	2006		1	
1.39e	1.42d	1.37e	0.20a	0.20a	0.20a	1.61f	1.60f	1.63 e			
1.79d	1.76c	1.83d	0.20a	0.21a	0.20a	1.91d	1.92d	1.91 c		/	2.5
1.85c	1.79c	1.91c	0.21a	0.21a	0.21a	2.15c	2.10cd	2.20 b		/	5.0
1.86c	1.83bc	1.90c	0.22a	0.22a	0.22a	2.15c	2.20c	2.10 b		/	7.5
1.85c	1.80bc	1.90c	0.14d	0.15e	0.14d	1.72e	1.74e	1.71 d		/Fe	10
1.90c	1.82bc	1.98c	0.12e	0.12f	0.12e	1.76e	1.79e	1.74 d		/Fe	20
1.97bc	1.94b	2.00bc	0.19ab	0.19b	0.19b	1.92d	1.91d	1.93c	+	/	2.5
1.5700	1.5 10	2.0000	0.1740	0.170	0.170	1.724	1.714	1.750		/Fe	10
2.05bc	1.98b	2.12b	0.18b	0.18bc	0.18b	1.97d	1.97d	1.98c	+	/_	2.5
										/Fe	20
2.28a	2.31a	2.25b	0.17b	0.18bc	0.17b	2.27c	2.25c	2.30b	+	/	5.0
										/Fe	10
2.29a	2.29a	2.30a	0.17bc	0.17cd	0.18b	2.75b	2.80b	2.71ab	+	/	5.0
										/Fe	20
2.31a	2.30a	2.32a	0.16c	0.16de	0.16c	2.80ab	2.82b	2.78a	+	/_	7.5
										/Fe	10
2.33a	2.31a	2.35a	0.16c	0.16de	0.16c	2.92a	2.94a	2.91a	+	/	7.5
2.554	2.514	2.304	0.10 0	5.10 40	5.10 0	2.524	2.5 14	, ru		/Fe	20

. 0.05

(4) (2006)

(Singh, 2003) (IAA)

Bl et ; Johnson, 2001)

(al., 2003

()

.(Dermer and Smith, 1961)

(4)

.*2007 2006

(%)		(/)			(/) Fe	9			
	2007	2006		2007	2006		2007	2006		/	
3.32g	3.21 g	3.43 f	7.00 h	6.90 f	7.11 f	73.91 i	72.33 j	75.50 h			
4.86f	4.82 f	4.91 e	8.92 g	8.40 e	9.45 e	80.91 h	81.52 i	80.31 g		/	2.5
4.95f	4.92 f	4.98 e	9.26 f	8.81 de	7.72 e	82.92 g	83.32 hi	82.52 g		1	5.0
5.56e	5.52 e	5.60 de	9.92 e	9.90с-е	9.94 e	83.96 g	84.52 h	83.41 g		1	7.5
5.87 e	5.82de	5.93 cd	9.25 f	9.51c-e	9.00 e	99.80 f	99.40 g	100.20 f		/Fe	10
6.05 d	6.10 d	6.00b-d	9.90 e	10.00ef	9.80 de	104.76 e	106.12 f	103.41 e		/Fe	20
6.16c	6.20d	6.12bc	10.404	10 68ad	10 1200	102.33e	105.36f	99.31f	+	1	2.5
0.100	0.20 u	0.1200	10.40 u	10.08Cu	10.1200	102.556	105.501	99.311		/Fe	10
6.91b	6.84c	6.98ab	10 064	10 94cd	10 00hd	107.45d	110.40d	104.51e	+	1	2.5
0.910	0.040	0.9840	10.90 u	10.94cu	10.5500	107.43u	110.40 u	104.510		/Fe	20
7.26b	7.22bc	7.31a	11 38c	11 44hc	11 33bc	109.47d	108.32e	110.63d	+	1	5.0
7.200	7.2200	7.51a	11.500	11.4400	11.5500	107.474	100.520	110.034		/Fe	10
7.44a	7.32bc	7.57a	12 55h	12 90ah	12 20ah	114.50c	112.81c	116.20c	+	1	5.0
7. 44 a	7.3200	7.57 u	12.330	12.7000	12.2000	114.500	112.010	110.200		/Fe	20
7.55a	7.50ab	7.61a	12 54h	12 94ah	12 15ah	124.25b	128.24b	120.27b	+	1	7.5
1.55a	7.5000	7.01a	12.570	12.7740	12.1340	127.230	120.270	120.270		/Fe	10
7.76a	7.80a	7.72a	13.87a	13.84a	13.90a	131.52a	132.81a	130.23a	+	1	7.5
7.70a	7.00a	1.12a	13.07a	13.0 4 a	13.90a	131.32a	132.01a	130.23a		/Fe	20

.0.05

(4)

()

7.5

13.84 13.90

/Fe 20

```
/ 13.87
             %7.80
                                 %7.72
                                                         %7.76
Tsipouridis et al., 2006 2005
                                             2001 1999
                                                               )
                     .(2010
                                             2009
                                  (4 3
                                              )
                  Porphyrins
                                                  (Singh, 2003)
                 γ-aminolivulinic acid
                                         Glutamate
                               Mg- Protoporphyrin 1x methyl ester
    Protochlorophyllid
           (Porra and Meisch, 1984)
              (5 4
                         )
              .(Chen and Chen, 2004 Cheng and Fuchigami, 2002)
/Fe
       20
                 / 7.5
              2007 2006
                                                   .(6 5
2001 1999
                    )
                                                  Bl et al., 2003
             .(Hussain, 2007 2005
             (4
                    )
                             .(Dong et al., 2002)
                         (IAA)
                                             (DNA RNA)
     (Singh, 2003)
(2005
                       )
 Peroxidase Catalase
```

Cytochrome oxidase .(Havlin *et al.*, 2005)

(5)

.*2007 2006

())		(/)		(/ ²)			
	2007	2006		2007	2006		2007	2006	/	
84.94g	80.30h	89.58g	2.07f	2.00e	2.14d	753.81f	757.32i	750.31h		
111.16f	111.92g	110.41e	2.67f	2.70d	2.64c	952.27e	947.32h	957.22g	/	2.5
118.08e	117.62e	118.55d	2.96e	2.94cd	2.99c	982.14e	980.87fg	983.41f	/	5.0
123.96d	125.31f	122.62d	3.08de	3.12cd	3.04c	1016.13d	1011.94f	1020.33e	/	7.5
114.92e	120.44ef	109.40f	3.04de	3.08cd	3.00c	1005.04d	1009.87f	1000.21e	/Fe	10
123.06d	125.64e	120.48d	3.18d	3.20c	3.17c	1091.17d	1100.92e	1081.43d	/Fe	20
127.46d	130.62d	124.30d	3.96cd	4.00b	3.92b	1110.30d	1120.41d	1100.19d	+ / /Fe	2.5 10
126.65d	129.41de	123.90d	4.00c	4.12b	3.88b	1151.48c	1182.62c	1120.34c	+ / /Fe	2.5 20
132.29c	133.71d	130.87c	4.20bc	4.24b	4.16b	1154.31c	1180.31c	1128.32c	+ / /Fe	5.0 10
135.04c	136.19c	133.90c	4.54b	4.20b	4.89a	1300.50b	1299.80b	1301.21b	+ / /Fe	5.0 20
143.96b	148.26b	139.66b	5.15a	5.20a	5.11a	1310.42b	1300.52b	1320.32b	+ / /Fe	7.5 10
150.93a	155.90a	145.96a	5.48a	5.59a	5.38a	1377.41a	1374.32a	1380.51a	+ / /Fe	7.5 20

.0.05

/Fe 20 / 7.5

(6)

.*2<u>007 2006</u>

(()		()			()				
	2007	2006		2007	2006		2007	2006		/	
19.17h	19.14g	19.21f	29.70h	29.20i	30.21f	4.29e	4.28f	4.30f			
20.45g	20.68f	20.22e	34.72g	34.80h	34.65e	5.60de	5.54e	5.66e		/	2.5
21.51fg	21.62f	21.41e	39.87f	39.80g	39.94d	5.94de	5.89e	5.99e		/	5.0
23.88ef	24.11de	23.66c	45.81e	46.43e	45.20c	6.17cd	6.00e	6.34ce		/	7.5
22.60f	24.00e	21.20e	41.02ef	43.62f	38.43d	5.85de	5.98e	5.72e		/Fe	10
23.23ef	24.11de	22.36d	43.21e	43.92f	42.50d	6.09d	6.19e	6.00de		/Fe	20
24.35d	25.00d	23.70c	49.12d	51.92d	46.32c	6.62c	6.58c-e	6.67cd	+	/ /Fe	2.5 10
24.60d	25.00d	24.20c	49.69d	51.83d	47.56c	6.78c	6.82b-e	6.74cd	+	/Fe	2.5 20
26.32c	26.33c	26.31b	59.41c	58.92c	59.90b	7.18b	7.14a-d	7.23bc	+	/ /Fe	5.0 10
27.05c	27.40c	26.70b	63.26b	65.20b	61.32b	7.20b	7.20a-c	7.20bc	+	/ /Fe	5.0 20
28.55b	30.21b	26.90b	69.51a	70.62a	68.40a	7.73a	7.72ab	7.74b	+	/ /Fe	7.5 10
29.76a	31.36a	28.17a	71.29a	72.40a	70.18a	7.87a	7.93a	7.81a	+	/ /Fe	7.5 20

. 0.05

REFERENCES

.(1998) .

.(1999) .

.17 - 11 :(2) 31

.(2001) .

.82 -77 :(6) 32

.52 - 40 :(3) 33 . Olea europaea .(2005) .

.(Olea europaea L.)

.46 - 40 :(4) 33

.(2006) .

P N

.187 - 181 :(2) 6

.(2009) .

.Vistabella Anna .95 – 81 :(1) 37

.(2009) .

Anna . — 2 .Vistabella

.199 - 183 :(2) 9

.(2004) .

.(2010) .

:(1) 28 . .126 - 118

.(1991) .

.

- Al-Bamarny, S. F. A.; M. A. Salman and Z. R. Ibrahim. (2010). Effect of some chemical compounds on some characteristics of shoot and fruit of peach (*Prunus persica* L.) cv. Early Coronet. Meso. J. Agric. 38 (Supplement 1):35–44.
- Arnon, D. I. (1949). Copper enzymes isolated chloroplasts polyphenol oxidase in *Beta vulgaris*. Plant Physiol. 24: 1-15.
- Awad, S. M. and A. R. Atawia. (1995). Effect of foliar sprays with some micronutrient on 'Le-Conte' pear trees. I: Tree growth and leaf mineral content. Annals Agric. Sci. 40 (1): 359-367.
- Bal, J. S. (2005). Fruit Growing. 3^{td} edt. Kalyani Publishers, New Delhi- 110002.
- Bhargava, B. S. and H. B. Raghupathi. (1999). Analysis of plant materials for macro and micronutrients. P: 49-82. In Tandon, H. L. S. (eds). Methods of Analysis of Soils, Plants, Waters and Fertilizers. Binng Printers L-14, Lajpat Nagar New Delhi, 110024.
- Bl. G.; C. F. Scagel; L. Cheng; S. Dong and L. H. Fuchigami. (2003). Spring growth of almond nursery trees depends upon nitrogen from both plant reserves and spring fertilizer application. J. Hort. Sci. & Biotechnology, 78 (6). 853 858.
- Bondada, B. R.; J.P.Syvertsen and L. G. Albrigo. (2001). Urea nitrogen uptake by citrus leaves. HortSci . 36:1061-1065.
- Chen, L. S. and L. Chen. (2004). Photosynthetic enzymes and carbohydrate metabolism of apple leaves in response to nitrogen limitation. J. Hort. Sci. and Biotechnology, 79 (6): 923-929.
- Cheng, L.; S. Dong and L. H. Fuchigami. (2002). Urea uptake and nitrogen mobilization by apple leaves in relation to tree nitrogen status in Autumn. J. Hort. Sci. & Biotechnology, 77 (1):13-18.
- Dermer, E. D. and R. L. Smith. (1961). The effect of chelates and chelated cations in increasing the availability of phosphours from insoluble sources. Pros. Amer. Soc. Hort. Sci. 77: 513-519.
- Dong, S.; L. Cheng, C. F. Scagel and L. H. Fuchigami. (2002). Nitrogen absorption, translocation and distibution from urea applied in autumn to leaves of young potted apple (*Malus domestica*) trees. Tree Physiol. 22:1305-1310.
- FAO (2007). FAO Statistics Division, 8 March. Faostat. Org.
- Gooding, M. J. and W. P. Davies. (1992). Foliar urea application of cereals: A Review. Fert. Res. 32: 209-222.
- Hassan, A. K. and A. R. Atawia. (1995). Effect of foliar sprays with some mineral elements on growth and leaf mineral content of avocado seedlings. Annals Agric. Sci. 40 (2): 787 797.

- Havlin, J. L.; J. D. Beaton; S. L. Tisdale and W. L. Nelson. (2005). Soil Fertility and Fertilizers $.7^{th}$ ed . Upper Saddle River, New Jersey 07458 .
- Herbert, D.; P. J. Phillips and R. E. Strange. (1971). Determination of total carbohydrates. Method in microbial., 58: 209 344.
- Hussain, S. A.; N. L. Badshah; A. Rab and S. Riaz. (2007). Effect of different concentrations of nitrogen and zinc on the growth of pecan nut seedlings . Sarhad J. Agric. 23 (2): 285–287.
- Johnson, R. S.; R. Rosecrance; S. Weinbaum; H. Andris and J. Wang. (2001). Can we approach complete dependence on foliar applied urea nitrogen in an early -maturing peach. J. Amer. Soc. Hort. Sci. 126: 364-370.
- Lindsay, W. L. (1972). Inorganic phase equlibria of micronutrients in soil. p:41-57 In: Mortvedtm J. J.: P. M. Gordianao and W. L. Lindsay (eds). Micronutrients in agriculture. Soil Sci.Soc.Amer.Madison, Wisconsin.
- Mayi, A. A. (2007). Effect of foliar spray with GA_3 and iron on the vegetative growth, yield and storage characteristics of apple cvs. starking and barwari. Ph. D. Dissertation. Coll. Agric. Duhok Univ. Iraq.
- Page, A. L.; R. H. Miller and D. R. Keeney. (1982). Methods of Soil Analysis. Part 2. Amer.Soc.Inc. publisher madison, Wisconsin, USA.
- Patton, L. (1984). Photosynthesis of growth of willow used for rotation. Ph. D. Thesis submited to the Univ. of Dublin (Trinity college).
- Porra, R. and H. Meisch. (1984). The biosynthesis of chlorophyll. Tread Biochem. Sci., 9: 99-104.
- SAS. (1996). Statistical Analysis System.SAS Institute Inc. Cary NC. 27511, USA.
- Singh, A. (2003). Fruit Physiology and Production. 5th ed. Kalyani Publishers. New Delhi 110002.
- Tsipouridis, C.; D. Almaliotis; T. Thomidis and A. Isaakidis. (2006). Effect of different sources of iron, hormones and *Agrobacterium tumefaciens* on the chlorophyll and iron concentration in the leaves of peach trees. Hort. Sci. (Prague), 33 (4): 140 147.

Received	2011/03/06	
Accepted for Publ.	2011/07/26	