(1)

 %10
 %26
 %55

 .3
 / 3.26
 3
 / 3.34-3.20
 .%8

%84.0-76.6 -

Mineralogical, Petrgraphical and Geochemical Characterization of the Olivine Sands, in Tell Al-Sis Area, in Syrian Hamad

A. Al-Safarjalani⁽¹⁾

ABSTRACT

Sixteen samples of friable olivine sands of Tell Al-Sis area have been collected. The samples located at the surface of low topography area along ephemeral wadies and behind basaltic rock outcrops, associated with soil and zeolites. Olivine grains have been separated from the sands and sieved to determine grain size distribution. The sand sizes were 55% medium,26% coarse,10% fine and 8% of very coarse sand. The density of olivine sands varies between 3.20 to 3.34 g/cm³ with an average of 3.26 g/cm³, which is comparable to forsterite. Results of petrgraphical studies such as color, index of refraction and interferences colors confirm the high forsterite content of the olivine. Electron microprobe analysis of olivine indicate that the olivine consists of forsterite (76.6-84.0%) and fayalite (15.6-22.4 %), while the monticellite and tephroite content is minor(very low). Field observation, petrographical and chemical data confirm the similarities between olivine from the sand and those olivine crystals from the pyroclastic-sedimentary Al-Sis- Formation, pointing to a common source origin region, which is the volcanic rocks of the widely distributed alkali olivine basalt of the Tell Al-Sis. These olivine crystals were librated during weathering and erosion of the basalt. Also the olivine rich ultramafic xenoliths (Dunite and Lherzolite) have contributed some of these olivine crystals.

Key Words: Olivine sands, Syrian Hamad, Tell Al-Sis, Electron microprobe.

⁽¹⁾ Prof., Dr. Dept., Soil Sciences, Faculty of Agriculture Damascus University, P.O.Box 30621, Syria.

(Ham N15 ⁻ 3	ad Uplift) 37°-30´ 37°) .(1) 170	1:50.000 - / 5 - 4	(E15´33°-30´33°
	749		60-20	
	.(Dube	rtret,1940)	699	
βQ ₂	1.3	70 . 25	0.75 °45	
				.(V)
	.TN2b βN2a 15		-	
«		» .(Mouty <i>et a</i>	B al.,1992; Sharko	Q1 « » ov <i>et al.</i> , 1994) βQ2
	βQ1		. 8-3	
	-		108	60-50
%70-3			%50	

 $\label{eq:second} \begin{array}{c} \rho(x) = \left\{ \begin{array}{c} \left\{ 1 \right\} \right\} \text{ formation} \\ \sigma(x) = \left\{ 1 \right\} \\ \sigma(x) =$

OBRE

TVDWO

•

-0.25

.

3.5

.(Imadi, 2003)

19

.2009

.

(Tucker,1985) .(1) .µm63

(Wentworth,1922) 2 .(1)

(1)

:

			()		(1)	
gr/cm ³	125- 63 μm	250-125 μm	500- 250 μm	1000- 500 μm	2000-1000 μm	
13.3	0.01	13.48	56.25	24.08	6.18	1
83.2	0.01	12.03	55.05	26.52	6.39	2
13.3	0.00	6.88	55.08	32.45	5.59	3
73.2	0.01	9.80	55.95	26.50	7.74	4
3.27	0.01	12.19	59.04	22.19	6.57	5
3.29	0.01	9.91	54.45	26.81	8.82	6
3.22	0.00	7.51	48.84	30.61	13.03	7
3.21	0.01	7.27	57.34	26.89	8.48	8
3.30	0.01	9.92	56.39	26.01	7.66	9
3.21	0.01	9.21	56.24	27.12	7.42	10
3.20	0.00	9.15	53.78	29.29	7.77	11
3.21	0.01	6.86	55.10	27.65	10.38	12
3.34	0.03	13.49	55.17	26.08	5.24	13
3.21	0.01	14.19	56.04	24.69	5.07	14
3.22	0.01	10.04	55.80	26.53	7.61	15
3.30	0.01	9.48	55.86	26.62	8.02	16
3.34	0.03	14.19	59.04	32.45	13.03	
3.20	0.00	6.86	48.84	22.19	5.07	
3.26	0.01	10.09	55.40	26.88	7.62	

.(2)

(2)

-48.84

•••

				%55.40	%59.04
			%26.88	%32.4	5-22.19
	%1	0.09	%14.1	9-6.86	
	.%7.	.62	%13.03	-5.07	
	.%0.	03			
	%0.43				
.%1.53	%2.45-1.03			4-2	

(Nieder, 2005)

(Durner und Nieder, 2006) (Zepp, 2004)

-3.20 .(Roesler,1983) ³ / 4.37-4.00 .³ / 3.26 ³ / 3.34 (1992) Deer *et al.*,

.

« »

•

.Riegraf, 1993)

0.062 0.015-0.008

.

(1985) Wimmenauer .(5)

.(2)

30-15 :	2	(27)	(2011)	
-%76.62			: (2)	
- %15.58			%81.12	%84.00
			%18.29	%22.42

·

.%0.6

Cr₂O₃ (2) FeTiO₃

(2)	
(Strunz,	2001)

(2)

				4		«		»	
9	8	7	6	5	4	3	2	1	
39.05	39.64	38.41	38.89	39.50	38.67	39.24	38.84	37.97	SiO2
0.062	0.022	0.068	0.038	0.018	0.015	0.023	0.038	0.027	TiO2
0.009	0.000	0.019	0.000	0.801	0.000	0.000	0.030	0.036	Al2O3
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Cr2O3
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	V2O3
20.57	15.23	18.26	19.99	18.75	19.04	18.41	18.48	18.79	FeO
39.43	45.41	42.00	41.53	39.57	41.84	43.34	42.61	42.11	MgO
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	NiO
0.491	0.141	0.379	0.312	0.311	0.360	0.232	0.263	0.263	CaO
99.61	100.44	99.13	100.76	98.95	99.92	101.24	100.26	99.20	Total
0.991	0.988	0.985	0.988	1.025	0.986	0.984	0.984	0.974	Si
0.001	0.000	0.001	0.001	0.000	0.000	0.000	0.001	0.001	Ti
0.000	0.000	0.001	0.000	0.024	0.000	0.000	0.001	0.001	Al
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Cr
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	V
0.992	0.988	0.987	0.989	1.049	0.987	0.984	0.986	0.975	sum4
0.450	0.317	0.392	0.425	0.407	0.406	0.386	0.392	0.403	Fe
0.006	0.005	0.004	0.005	0.005	0.006	0.004	0.005	0.004	Mn
1.538	1.686	1.606	1.573	1.530	1.591	1.619	1.610	1.610	Mg
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Ni
0.014	0.004	0.010	0.008	0.009	0.010	0.006	0.007	0.007	Ca
2.008	2.012	2.013	2.011	1.951	2.013	2.016	2.014	2.025	sum6
76.617	83.813	79.801	78.198	78.433	79.022	80.325	79.931	79.512	Fo.
22.422	15.766	19.463	21.121	20.845	20.174	19.148	19.442	19.909	Fa.
0.686	0.187	0.518	0.422	0.443	0.488	0.309	0.355	0.357	Mo.
0.275	0.234	0.217	0.258	0.279	0.316	0.218	0.272	0.222	Te.

								(2)	
**	*	16	15	14	13	12	11	10	
39.72	39.19	39.51	39.42	39.42	39.55	39.93	39.49	39.58	SiO2
0.022	0.026	0.000	0.027	0.012	0.007	0.027	0.005	0.023	TiO2
0.049	0.061	0.002	0.000	0.064	0.008	0.000	0.000	0.000	Al2O3
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Cr2O3
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	V2O3
16.90	17.22	14.87	15.41	14.71	15.21	15.85	16.04	15.93	FeO
42.86	42.90	44.76	44.05	44.43	44.54	43.47	43.69	43.63	MgO
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	NiO
0.264	0.266	0.148	0.127	0.214	0.208	0.270	0.273	0.257	CaO
99.82	99.67	99.29	99.03	98.84	99.52	99.53	99.50	99.42	Total
0.994	0.994	0.997	1.000	0.998	0.997	1.003	1.000	1.003	Si
0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	Ti
0.003	0.002	0.000	0.000	0.002	0.000	0.000	0.000	0.000	Al
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Cr
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	V
0.998	0.996	0.997	1.001	1.001	0.997	1.003	1.000	1.003	sum4
0.364	0.367	0.314	0.327	0.312	0.320	0.337	0.340	0.338	Fe
0.005	0.005	0.003	0.003	0.004	0.004	0.004	0.004	0.004	Mn
1.627	1.626	1.683	1.666	1.678	1.673	1.648	1.649	1.648	Mg
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Ni
0.006	0.007	0.004	0.003	0.006	0.006	0.007	0.007	0.007	Ca
2.001	2.004	2.003	1.999	1.999	2.003	1.997	2.000	1.997	sum6
81.259	81.122	84.004	83.317	83.907	83.537	82.534	82.468	82.530	Fo.
18.340	18.290	15.652	16.356	15.580	15.998	16.882	16.981	16.902	Fa.
0.300	0.362	0.200	0.173	0.291	0.281	0.369	0.370	0.350	Mo.
0.101	0.226	0.145	0.154	0.223	0.184	0.216	0.181	0.218	Te.
				. *	*			:	*

Mg# 90.5-86.5

•••

84.34 -77.36

(Nasir and Safarjalani, 2000)

84.0-76.62 .(Safarjalani *et al.*, 2004) 90.3-86.2

%20.56-15.23 .%12.88-9.18

26

•

-20 -(Safarjalnni *et al.*, 2010) - %60 %45

.(Safarjalani, 2010) (6)

•••

...

.

REFERENCES

- Deer, W. A., Howie, R. A. and J., Zussman. (1992). An introduction to the rockforming minerals (2nd ed.). Harlow; Longman,919pp.
- Dubertret, L. (1940). Etude de regions volcaniques Hawran Djebel Druze et du Diret ET Touloul (Syria). Revet- geogr dyn. Paris. T.11. fare 4.
- Durner, W. and R., Nieder. (2006). Bodenkundliches Praktikum1. Institut für Geoökologie, Abteilung Bodenkunde und Bodenphysik, TU Braunschweig, 56S.
- Imadi, F. (2003). Geological map of Syria, explanatory notes. Tell-Sis sheet, scale 1:50000. GEGMR, Syria.
- Mouty, M., M. Delataye, D. Fontignie, O. Piskin, and J. Wagner. (1992). The volcanic activity in Syria and Lebanon between Jurassic and actual. Schweitzer Mineral. Petrgr. Mitt.72, 91-105pp.
- Nasir, S., and A. Safarjalani. (2000). Lithospheric petrology beneath the northern part of the Arabian Plate in Syria: evidence from xenoliths in alkali basalts, Journal of African Earth Sciences (30),1.,149-168pp.
- Nieder, R. (2005). Bodenkunde 1, Grundlagen der Bodenkunde. Institut für Geoökologie, Abteilung Bodenkunde und Bodenphysik, TU Braunschweig, 268S.
- Pichler. H. and C. Schmitt-Riegraf. (1993). Gesteinbildende Minerale im Dunnschliff. Enke.Stuttgart.,230S.
- Roesler. H. J. (1983). Lehrbuch der Mineralogie VEB-Deut. Verlag fuer Grundstoff-industrie. Leipzig., 833S.
- Safarjalani, A. (2010). Petrographical and Mineralogical Characterization of Zeolite Ore, in Syrian Hamad, Damascus University Journal for Agricultural Scientifics (Accepted-in Arabic).
- Safarjalani, A., H. J. Massonne and T. Theye. (2010). Chemical composition of zeolite ore in the Al-Sis Formation outcropping in the Syrian Hamad area Alexandria Science Exchange Journal, Alexandria-Egypt, Vol.31, No.3,107, 126pp.
- Safarjalani, A., S. Nasir and M. Mouty. (2004). Petrographical and Geochemical Study of The Basic and Ultrabasic Xenoliths Associating the Quaternary Alkali Basalts of The Shamah Volcanic Fields (Southwest-Syria) Scientific Journal of King Faisal University, Vol.5, No.1,1-41pp.
- Sharkov, Y. V., IV. Chernyshev, Y. V. Devyatkin, A. Y. Dodonov, V. V. Ivanenko, M. I. Karpenko, Y. G. Leonov, V. M. Novikov, S. Khanna and K.Khatib. (1994). Geochronology of late Cenozoic basalts in western Syria. Petrology 2:385-394pp.
- Strunz. H. (2001). Mineralogical Tables. 9th-Edition, E. Schweizbartisch Verlag Buchhandlung-Stuttgart.,870pp.
- Tucker, M. E. (1985). Einfuehrung in die Sedimentpetrologie. Enke -Verlag, Stuttgart. 314S.

Wentworth, C. K. (1922). A field study of the shape of river pebbles. Bull. U. S. Geol. Survey.730C,114pp.

Wimmenauer. W. (1985). Petrographie der magmatischen und metamorphen Gesteine. Enke Verlag.- Stuttgart.382S.

Yussef, A. F. (1999). Instrumental and Methods of Analysis for Soils and Waters, King Saud University,KSA.,464pp.
Zepp, H. (2004). Geomorpholgie. 3. Auflage, Verlag Ferdinand Schöningh,

Paderborn, 354S.

Received	2010/05/23	
Accepted for Publ.	2010/07/20	