- - - =

_

I.

((....))] () . [KACAROV,I. / Minko, M.,]. . [,P. -.). . (... .II (...) .(....

- - - -

.IV

 $. S_x^{1 \div 11}$

)

:"x $W_{x} = S_{x}^{1+11} \cdot e_{x}^{0}$: ($\sum_{x=0}^{w-1} W_{x}^{1+11} = \sum_{x=0}^{w-1} S_{x}^{1+11} \cdot e_{x}^{0}$

(

) $e^{-0\div11}$

). .). ([].]. [L_x

X	$L_{\scriptscriptstyle x}$	$S_x^{1\div11}$	L_x^a	e_x^0	$e_{_{\scriptscriptstyle X}}^{^a}$	e_x^n
		,		,	,	,
		,		,	,	,
		,		,	,	,
		,		,	,	,
		,		,	,	,
		,		1	,	,
<u> </u>	•					

·[- · · · · ·] .v

. (

.

) .(

·

79 £

:

(
$$L_x$$
) x (i : L_x^n L_x^a

$$L_x == a_x L_x^a + n_x L_x^n = L_x^a + L_x^n$$

x a_x

x n

r

x (ii

 T_x^a - -

$$T_x^a = L_x^a + L_{x+1}^a + L_{x+2}^a + ... + L_{w-1}^a = \sum_{i=x}^{w-1} L_i^a$$

x = i

w-1

x

$$T_x^n = L_x^n + L_{x+1}^n + L_{x+2}^n + \dots + L_{w-1}^n = \sum_{i=x}^{w-1} L_i^n$$

 e_x^a (iii

: e_x^n

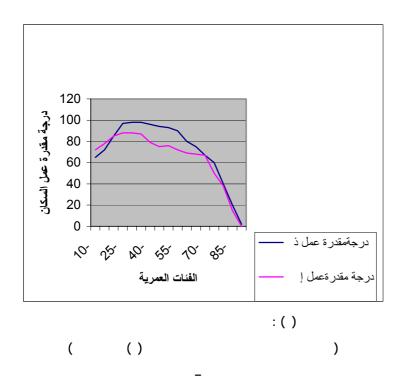
$$e_x^a = \frac{T_x^a}{L_x}$$
$$e_x^n = \frac{T_x^n}{L_x}$$

$$\hat{T}_x^{1+11} = S_x^{1+11}.e_x^a$$

$$\hat{T}_{x}^{1+11} = S_{x}^{1+11}.e_{x}^{a}$$

$$\vdots$$

$$\sum_{x=0}^{w-1} \hat{T}_{x}^{1+11} = \sum_{x=0}^{w-1} S_{x}^{1+11}.e_{x}^{a}$$


$$e^{-a1+11} = \frac{\sum_{x=0}^{w-1} \hat{T}_x^{1+11}}{\sum_{x=0}^{w-1} S_x^{1+11}}$$

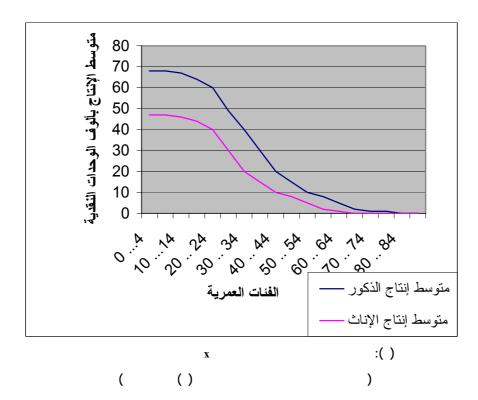
 \boldsymbol{x}

. (

 e^{-a} $\hat{P} = \frac{e_x^{-a}}{e_x^{-0}}$

: ()

-()_.


.

:

79A

- - - -

$$P_{x} \qquad \qquad .i$$

$$P_{x} \qquad \qquad p_{x} \qquad \qquad P_{x} \qquad \qquad .ii$$

$$P_{x} = p_{x}.L_{x}^{a} \qquad \qquad .ii$$

$$T_{x}^{p} \qquad \qquad x \qquad \qquad .ii$$

$$T_{x}^{a} = p_{x} + p_{x+1} + p_{x+2} + ... + p_{w-1} = \sum_{i=x}^{w-1} p_{i} \qquad \qquad .iii$$

$$(P_{x}^{p}) \qquad \qquad x \qquad \qquad .iii$$

$$(T_{x}^{p}) \qquad \qquad \vdots \qquad \qquad (L_{x}) \qquad \qquad .iii$$

$$P_{x} = \frac{T_{x}^{p}}{L_{x}} \qquad \qquad .iii$$

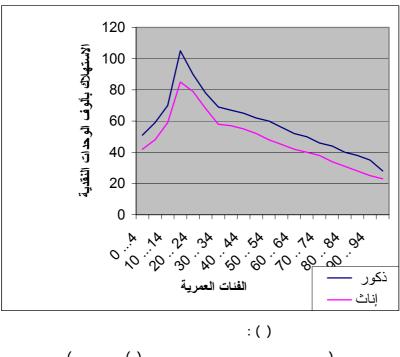
.

 $\overline{P}_x^{1+11} = S_x^{1+11}.e_x^p$

 $p_x^{1 \div 11}$

 \hat{p}_x

 \hat{p}_x S_x^{1+11} : (p_x)


 $\hat{p}_x = S_x^{1 \div 11}.p_x$

 \hat{p}_x

.VII

. *x*

[()].

() ()

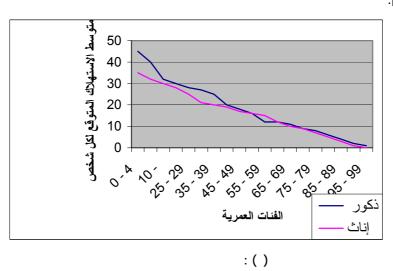
: (
$$K_x$$
) .i
$$(k_x) x$$

$$K_x = k_x . L_x$$

- - - -

x .ii

. iii


 $: (T_x^k)$

$$T_x^k = K_x + K_{x+1} + K_{x+2} + ... + K_{w-1} = \sum_{i=x}^{w-1} K_i$$
 (e_x^k) x

 (T_x^k)

 $e_x^k = \frac{T_x^k}{L_x} : \qquad (L_x)$

)].)].

(()

_

(
$$e_x^k$$
) ($S_x^{1\div11}$)

$$:$$
 ($\overline{K}^{ ext{1+11}}$)

$$\overline{K}_{x}^{1+11} = S_{x}^{1+11}.e_{x}^{k}$$

$$(S_{x}^{1+11})$$

$$: (K_{x}^{1+11})$$

$$: (K_{x})$$

$$\hat{K}_{x}^{1+11} = S_{x}^{1+11}.k_{x}$$

.VIII

$$(e_x^p) (m_x)$$

$$(e^k)$$

$$m_x = e_x^p - e_x^k$$

)
$$(\overline{M}^{1+11})$$

$$:(\overline{P}_x^{1+11})$$

$$\overline{M}_x^{1+11}=\overline{P}_x^{1+11}-\overline{K}_x^{1+11}$$

:

$$\overline{m}_{x}^{t1+11} = \frac{\overline{M}_{x}^{1+11}}{T_{x}^{a1+11}}$$

$$\overline{m}_{x}^{v1+11} = \frac{\overline{M}_{x}^{1+11}}{T_{x}^{1+11}}$$

:
$$\hat{M}_{x}^{1+11} = \hat{P}_{x}^{1+11} - \hat{K}_{x}^{1+11}$$

$$(\hat{m}_{x}^{t \mid +11})$$

$$(\hat{m}_{x}^{v \mid +11})$$

$$\hat{m}_{x}^{t \mid +11} = \frac{\hat{M}_{x}^{1 \mid +11}}{S_{x}^{a}}$$

$$\hat{m}_{x}^{v \mid +11} = \frac{\hat{M}_{x}^{1 \mid +11}}{S_{x}}$$

•

.

.IX

· :

$$X_i = \sum_{j=1}^n b_{ij} Y_j$$

$$egin{array}{cccc} i & & X_i \ & & b_{ij} \ & j & & i \ & . & j & & Y_j \end{array}$$

:

$$X_j = \sum_{i=1}^m x_{ij} + Z_j$$

·

.

$$\overline{X}_{j} = \sum_{i=1}^{m} \overline{x}_{ij} + T_{j}$$

() j \overline{X}_{j}

j i \overline{x}_{ij} . T_{j}

() ()

[AGANBEGJAN,S.A,GRANBERG,A., ,P. - :]

:
$$Y_{j}$$

$$Y_{j} = \sum e_{j} + [(\lambda \Delta \hat{K}_{jk} + \lambda \Delta \overline{K}_{jk}) \Delta X_{k} + \widetilde{K}_{j}]$$

 $\lambda\Delta\hat{K}_{jk} \ \lambda\Delta\overline{K}_{jk} \ e_{j} \ \Delta X_{k}$

- - - -

.()
$$\widetilde{K}_{j}$$

 b_{ij}

-

:

$$X_{j} = \sum_{j=1}^{n} b_{ij} \left[e_{j} + \sum_{k=1}^{n} \left(\lambda \Delta \hat{K}_{jk} + \lambda \Delta \overline{K}_{jk} \right) \Delta X_{k} + \widetilde{K}_{j} \right]$$

$$i$$

$$W$$

 $: \qquad b$

$$T_{i} = \sum_{j=1}^{n} W_{ij} \left[e_{j} + \sum_{k=1}^{n} \left(\lambda \Delta \hat{K}_{jk} + \lambda \Delta \overline{K}_{jk} \right) \Delta X_{k} + \widetilde{K}_{j} \right]$$

()

.

(b_{ij}) . (\boldsymbol{J}_{j})

•

. ()

() ()

·

.

.

.

·

.

-	-	-
_	-	-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
-	-	

	_
	-
	-
	-
	-
	-
	-
	-
	-
	ı
	-
	-
	-
	-
 	-
	-
	_

	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	-
	-
	-
	_
	-
	-
	-
	_
	-
	-
	-
	-
	-
	-
	-
	_
	_
	_
	-

: ()

```
- ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( ) - ( )
```

- AGANBEGJAN,S.,A., GRANBERG,A., , Ěkonomiko-matematičekij analiz mešduotraslevo balansa SSSR,Moskva .
- Aleksandr,J.,K., , Das demographische Optimum, in der : Beitraege zur Demographie - Bevölkerungstheorie und Bevölkerungspolitik , Akademie -Verlag - Berlin .
- Dinkel,R.-H., , Demographie,Band I ,Bevölkerungsdynamik, Verlag Franz Vahlen München .
- Feichtinger,G., , Demographische Analyse und Polulationsdynamische Modelle,gründzüge der Bevölkerungsmathmatik ,Springer-Verlag,Wien,New York.
- KACAROV, I., , in der Zeitschrift: Statitika, Heft, Sofia.
- KAZIMIERZ ,D., Polska , modele prongnoz demograficznychdla ,polski do roku , Warszawa .
- -Minko ,M., , Komplexe Bewertung der demographischen Prozesse und Bestimmung ihre optimalen Verlaufs , in der : Beitraege zur Demographie -Bevölkerungstheorie und Bevölkerungspolitik , Akademie - Verlag - Berlin .
- Minko , M., , Probleme der Arbeitskraeftewanderung zwischen RGW- Laendern , Sofia .
- Minko, M., Naseenie, I., Osnovni socialni strukturi, Sofia.
- Minko , M., IVANOV , I., Stojev,P., , Trudovijat mezduotraslov balans , Verna .
- NEMČINON ,V., , Ěkonomiko-matematičekije metody I modely narodnovo chozjajstva , Moskvo .

·

.

. //