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Extreme Residuals in Logistic Regression Model.

Abstract

Many models can be used for fitting binary response data when explanatory
variables are present.

The most common models are the logistic, probit and complementary log-log
model. In this paper we used the logistic model because of its simple
interpretation. In order to obtain the parameters estimates of this model we
used several methods of estimation. These methods are, the maximum
likelihood, minimum chi-square, weighted least squares and modified
weighted least squares

The main objective of this paper is to obtain the extreme residuals based on
two different ways. The first is the ordinary residuals and the second is the
modified Pearson residuals. These two kinds of residuals are obtained through
the above mentioned four methods of estimation.

In order to give a clear preference of one of these two methods we examined
the accuracy of the approximation to the critical values of these extreme
residuals. This was done by using large-scale simulation for three different
sample sizes, each sample size was run for one thousand different sets of data.
The results show that there is a little gain of accuracy by using the modified
residuals compared with the ordinary one. The other important results show
that the difference between significance levels when modified residuals are
used instead of the ordinary residuals is generally quite small.

This paper includes five sections, the introduction is given in section 1. The
approximation to the moments of the Pearson residuals is given in section 2.
The approximation to the critical values of the extreme residual statistics is
shown in section 3. The simulation results are given in section 4. Finally the
conclusion is given in section 5.
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1. Introduction

In the statistical analysis of binary response data when explanatory
variables are present, models such as the logistic, probit and
complementary log —log are commonly used. Interpretation will be in
terms of odd ratios and here we shall be restricted. The lot is model in
comes with attention to this model.

We suppose that there are k explanatory variabes having g distinct
groups of values, which for the ith group are denoted by x;;” Xy. For
the ith group we suppose that n; independent trials are made and let Y;
denote the number of “successes”, i=1,...g. if p; denotes the true
probability of success for each trial the ith group, the linear logistic
regression model is

log(P./Q)=X!B,  =l..g @1
where Qi :1_Pi’Xi:(laXil?"--axik)andﬂ’:(ﬂwﬂl’ ----- ﬁk)
vector of unknown regression coefficients.

Three methods are commonly used for the estimation of ﬁ , namely

maximum likelihood (ML), minimum chi- square (MCS) and weighted
least aquares (WLS), the last method being sometimes referred to as
minimum logit chi- square. For later work it is helpful to consider these
methods as members of a class of procedures in which the estimator

ﬁ is found by minimizing a function of the from.

$=>" N.0(PisP) i (12)

where p; = y; /n; is the sample proportion of successes for the ith
group and ¢i (pi, P;) serves to measure the ‘distance’ between p; and P;.

The forms of ¢i (pi, P) for the ML, MCS and WLS estimation

procedures are

¢ =—(p, logP +0;1ogQ.) ..o (1.3)
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#? =(PQ) (P, —=P) . (1.4)
¢ = p.q. {logP. /q,)—log(P. /Q)} ...... 1

respectively, where q; = 1-p;
The ML and MCS methods both require an iterative solution to
estimate ﬁ but the WLS procedure yields a non- iterative procedure.

Furthermore, in the case of a single explanatory variable there is now
considerable evidence with better variance and mean square error
properties (Berkson (1955), Al- Sarraf and young (1985)). The WLS
method can be applied when p; =0 or 1 but because the sample logit z; =
log (p; /q;) is undefined for these extreme cases, modified logits defined
by

" 1 1
Z —1 )+ —) il (1.6)
i Og{( Pi 2ni) (q, 2ni)} g

are sometimes used. We have E(ZI*) = Xi’IB + O(I']i_z)and an

estimate the asymptotic variance of z; which has very small bias is from
gart and zweifel (1967)

(n+D+2)
3 -1 -1

nF(p+n)(G +1)

A modified weighted least squares (MWLS) estimate is then given

by the value of B which minimises (Z*B) W* (Z*XB) where z* =( z,*,
..., Zg) and w*= diag (Wp,..., W; ))

In applications, it is of course important to assess the goodness of fit
of the logistic regression model. This is commonly done by computing
a over all summary statistic such as the Pearson statistic

R:_Zg:ni(pi—é)z/(ééi) .................... (1.8)
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Where we use FAJI = eXp(Xi',B) /{1 + eXp(X'ﬂ)}to denote the

estimator of p; under a general estimation procedure within the class
defined in (1.2) An alternative summary statistic is the deviance statistic
defined by

g
D= 22 N {pi log(pj / B) + gj log(q; / Q; )}
i=I

although this statistic is only likely to be used if a maximum
likelihood fit has been made. The individual group residuals
corresponding to these overall statistics are given by
11 1

R =(n, /Isi'(ji)%'(pi - |5|)’ D, = i25”?{pi log(p; /I5i)+qi log(q; /Qi)}E(I.IO)

where (T )the sign of p; - P;, and an assessment of goodness of fit is
often based on an inspection of these residuals or of a normal
probability plot based on them:

The extreme residuals denoted by

Riux=maxiR;,. Ruin=minR;, R,=max;Rj, (1.11)

DmaXZmaxiDi,. DminzminiDi, Rm=maxi|Di|, *112)

are themselves of particular interest and we focus attention on them
in this study. A simple and common approach in assessing the extreme
residuals appears to be to take them as being approximately distributed
as the corresponding extremes in a sample of g independent
observations from the N(0,1) distribution. This approach uses only the
first order approximations to the mean and variance of the residuals and
ignores their correlations, and so can be misleading.

In section 2, second order approximations to the expectations and
co-variance matrix of the Pearson residuals are given and used to define
modified extreme residual statistics. Approximations to the percentage
points of the extreme residual statistics are presented in section 3.
Finally, results from a Monte Carlo investigation to assess the adequacy
of the approximations are given for the case when there is a single
explanatory variable and for various success probability configurations.
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2. Approximations to the Moments of the Pearson
Residuals

In this section, we first derive approximations correct to O(L) for

N2

g
the expectations of the Pearson residuals, where N=Z n is the total
1
i
number of trials. Our approach is very similar to the general approach
given by Cox and Snell (1968), but here we assume that g is fixed and
the { n; }are large, whereas in their method neglected terms are 0(g™)

Since |5 = Pi ( B ),We may write

R = hi(pi'ﬁ)a g =h(p;, B) 2.1

where

1 /
”_iJ2 o B

A Taylor seies expansion about B gives to second order

R =¢, +{<Pi —é)si —(ninQJ;}Z X (Bo=p) Y

2.2)

hi(pi-ﬁ)z[

E(R)~(n.B.Q );Z Xir{(Pi _;)(PiQi)_l & — b, )} (2.4)

where b, denotes the bias of Br and

a, =E{(p,—P)(B, - B)} 5
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The biases have been found by Sarraf and Young (1985) Correct to
O(N™) for the ML, MCS and WLS estimation procedures and are given
by.

br(l) = _;ZZZ I rsItuKstu (2.6)
S t wu

CTITEXQ-R)+42b0 ()
S i

respectively, where
Z n | |r |s’ krst = Z n Q (Q P)XerISXIt (2 8)
i

and I" denotes the elements in the (r+1)st row and (s+1) column in
the inverse of I=((I;)). All summations over r, s,.... Run from O,

2) _ KRG _
b® =p® =

To find a; correct to o(N'), we may use the first order
approxcimation

B—p == U, (2.9)
S
where

2
U =% A =EM 2.1)

r > rs
op, 0. 9p,
and ﬂ“rs denoted the element in the (r+1)st row and (s+1)st column

of 4= ((ﬂ’rs ))

For MI- estimation, we have

an |r(p| P|)9 ﬂ“rs_ rs> {(p| P|)Us} |s |Q
so correct to O(N")we have

(1) Z I IfSXls PlQl

S
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for MCS estimation, we have
1 _
U, =-2%nx(p,—P)-(P —5)(I0i -P)*(PQ) ",

ﬂ“rs =21 st 0(1)’ E{( P — PI)U s } = _2Xis PIQI + O(ni_l
hence correct to O(N™") we have
ai(rZ) = Z I rSXis P|Q|

For WLS estimation, we have

U, =-2%'n,x, p,q{log(p, /q;) —log(P, /Q,)}

As =21, +0(D),  E{(p,—P)U,}=2x.PQ +0(n,")
giving

ai(f) = 1% BQ o (2.13)

Since ai(r1)=ai(r2)=ai(r3) , we have the general formula correct to

1

0( N 2 ) covering the threee methods of estimation

E(RI) ~ (anQl);{(R _;)ZZ Xirxisl * _Z Xirbr} (2.14)

where the biases b, one time by (2.6) and (2.7)

The second order expression for the covariance matrix of the
Pearson residuals is given by
1 1

cov(R)=1,—nV2P"I 'P*V 2n 2.15)

where
R'=(R,,.R,),n=diag(n,,..,n,),V = diag(n,RQ,.,...n;,P,,Q, )

¢ 1s the identity matrix of order g and
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R/, .. P /3B,

. (2.16)

P10, oP, /9p, |

The covariance result holds for ML. MCS and WLS estimation and
for arbitrary model specification for the {p;}. for the logistic regression

model we have oP. /0p, = X; PQ, so P*=X h_IV and hence

1 1

cov(R) =1, =V 2X(XVX)'XV?2 (2.17)
If ¢;j denotes the (i, j) the element in

1 1
c=Vv2x(X'vx)Txlv2

1 1
then G :(niRQi)z(anij)ZZr:ZS:XiersIrs (2.18)
Hence
var(R) =1-¢; =1-nPQ,; X > X, X" (2.19)
and
1

corr(R;,R,) = —¢, {(1-c,)(1-c,)fz (2.20)

Although the variances of the {R;} depend on (P;) which are
unknown, their average variance is independent of the { P; }. Thus

using (2.17), the sum of the variances is given by
1 1
> var(R,) =tr(l ) :tr{(\/ DX (XVX) XV 2}

=tr(1)—tr(l,,, =g -k-1 (2.21)
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In order to obtain information about the magnitude of the
approximate expectations and variances given by (2.14) and (2.19),
their values have been computed for the case of a single explanatory
variable with x; =i-1 , i=1,2....,g for g=5,10,n =25. 50, 100 and six (Bo,
B;) cofigurations give a wide range of values for the success

probabilities { p; }. The configurations are shown in table 1.

TABLE 1
Parameter values (Bo,B;) and success probabilities

G=5 {pi}

@) B, =-2.0, B, =0.4 0.119,0.168, 0.232, 0.310, 0.401

(ii) B,=-1.0, B; =0.5 0.269, 0.378, 0.500, 0.623, 0.731

(iii) | B,=0.5,B;=0.5 0.623,0.731,0.818, 0.881, 0.924

g=10

(iv) B, =-2.0, B; =0.2 0.119,0.142, 0.168, 0.198, 0.231
0.269, 0.310, 0.354, 0.401, 0.450

) B, =-0.4, B, =0.2 0.401, 0.450, 0.500, 0.550, 0.591
0.646, 0.690, 0.731, 0.769, 0.802

(vi) B,=-0.5, B, =0.2 0.623, 0.668, 0.711, 0.750, 0.785
0.818, 0.846, 0.870, 0.891, 0.908

Values of E (R;) based on the ML, MCS and WLS methods of

estimation are shown in table 2 for the six configurations given in table
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1 and for sample sizes n; =n= 25, 50, 100, i=1,....,g. Values of the
approximate variances of the { R; } given by (2.19) are also shown,

these variances being independent of the common sample size n.
TABLE 2

Approximate expectations and variances of residuals E;"= 10 xE(R;)

based on MLS fit, Ei'” =10 x E(Ri)based on MCS or WLS
fit.

n=25 n=50 n=100
Configuration i Ei(l) Ei(z) Ei“) Ei(z) Ei(l) Ei(l) Var (R))
1 -0.34 | -1.62 |-0.24| -1.15 |-0.17|-0.81 | 0.504
2 0.14 | -1.00 | 0.10 | -0.71 | 0.07 |-0.50| 0.671
(i) 3 0.28 | -0.63 | 0.20 | -0.45 | 0.14 |-0.32 | 0.780
4 0.09 | -0.49 | 0.07 | -0.35 | 0.05 |-0.25| 0.707
5 -0.21 | -0.39 |-0.15| -0.28 |-0.11]-0.20| 0.338
1 -0.07 | -0.56 |-0.05| -0.40 |-0.07|-0.56| 0.438
2 0.12 | -0.15 | 0.08 | -0.11 | 0.12 |-0.15| 0.674
(i1) 3 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.775
4 -0.12 | 0.15 |-0.08| 0.11 [-0.12] 0.15 | 0.674
5 0.07 0.56 | 0.05| 040 | 0.07 | 0.56 | 0.438
1 0.28 0.39 [ 020| 027 | 0.14 | 0.19 | 0.309
2 -0.16 | 0.63 |-0.11| 0.44 |-0.08]| 0.31 | 0.710
(iii) 3 -0.37 | 092 |-026| 0.65 |-0.18] 0.46 | 0.767
4 -0.13 | 0.15 |[-0.09| 1.03 [-0.06| 0.73 | 0.663
5 0.45 0.22 | 032 ] 0.15 | 023 | 0.11 | 0.551
1 -0.22 | -1.84 |-0.16| -1.30 [-0.11]-0.92| 0.733
2 -0.08 | -1.63 |-0.06| -1.15 |-0.04|-0.81| 0.774
3 0.03 | -1.42 |-0.02| -1.01 | 0.02 |-0.71| 0.817
4 0.10 | -1.23 | 0.07 | -0.87 | 0.05 |-0.61 | 0.855
(iv) 5 0.13 | -1.05 | 0.09 | -0.74 | 0.07 |-0.52 | 0.883
6 0.12 | -0.87 | 0.08 | -0.62 | 0.06 |-0.44 | 0.892
7 0.07 | -0.71 | 0.05 | -0.50 | 0.03 |-0.36 | 0.892
8 0.00 | -0.54 | 0.00 | -0.38 | 0.00 |-0.27 | 0.824
9 -0.07 | -0.35 |-0.05| -0.25 |-0.04|-0.18 | 0.737
10 | -0.11 | -0.13 |-0.08 | -0.09 |-0.06|-0.06| 0.612
1 0.01 -0.32 |-0.01 | -0.22 |-0.01 [-0.16 | 0.648
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2 0.05 | -0.11 | 0.03 | -0.08 | 0.02 |-0.05] 0.744
3 0.04 | 0.07 {003 ] 0.05 |0.02]0.03]0.819
4 0.00 | 021 |0.00| 0.15 |0.00|0.11 | 0.869
) 5 -0.04 | 035 |-0.03] 0.25 |-0.02] 0.17 | 0.891
6 -0.07 | 0.48 |-0.05| 0.34 |-0.04] 0.24 | 0.886
7 -0.08 | 0.63 |-0.06| 0.45 |-0.04] 0.31 | 0.859
8 -0.05 | 0.79 |-0.03| 0.56 |-0.02] 0.40 | 0.816
9 -0.02 | 098 10.02 | 0.69 | 0.01 | 0.49 | 0.762
10 | 0.13 0.12 1 0.09 | 0.83 |0.07]0.59 | 0.706
1 0.17 | 034 [0.12] 024 ]0.09 |0.17 | 0.596
2 0.08 | 0.58 | 0.05]| 041 |0.04]0.29 | 0.735
3 -0.03 | 0.79 |-0.02| 0.56 |-0.01] 0.39 | 0.827
4 -0.11 | 098 |-0.08| 0.69 |-0.05] 0.49 | 0.877
(vi) 5 -0.16 | 1.17 |-0.11] 0.83 |-0.08 | 0.58 | 0.892
6 -0.16 | 136 |-0.11] 0.96 |-0.08] 0.68 | 0.881
7 -0.11 1.57 |-0.08] 1.11 |-0.06] 0.79 | 0.854
8 -0.02 | 1.79 [-0.02] 1.26 |-0.01| 0.89 | 0.818
9 0.11 2.01 | 0.08 | 142 |0.06 | 1.01 | 0.779
10 | 027 | 223 [0.19| 1.58 | 0.14 | 1.12 | 0.743

The results show that the absolute values of the approximate
expectation of the residuals based on a ML fit are generally much
smaller than those based on a MCS or WLS fit. Also, the approximate
variances of the residuals are often appreciably less than one,
particularly for the extreme values of the index i of the residuals.

The approximations to the expectation and variances of the residuals
allow modified residuals to be used whose mean and variance are likely
to be closer to zero and one, respectively, than those of the
corresponding moments of the unmodified residuals {R;}.

Modified residuals allowing for variance adjustment are defined by

1

R =R /(1-6,)2, i=li.g (2.22)

where
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Ci =M FsuQAu Z Z Xir Xis [ (2.23)

denotes the estimates of c;; using {p;}

With variance and expectation adjustment, the modified residuals are
defined by
1

where Ei denotes the estimate of E(R;)

Using the modified residual, extreme residual statistics will be
denoted by

R ., =max,R’, R, =min, R, R =max,R/ (2.25)
R> =max;R", R =min,R’, R, =max;R (2.26)

m; m

3. Approximations to the Critical Values of the
Extreme Residual Statistics

In order to use the extreme residual statistics in formal goodness of
fit tests for the logistic regression model, we need approximations to the
percentage points of their distributions when the model is correct.
Simple approximations are available based on the use of the Banferroni
inequality we illustrate in the approach for the ® ., statistic.

We have
YPR 2N-Y Y PR 2rR 2r)<PR,, )<Y PR 21) G.1)

Since nearly all pairs of residuals are negatively correlated, we are
led to the conjecture that :

Yp(R=r,R, 2r)<PYP(R 2r)p(R 2r) (3.2)

icj i<j

This leads to the inequalitets

PR = r)—;{z P(R, 2 r)} <P(R,, 2N<(PR 21) (3-3)
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For large r, we use the approximation.

PR, =r=> PR >r) (3:4)
i
The error in the approximation being less than
2
1(1 —-g -l ){Z P(Ri > r)} if the conjective given by (3.2) is true.
2 i

Since var (R;) given by (2.19) depends on the {P;}which are unknown,
we may either use the estimates of var(R;) based on the fitted model or
ignore the variations in the variances work with their average value (g-
k-1)/g. Using the latter approach we take.

1
g "R approx N(0,1) (3.5)
g-k-1) '
and use of (3.4) gives

1
2
PR, >0 ~1-¢) —3—|r (3.6)
g-k-1
where ¢(.) denote the c.d.f. of the N(0,1) distribution. If we let

rmax(1- & ) denote the upper 100X percentage point of the ditribution
of Ry.x, we have the approximation

1
G z[g—k—IJZUl _a 3.7)
g g

where U;_¢x is the 100(1- X ) percentoale of the N(0,1) distribution.
If rpin( &) at 1,(1- &) denote the lower and upper 100X persentage
pointage of the distributions of R, and R, respectively, similar
measurement lead to the approximations

1

9
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[0

9 29
since to the same order of approximation var(D;)=var(R;),
approximation to the critical values dmax- € ), dmin(@ ) and dm- X ) for

the Diax, Dmin and Dy, statistics are also given by (3.7), (3.8) and (3.9),
respectively.

1
r(1l—a)~ _(g—k—ljZ U (3.9)

*
For the modified residulas Ri which use the variance estimates and

ks
Ri which use both expectation and variance estimates, we take both

sets of residuals to be approximately distributed as N(0,1). If the logistic
regression model is correct, we are led to the approximations.

* kk a
Mo (l—)=r_ (1-a)=U, —— (3.10)
g
* Kk a
M (@) =T (@) =U, —— (3.11)
* *kk a
h(l-a)y=r,(l-a)~U, -—— (3.12)

29
4. Mote Carlo Results

in order to examine the accuracy of the approximations to the critical
values of the extreme residul statistics, a Monte Carlo investigation was
made for the case of a single explanatory variable using the parameter
configurations given in table 1. equal sample sizes n=n=25, 50, 100,
i=1,...... g were used. The model fits by ML, MCS, WLS and MWLS
estimation were made using the statistical package GLIM and a run-size
of 2000 was used in each case. The empirical distributions of the
extreme residual were used to obtain the upper and lower critical values
for significance levels & =0.10, 0.05, 0.025 and 0.01.
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The actual significance levels associated with the approxcimating
critical values given by (3.7) to (3.12) were also determined and

contrasted with the nomial values of X .
The broad findings reached from the investigation are:
- I) the differences between the values of the extreme statistics

* sk
based on the modified residuals Ri and Ri are in general very

small and so little is gained by making an additional adjustment for
estimated expectations, once the ordinary residuals have been
adjusted for estimated variance.

- I) The differences between the significance levels when variance
adjusted residuals are used instead of the ordinary Pearson
residuals are generally quite small. The extreme statistics based on
values of the residuals wvariance adjustment lead to some
improvement for the smaller values of & .

- III) No one estimation procedure systematically provides better
control over the significance level of the test.

Tables 3 to 14 show the actual significance levels as estimated by

simulation associated with the approximating values for the extreme

residual statistics based on the ordinaary residuals and the variance

asjusted residuals. It is encouraging to see there is generally good

agreement with the nomial significance levels, particularly for the

*
modulus statistics Rm and Rm.

Table 3

Estimated singificance levels for approximate critical valuse for (a)

Riuax and (b) Rmax based on ML fit

‘ oc=0.10 oc=0.05 oc=0.025 oc=0.01 |
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Configuration (a) | (b) (a) (b) (a | b | @ | b
n=25 0.123]10.107| 0.064 | 0.057 [0.038]0.029]0.017]0.011
i)  n=50 0.116/0.101| 0.070 | 0.055 [0.039]0.029]0.018]0.013
n=100 0.109]10.090| 0.057 | 0.047 [0.032]0.025]0.017]0.012
n=25 0.109]10.101| 0.056 | 0.050 [0.031]0.022]0.015]0.009
ii) n=50 0.089]0.088| 0.052 | 0.042 [0.026]0.022]0.012]0.011
N=100 0.092]10.088 | 0.045 | 0.044 |0.023]0.021]0.011]0.009
N=25 0.067]0.071] 0.031 | 0.030 [0.014]0.010]0.004]0.004
iii) n=50 0.08410.081| 0.043 | 0.040 [0.019]0.016|0.007 |0.005
N=100 0.090]0.083| 0.050 | 0.038 [0.023]0.018]0.009]0.007
n=25 0.142]10.137| 0.082 | 0.080 |0.046]0.044]0.021]0.019
iv) n=50 0.114]10.112] 0.060 | 0.055 [0.026]0.023]0.012]0.011
n=100 0.122]10.111] 0.061 | 0.062 [0.033]0.033]0.017/0.018
n=25 0.083]0.079] 0.049 | 0.042 [0.018]0.016]0.007]0.007
v) n=50 0.088]0.092| 0.042 | 0.040 [0.018/0.018|0.007 |0.009
n=100 0.089]0.086| 0.042 | 0.042 [0.021]0.021]0.008|0.008
n=25 0.04410.013| 0.000 | 0.019 [0.008]0.008|0.001]0.002
vi) n=50 0.070]0.070| 0.029 | 0.030 [0.012]0.010]0.002]0.002
n=100 0.077]0.074| 0.037 | 0.033 [0.013]0.014]0.005|0.005




Extreme Residuals in Logistic Regression Model.

Table 4

Estimated significance levels for approximate critical values for ©
Roin " OR L based on ML fit

oc=0.10 oc=0.05 oc=0.025 oc=0.01

Configuration | (a) | (b) (a) d) | (a) (b) (a) (b)

n=25 0.085]0.082| 0.036 |0.038({0.015| 0.020 | 0.005 |0.004

1)  n=50 |0.087/0.079| 0.042 [0.038{0.019| 0.018 | 0.008 [0.004

n=100 0.080|0.084| 0.045 |0.037(0.022| 0.021 | 0.012 |0.007

n=25 0.097]0.095| 0.053 |0.046(0.026| 0.024 | 0.012 |0.007

i) n=50 1(0.097]0.091| 0.050 |0.049(0.028| 0.025 | 0.013 |0.010

N=100 0.010]0.088| 0.047 |0.044(0.025| 0.023 | 0.011 |0.008

N=25 0.141]0.124| 0.080 |0.061{0.043| 0.003 | 0.025 |0.012

lii) n=50 |0.128|0.110| 0.074 |0.061{0.041| 0.029 | 0.019 |0.012

N=100 0.100|0.089| 0.055 |0.043(0.026| 0.021 | 0.012 |0.008

n=25 0.067|0.065| 0.029 |0.029(0.012| 0.012 | 0.005 |{0.003

iv)n=50 |0.078|0.075| 0.028 |0.026|0.013| 0.011 | 0.005 |{0.003

n=100 0.081]0.078| 0.034 |0.033({0.013| 0.015 | 0.005 |0.004

n=25 0.100|0.095| 0.047 |0.047(0.026| 0.025 | 0.016 |0.014

v) n=50 0.114]0.112| 0.058 |0.058{0.031| 0.029 | 0.011 |0.010

n=100 0.109]0.103| 0.058 |0.050{0.032| 0.027 | 0.013 |0.012

n=25 0.160|0.150| 0.095 |0.086(0.057| 0.052 | 0.026 |0.026

Vi)n=50 |0.130(0.128| 0.072 |0.067|0.039| 0.035 | 0.018 [0.014

n=100 0.132]0.125| 0.078 |0.073{0.046| 0.041 | 0.024 |0.019
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Table 5

Estimated significance levels for approximate critical values for @,

amd R Satistics, based on ML fit

oc=0.10 o=0.05 oc=0.025 oc=0.01
Configuration | (a) (b) @ | (b)) | (a) (b) (a) (b)
n=25 0.091| 0.077 {0.050[0.041{0.029| 0.018 | 0.012 |0.006

i)  n=50 {0.101| 0.079 |0.055|0.042]0.032| 0.019 | 0.014 |0.009

n=100 0.089] 0.069 {0.049]0.037|0.032| 0.019 | 0.016 |0.010

n=25 0.096| 0.081 [0.052]0.040|0.029| 0.020 | 0.013 |0.008

i) n=50 0.089| 0.075 {0.049]0.040|0.029| 0.022 | 0.028 |0.010

N=100 0.079] 0.076 {0.043]0.039|0.024| 0.020 | 0.014 |0.007

N=25 0.101| 0.074 {0.054]0.043|0.034| 0.023 | 0.016 |0.013

iii) n=50 0.108| 0.086 {0.058]0.039{0.030| 0.017 | 0.012 |0.009

N=100 0.096| 0.069 [{0.045]0.033|0.026| 0.016 | 0.008 |0.006

n=25 0.106| 0.104 {0.058]0.056|0.031| 0.026 | 0.014 |0.012

iv) n=50 0.085| 0.078 {0.038]0.034|0.019| 0.017 | 0.009 |0.006

n=100 0.093| 0.092 [0.045]0.047|0.026| 0.025 | 0.013 |0.011

n=25 0.083| 0.084 [0.042]0.041|0.026| 0.024 | 0.012 |0.008

v) n=50 0.094| 0.090 {0.047]0.043|0.022| 0.022 | 0.007 |0.007

n=100 0.093| 0.086 [{0.049]0.046|0.027| 0.023 | 0.012 |0.009

n=25 0.112] 0.101 [{0.064|0.060|0.034| 0.030 | 0.018 |0.018

vi) n=50 0.096| 0.094 {0.049]0.044|0.025| 0.022 | 0.010 |0.007

n=100 0.111] 0.102 {0.058]0.054|0.036| 0.030 | 0.014 |0.013




Extreme Residuals in Logistic Regression Model.

Table 6
Estimated significance levels for approximate critical values for @&,
and R Statistics, based on MCS fit
oc=0.10 oc=0.05 oc=0.025 oc=0.01

Configuration| (a) (b) (a) (b) (a) (b) (a) (b)

n=25 0.056 | 0.046 [0.027| 0.020 [0.014| 0.009 | 0.004 {0.003

i)  n=50 | 0.074 | 0.058 |0.033| 0.027 |0.017| 0.011 | 0.009 |0.005

n=100 0.075 | 0.062 {0.038| 0.027 [0.019| 0.014 | 0.008 [0.006

n=25 0.107 | 0.100 {0.057| 0.051 |0.027| 0.022 | 0.014 |0.011

i) n=50 | 0.095 | 0.087 |0.052| 0.049 |0.025| 0.022 | 0.011 |{0.010

n=100 0.093 | 0.088 [0.046| 0.044 (0.023| 0.019 | 0.012 {0.010

n=25 0.138 | 0.136 [0.065| 0.069 [0.028| 0.032 | 0.013 {0.017

iii) n=50 0.140 | 0.132 {0.071| 0.074 |0.040| 0.053 | 0.014 |0.011

N=100 0.124 | 0.113 {0.073| 0.066 [0.041| 0.031 | 0.017 {0.013

n=25 0.079 | 0.080 [0.036| 0.038 [0.017| 0.017 | 0.009 {0.009

iv) n=50 0.073 | 0.064 [0.030| 0.026 [0.014| 0.013 | 0.005 [0.005

n=100 0.087 | 0.084 [0.044| 0.042 (0.022| 0.022 | 0.012 {0.010

n=25 0.096 | 0.091 [0.051| 0.045 [0.027| 0.020 | 0.009 {0.009

v) n=50 0.106 | 0.102 {0.050| 0.053 [0.023| 0.024 | 0.008 {0.009

n=100 0.103 | 0.101 |0.051| 0.050 |0.023| 0.023 | 0.010 {0.010

n=25 0.078 | 0.074 {0.030| 0.030 |0.012| 0.017 | 0.004 |0.004

vi) n=50 0.103 | 0.109 [0.051| 0.049 [0.021| 0.024 | 0.005 [0.005

n=100 0.109 | 0.106 [0.052| 0.047 [0.025| 0.024 | 0.009 {0.008
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Table 7

Estimated significance levels for approximate critical values for ©
R i MEORT - Statistics, based on MCS fit

oc=0.10 oc=0.05 oc=0.025 oc=0.01

Configuration| (a) (b) (a) (b) @ | (b) | (a) (b)
n=25 0.124| 0.129 | 0.071 0.069 0.034/0.040|0.012| 0.019

1) n=50 [0.127| 0.122 | 0.065 0.062 0.035/0.036|0.018| 0.016
n=100 0.109| 0.109 | 0.063 0.061 0.034/0.035]0.017| 0.015
n=25 0.100| 0.097 | 0.055 0.051 0.028/0.0230.010| 0.011

i) n=50 {0.099| 0.087 | 0.051 0.049 0.031/0.026|0.014| 0.013
N=100 0.095| 0.090 | 0.047 0.045 0.025/0.021]0.013| 0.009
N=25 0.048| 0.041 | 0.025 0.017 0.014/0.008|0.007| 0.002
iii) n=50 |0.063| 0.048 | 0.031 0.020 0.015/0.009]0.005| 0.002
N=100 0.056| 0.046 | 0.027 0.018 0.011/0.007|0.005| 0.003
n=25 0.100| 0.098 | 0.047 0.045 0.020(0.020]0.007| 0.007
iv)n=50 |0.108]| 0.101 0.049 0.045 0.017/0.018]0.008| 0.006
n=100 0.086| 0.099 | 0.045 0.042 0.022/0.021]0.006| 0.005
n=25 0.075| 0.074 | 0.039 0.037 0.020{0.020|0.009| 0.006
v)n=50 [0.094| 0.095 | 0.049 0.049 0.023/0.020|0.008| 0.004
n=100 0.100| 0.091 | 0.046 0.044 0.025/0.023]0.012| 0.010
n=25 0.069| 0.064 | 0.035 0.030 |0.017/0.016]0.008| 0.006
vi)n=50 |0.075| 0.068 | 0.034 0.030 |0.018/0.011]0.004| 0.003
n=100 0.094| 0.092 | 0.051 0.048 0.029/0.025]0.010| 0.009




Extreme Residuals in Logistic Regression Model.

Table 8

Estimated significance levels for approximate critical values for
and ®R Statistics, based on MLS fit

(@R
m

oc=0.10 oc=0.05 oc=0.025 oc=0.01

Configuration | (a) (b) (a) ®) | (@ | (b) (a) (b)

N=25 0.091 [0.076| 0.045 |0.044{0.020{0.023| 0.007 | 0.009

1)  n=50 | 0.091 |0.076| 0.049 |0.043{0.031{0.024| 0.013 | 0.008

n=100 0.090 [0.075| 0.053 |0.042{0.029{0.022| 0.014 | 0.008

n=25 0.101 {0.089| 0.051 |0.041(0.029{0.022| 0.013 | 0.011

i) n=50 | 0.092 [0.082| 0.053 |0.042{0.028{0.027| 0.017 | 0.013

N=100 0.082 10.076| 0.043 |0.037{0.026{0.021| 0.015 | 0.007

N=25 0.082 [0.074| 0.040 |0.034(0.023{0.016| 0.007 | 0.006

iif) n=50 0.094 |0.082| 0.052 ]0.037{0.023{0.016| 0.009 | 0.005

N=100 0.095 [0.074| 0.051 |0.033{0.024{0.017| 0.011 | 0.009

n=25 0.080 {0.080| 0.037 |0.036{0.018{0.018| 0.010 | 0.007

iv) n=50 0.077 10.068| 0.031 [0.029{0.016{0.013| 0.007 | 0.005

n=100 0.034 0.081| 0.044 |0.043{0.022{0.021| 0.009 | 0.008

n=25 0.085 [0.077| 0.045 |0.039(0.021{0.018| 0.008 | 0.004

v) n=50 0.092 0.093| 0.045 [0.042{0.018|0.016| 0.006 | 0.007

n=100 0.090 [0.087| 0.045 |0.043(0.026{0.022| 0.011 | 0.010

n=25 0.064 [0.058| 0.028 |0.031(0.015{0.013| 0.005 | 0.004

vi) n=50 0.082 [0.075| 0.036 |0.035{0.015{0.010| 0.003 | 0.003

n=100 0.097 10.092| 0.053 | 0.48 {0.025]0.020| 0.008 | 0.005
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Table 9

Estimated significance levels for approximate critical values for ©
R oo MIOR Statistics, based on WLS fit

oc=0.10 oc=0.05 c=0.025 oc=0.01
Configuration | (a) | (b) | (a) (b) (a) (b) (a) (b)
n=25 0.0520.039{0.023| 0.017 | 0.013 |0.008| 0.004 |0.004

1) n=50 ]0.069|0.052]0.033|0.026 | 0.017 |0.009 0.009 |0.004
n=100 0.07210.058{0.038| 0.026 | 0.020 [0.012| 0.008 |0.006
n=25 0.111]0.104|0.061| 0.057 | 0.035 ]0.032| 0.018 |0.015

i) n=50 0.09510.088{0.053| 0.048 | 0.028 ]0.024| 0.012 |0.011
N=100 0.09910.088|0.047| 0.045 | 0.024 0.021| 0.012 |0.010
N=25 0.19910.188|0.121| 0.112 | 0.073 ]0.081| 0.039 |0.047

iil) n=50 0.157]0.146|0.085| 0.090 | 0.056 ]0.049| 0.025 |0.023
N=100 0.130(0.199{0.080| 0.069 | 0.048 |0.037| 0.019 |{0.017
n=25 0.07610.076|0.037| 0.038 | 0.019 ]0.020| 0.009 |0.006
iv) n=50 0.070{0.064|0.030| 0.028 | 0.016 ]0.013| 0.006 |0.005
n=100 0.087]0.082|0.045| 0.042 | 0.022 ]0.023| 0.011 |{0.012
n=25 0.108{0.104|0.057| 0.057 | 0.034 ]0.030| 0.014 |0.013
v) n=50 0.111]0.109]0.056 | 0.058 | 0.027 ]0.026( 0.009 |0.011
n=100 0.104|0.103|0.052| 0.051 | 0.027 ]0.024| 0.012 |0.011
n=25 0.116]0.116{0.059| 0.053 | 0.023 ]0.024| 0.010 |{0.011

vi) n=50 0.112]0.121{0.062| 0.062 | 0.030 [0.032| 0.013 |0.010
n=100 0.112]0.111{0.055| 0.050 | 0.028 ]0.027| 0.011 |{0.008




Extreme Residuals in Logistic Regression Model.

Table 10

Estimated significance levels for approximate critical values for ©
R i MEORT - Statistics, based on WLS fit

oc=0.10 oc=0.5 oc=0.025 oc=0.1

Configuration (a) (b) (a) | (b) (@ | ® | (@ | (b
N=25 0.152| 0.157 [0.009|0.097| 0.058 |0.063(0.031{0.036
1) n=50 0.137| 0.133 [0.076|0.069 | 0.043 |0.046{0.025|0.021
n=100 0.113| 0.113 [0.064|0.064| 0.039 |0.037(0.018|0.017
n=25 0.104| 0.104 [0.063|0.054| 0.037 {0.029(0.014|0.014
i) n=50 0.094| 0.090 [0.053]0.052| 0.032 |0.027({0.017|0.014
N=100 0.096| 0.089 [0.048|0.045| 0.025 |0.022(0.013|0.010
N=25 0.039| 0.028 [0.018]0.013| 0.011 |0.006{0.005|0.002
iii) n=50 0.056| 0.039 [0.027]0.016| 0.013 |0.006(0.003|0.002
N=100 0.053| 0.042 [0.026|0.017| 0.010 |0.007{0.005|0.002
n=25 0.125| 0.125 [0.065|0.064| 0.035 |0.035(0.013|0.014
iv) n=50 0.117| 0.112 [0.061|0.053| 0.023 |0.022({0.009|0.009
n=100 0.102| 0.104 [0.048|0.047| 0.023 |0.022(0.006|0.006
n=25 0.075| 0.076 [0.039|0.040| 0.020 |{0.023({0.011{0.009
v) n=50 0.093| 0.098 [0.050(0.049| 0.024 |0.022(0.008|0.004
n=100 0.097| 0.093 [0.047]0.044| 0.025 |0.025{0.013]0.011
n=25 0.061| 0.056 [0.031]0.030| 0.015 |{0.015[{0.008|0.006
vi) n=50 0.071| 0.064 [0.035{0.029| 0.019 |0.012{0.004 |0.003
n=100 0.094| 0.091 [0.050{0.049| 0.029 |0.025(0.010{0.010
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Table 11

Estimated significance levels for approximate critical values for
and O R* Statistics, based on WLS fit

(@R
m

oc=0.10 oc=0.05 oc=0.025 oc=0.01

Configuration (a) (b) (a) b)) | (@ | (b)| (a (b)
n=25 0.115 | 0.104 | 0.068 |0.067|0.040 |0.044/0.023| 0.021

i) n=50 0.102 | 0.083 | 0.058 |0.052|0.038(0.029|0.018| 0.013
n=100 0.092 | 0.078 | 0.055 |0.044|0.031(0.022/0.016| 0.010
n=25 0.113 | 0.010 | 0.066 |0.058|0.035(0.032|0.016| 0.019
i) n=50 0.095 | 0.085 | 0.056 |0.0460.03310.029/0.019| 0.014
N=100 0.085 | 0.078 | 0.045 |0.039|0.028 |0.022|0.015| 0.007
N=25 0.134 | 0.124 | 0.081 |0.083|0.052 ]0.054/0.023| 0.032
iii) n=50 0.106 | 0.097 | 0.067 |0.052|0.034 0.028/0.016| 0.012
N=100 0.101 | 0.077 | 0.057 |{0.0390.028 |0.020/0.013| 0.010
n=25 0.100 | 0.099 | 0.053 |0.056|0.026 {0.028/0.013| 0.012
iv) n=50 0.089 | 0.076 | 0.038 |0.034|0.019 ]0.016/0.008 | 0.008
n=100 0.090 | 0.086 | 0.045 |0.044|0.024 /0.023/0.010| 0.009
n=25 0.092 | 0.093 | 0.052 |0.051|0.030(0.028/0.011| 0.009
v) n=50 0.099 | 0.099 | 0.050 |0.0460.022 10.019/0.007 | 0.007
n=100 0.093 | 0.088 | 0.049 |0.0460.028 |0.025/0.012| 0.011
n=25 0.088 | 0.079 | 0.037 |0.036(0.017 ]0.020/0.007 | 0.006
vi) n=50 0.094 | 0.088 | 0.048 |0.044|0.023 ]0.020/0.004| 0.006
n=100 0.101 | 0.096 | 0.056 |0.050|0.026 0.023|0.008 | 0.008




Extreme Residuals in Logistic Regression Model.

Table 12

Estimated significance levels for approximate critical values for ©
R o MORT Statistics, based on MWLS fit

«=0.10 «=0.05 c=0.025 oc=0.01

Configuration (a) (b) (a) (b) (@ | (b) | (a) (b)
n=25 0.046 | 0.036 [0.022] 0.017 {0.013|0.007 |0.004| 0.003
i) n=50 0.059 | 0.043 [0.026] 0.021 [0.016|0.008|0.006| 0.003
n=100 0.060 | 0.046 [0.030| 0.022 |0.016]|0.011]0.008| 0.005
n=25 0.111 | 0.108 [0.061| 0.058 |0.034]|0.032|0.018| 0.014
ii) n=50 0.099 | 0.090 [0.053] 0.050 |0.030|0.024]|0.012| 0.011
N=100 0.095 | 0.090 [0.094| 0.047 |0.025]|0.022]0.012| 0.011
N=25 0.183 | 0.166 [0.089] 0.085 |0.044]|0.040|0.019| 0.016
iii) n=50 0.177 | 0.131 [0.090| 0.088 |0.054]0.046|0.024| 0.018
N=100 0.151 | 0.136 [0.089| 0.082 |0.054]|0.043]0.022| 0.019
n=25 0.075 | 0.066 [0.033] 0.036 |0.017|0.018]0.010| 0.090
iv) n=50 0.053 | 0.052 [0.025] 0.025 |0.012]0.011]0.005| 0.005
n=100 0.070 | 0.069 [0.035] 0.036 |0.020|0.021|0.010| 0.010
n=25 0.110 | 0.108 [0.058| 0.056 |0.032|0.0280.012| 0.010
v) n=50 0.117 | 0.116 [0.062| 0.060 |0.031|0.028|0.009| 0.011
n=100 0.112 | 0.109 [0.056] 0.055 |0.030|0.025]|0.013| 0.011
n=25 0.110 | 0.098 [0.045| 0.040 |0.020|0.020|0.009| 0.008
vi) n=50 0.134 | 0.134 [0.070| 0.067 |0.030|0.032|0.011| 0.010
n=100 0.134 | 0.131 [0.064| 0.057 |0.035|0.030|0.011| 0.011
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Table 13

Estimated significance levels for approximate critical values for ©
R i MEOR - Statistics, based on MWLS fit

oc=0.10 oc=0.05 oc=0.025 oc=0.01

Configuration (a) (b) (a) (b) (a) (b) (a) (b)
n=25 0.150 |0.151]0.092 | 0.081 |0.049|0.047| 0.019 | 0.022
i) n=50 0.155 |0.149|0.088 | 0.075 | 0.045|0.046| 0.026 | 0.022
n=100 0.135 |0.133]0.075| 0.071 | 0.044|0.042| 0.020 | 0.018
n=25 0.105 |0.109{0.059 | 0.053 |0.035]0.026| 0.012 | 0.013
il) n=50 0.102 |0.0890.055| 0.053 |0.032|0.030| 0.017 | 0.014
N=100 0.095 10.090| 0.050 | 0.045 |0.025|0.024| 0.014 | 0.010
N=25 0.038 10.033{0.021 | 0.016 |0.012]0.008| 0.007 | 0.003
iii) n=50 0.047 10.037{0.022 | 0.015 |0.010|0.004| 0.003 | 0.002
N=100 0.042 10.030{0.018 | 0.013 |0.009|0.007 | 0.004 | 0.002
n=25 0.124 10.123]0.061 | 0.058 |0.030|0.026| 0.011 | 0.012
iv) n=50 0.133 10.128 | 0.067 | 0.060 |0.028|0.023 | 0.010 | 0.009
n=100 0.119 |0.114]0.057 | 0.055 | 0.027|0.024| 0.009 | 0.008
n=25 0.069 10.070|0.036 | 0.039 |0.020|0.022| 0.009 | 0.007
v) n=50 0.090 |0.091{0.047 | 0.046 |0.023]0.019| 0.007 | 0.003
n=100 0.087 10.085(0.044 | 0.043 |0.023|0.024| 0.012 | 0.010
n=25 0.055 |0.054|0.031| 0.027 |0.015|0.015| 0.006 | 0.008
vi) n=50 0.057 10.051{0.025| 0.025 |0.013]0.010| 0.003 | 0.002
n=100 0.080 |0.074|0.043 | 0.040 |0.023|0.019| 0.008 | 0.006
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Table 14

Estimated significance levels for approximate critical values for
and O R* Statistics, based on MWLS fit

(@R
m

«=0.10 «=0.05 c=0.025 oc=0.01

Configuration (a) (b) (a) (b) (a) (b) (a) (b)
n=25 0.107 [0.0870.058| 0.051 {0.029{0.030| 0.011 | 0.014
i) n=50 0.107 [0.0840.059| 0.051 {0.039{0.028 | 0.016 | 0.012
n=100 0.095 [0.0810.057 | 0.048 [0.033{0.025| 0.016 | 0.011
n=25 0.109 [0.0990.065 | 0.053 [0.036(0.030| 0.016 | 0.015
ii) n=50 0.097 [0.0880.058| 0.050 {0.032{0.030| 0.019 | 0.014
N=100 0.088 [0.080|0.046 | 0.043 [0.029(0.022| 0.015 | 0.009
N=25 0.103 [0.0900.054 | 0.044 |0.028{0.024| 0.012 | 0.009
iii) n=50 0.105 {0.093|0.062 | 0.049 {0.034{0.023| 0.012 | 0.007
N=100 0.102 [0.0870.062 | 0.045 [0.034{0.022| 0.011 | 0.011
n=25 0.092 [0.0910.046 | 0.043 [0.023{0.022| 0.015 | 0.090
iv) n=50 0.090 [0.0820.039| 0.044 [0.018{0.016| 0.008 | 0.007
n=100 0.091 [0.088|0.047 | 0.033 {0.023{0.023| 0.010 | 0.008
n=25 0.090 [0.0910.050| 0.049 [0.026(0.025| 0.009 | 0.008
v) n=50 0.102 {0.101|0.051| 0.045 [0.022{0.017| 0.007 | 0.007
n=100 0.093 [0.0910.050 | 0.046 [0.028{0.025| 0.012 | 0.011
n=25 0.073 [0.065|0.034| 0.033 [0.017{0.018 | 0.007 | 0.006
vi) n=50 0.092 [0.088|0.042 | 0.042 {0.019(0.017| 0.003 | 0.005
n=100 0.103 [0.094|0.047 | 0.047 {0.024{0.023 | 0.008 | 0.008
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5.Conclusions

The logistic, Probit and complementary log-log models are
commonly used in the analysis of binary response data when
explanatory variables are present. Since logistic model is of simple
interpretation therefore the analysis is focused on ~

model. Three methods of estimation for B have been used, they are
the maximum, likelihood, Minimum chi-square, and weighted least
squares. To examine the accuracy of the approximation of the
extreme residuals statistics a Monte Carlo investigation was made
for the case of a single explanatory variable. The important results
reached from the investigation that the differences between the
values of the extreme statistics based on the modified residuals and
the ordinary residuals very small so little is gained by making an
additional adjustment for estimated expectation. The other result is
the difference between significance levels when variance adjusted
residuals are used instead of the ordinary Pearson residuals are
generally quite small. For the extreme statistics based on the
absolute values of the residuals, variance adjustment leads to some
improvement for the smaller values of the nominal level of
significance

The final important finding from this paper is that no one of the
three methods of estimation procedure provides better control over
the significance level.

Therefore as the previous tables show that there is a good
agreement in general between the ordinary residuals and the
variance adjusted residuals. So we suggest that using the ordinary
residuals will be sufficient enough with out complicate the
computation of involving the use of adjusted residuals no matter
what the method of estimation is.
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