

: -1

: -2

-1

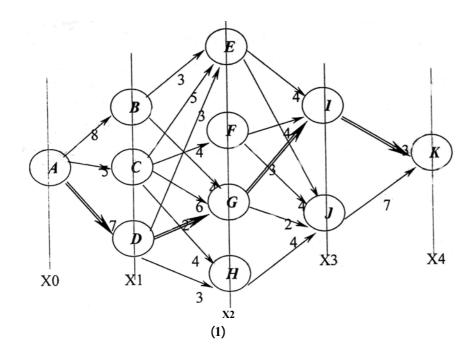
-2

-3

. -4

: -3

: -4
-1
-2
-3
: -5


1944 Pierre Masse

.1952 Richard Bellman

. 1

· :

 $^{^{\}rm 1}$ J.L.LAURIERE: Elements de programmation dynamique Gauthier-villars Paris 1979 P 17 et 27.

A
$$V_{k}^{*}(x_{k})$$

$$V_{k+1}(x_{k}, x_{k+1}) \qquad X_{k} \qquad x_{k}$$

$$(x_{k}, x_{k+1})$$

$$\vdots$$

$$x_{k+1} \in X_{k+1}$$

$$V_{k+1}^{*}(x_{k+1}) = opt_{x_{k} \in X_{k}}[V_{k+1}(x_{k}, x_{k+1}) + V_{k}^{*}(x_{k})]$$

² Robert Faure: Precis de recherche operationnelle Dunod decision Paris 1979 P 62-63

 $\begin{aligned} & \text{Min Max} & \text{opt} \\ \vdots \\ & V_1^*(B) = 8, V_I^*(C) = 5, V_I^*(D) = 7 \\ & \vdots \\ & x_2 \in [E, F, G, H] \\ \vdots & & & V_2^*(x_2) \\ & & & V_2^*(E) = opt_{x_1 \in X_1}[V_2(x_1, E) + V_1^*(x_1)] = \\ & = opt_{B,C,D}[V_2(B, E) + V_1^*(B); V_2(C, E) + V_1^*(C); V_2(D, E) + V_1^*(D)] = \\ & = opt\left[3 + 8, 5 + 5, 3 + 7\right] \\ & = opt\left[11; 10; 10\right] = 10 \end{aligned}$

.

- 6

2001

144269

. 14.4269

2000 1963

(1)

					· /
0	0	0	0	0	0
0.15	0.18	0.22	0.28	0.25	1
0.20	0.23	0.26	0.37	0.36	2
0.25	0.27	0.32	0.50	0.48	3
0.30	0.32	0.37	0.64	0.60	4
0.36	0.40	0.46	0.73	0.68	5
0.42	0.48	0.50	0.80	0.74	6
0.45	0.54	0.58	0.90	0.82	7
0.52	0.60	0.64	1.01	0.90	8
0.58	0.64	0.68	1.16	1.02	9
0.62	0.69	0.73	1.26	1.2	10

2002

14.4269

6.1.1.1.1

5.2.1.1.1

4.3.1.1.1

3.3.2.1.1 3.2.2.2.1

2.2.2.2.2

2.2.2.2.2

: 1.1.1.1.6

 $\frac{5!}{4!1!} = 5$

:

5.2.1.1.1 4.3.1.1.1 3.1.2.2.2

:

$$\frac{5!}{3!1!1!} = 5.4 = 20$$

60

2.3.1.3.1

:

$$\frac{5!}{2!2!1!} = \frac{5.4.3}{2} = 30$$

.

$$30 + 60 + 5 + 1 = 96$$

96

.

_

 x_1, x_2, x_3, x_4, x_5

 $f_I(x_I)$

 $f_1(x_1), f_2(x_2), f_3(x_3), f_4(x_4), f_5(x_5),$

 $x_1 + x_2 + x_3 + x_4 + x_5 = 10$ (1) $F(x_1,x_2,x_3,x_4,x_5) = f_1(x_1) + f_2(x_2) + f_3(x_3) + f_4(x_4) + f_5(x_5)...(1)$ X_1, X_2, X_3, X_4, X_5 [0,1,2,3,4,5,6,7,8,9,10] x1 + x2 = u1u3 + x5 = 10 = A144.269 2001 $u_1 \leq A, u_2 \leq A, u_3 \leq A$ $F(x_1, u_1, u_2, u_3, A) = f_1(x_1) + f_2(u_1 - x_1) + f_3(u_2 - u_1) + f_4(u_3 - u_2) + f_5(A - u_3)...2$ $f_{1,2}(u_1) = Max[f_{1,2}(x_1) + f_2(u_1 - x_1)]....(3)$ $x_1 \in [0.1.2.3.4....10]$ $f_{123}(u_2) = Max[f_{12}(u_1) + f_{123}(u_2 - u_1)]....(4)$ $u_1 \in [0.1.2.3.4....10]$ $f_{1,2,3,4}(u_3) = Max[f_{1,2,3}(u_2) + f_{1,2,3,4}(u_3 - u_2)]....(5)$ $u_2 \in [0.1.2.3.4....10]$

:

$$f_{1.2.3.4.5}(A) = Max[f_{1.2.3.4}(u_3) + f_{1.2.3.4.5}(A - u_3)]....(6)$$

$$u_3 \in [0.1.2.3.4.....10]$$

: (3)

$$f_{1,2}(u_1 = 1) = Max[f_1(0) + f_2(1), f_1(1) + f_2(0)]$$

= $Max[0 + 0.28, 0.25 + 0] = 0.28$
0.1

$$f_{1,2}(u_1 = 2) = Max[f_1(0) + f_2(2), f_1(1) + f_2(1), f_1(2) + f_0(0)]$$

$$= Max[0 + 0.37, 0.36 + 0.37, 0.36 + 0]$$

$$= Max[0.37, 0.53, 0.36] = 0.53$$
(1.1)

ı

•

$$\begin{array}{l} f.\ 12\ (\ u1=3\) = Max[f1(0)+f2(3)\ ,f1(1)+f2(2)\ ,f1(2)+f2(1)\ ,f1(3)+f2(0)\] \\ = Max\ [\ 0+0.5\ ,0.25+0.37\ ,0.36+0.28\ ,0.48+0\] \\ = Max\ [\ 0.5\ ,0.62\ ,0.64\ ,0.48\] = 0.64 \end{array}$$

2.1

 $u_1 = 10$

(2) :

	$f_1(x_1)$	$f_2(x_2)$	f _{1.2} (u ₁)	
0	0	0	0	0.0
1	0.25	0.28	0.28	0.1
2	0.36	0.37	0.53	1,1
3	0.48	0.50	0.64	2.1
4	0.60	0.64	0.76	3.1
5	0.68	0.73	0.89	1.4
6	0.74	0.80	1	2.4
7	0.82	0.90	1.12	3.4
8	0.90	1.01	1.24	4.4
9	1.02	1.16	1.33	4.5
10	1.2	1.26	1.41	5.5

(5.5)

5

5

1.41

1.41 , 14.4269 = 20.341929

,

: (4)

(3)

	f _{1.2} (u ₁)	f ₃ (x ₃)	f _{1.2.3} (u ₂)	
0	0	0	0	0.0.0
1	0.28	0.22	0.28	0.1.0
2	053.	0.26	0.53	1.1.0
3	064.	0.32	0.75	1.1.1
4	0.76	0.37	0.89	2.1.1
5	0.89	0.46	0.98	3.1.1
6	1	0.50	1.11	1.4.1
7	0.12	0.58	1.22	2.4.1
8	1.24	064.	1.34	3.4.1
9	1.33	0.68	1.46	4.4.1
10	1.41	0.73	1.55	4.5.1

10

(4,5,.1)

.

5

:

(4)

	$f_{1,2,3}(u_2)$	$f_4(x_4)$	f _{1,2,3,4} (u ₃)	
0	0	0	0	0.0.0.0
1	0.28	0.18	0.28	0.1.0.0
2	0.53	0.23	0.53	1.1.0.0
3	0.75	0.27	0.75	1.1.1.0
4	0.98	0.32	0.93	1.1.1.1
5	0.98	0.40	1.07	2.1.1.1
6	1.11	0.48	1.16	3.1.1.1
7	1.22	0.54	1.29	1.4.1.1
8	1.34	0.60	1.40	2.4.1.1
9	1.46	0.64	1.52	3.4.1.1
10	1.55	0.69	1.64	4.4.1.1

(4,4,1,1)

(5)

	$f_{1,2,3,4}(u_3)$	$f_5(x_5)$	$f_{1,2,3,4,5}(A)$	
0	0	0	0	0.0.0.0
1	0.28	0.15	0.28	0.1.0.0.0
2	0.53	0.20	0.53	1.1.0.0.0
3	0.75	0.25	0.75	1.1.1.0.0
4	0.93	0.30	0.93	1.1.1.1.0
5	1.07	0.36	1.08	1.1.1.1.1
6	1.16	0.42	1.22	2.1.1.1.1
7	1.29	0.48	1.31	3.1.1.1.1
8	1.40	0.52	1.44	1.4.1.1.1
9 (1)	1.52	0.85	1.67	2.4.1.1.1
10	1.64	0.62	1.67	3.4.1.1.1

3.4.1.1.1 : 144.269 14.4269 $3 \times 14.4269 = 43.2807$ 14.4269 $4 \times 14.4269 = 57.7076$ 14.4269 14.4269 $1.67 \times 14.4269 = 23.992.923$ 23992.923 -1 -2 -3 3,4,1,1,1

-5 -1 -2 -3 19.210 25.0407 **%30** 2001 -4 41.985 15.7106 **%40** -5 20.269 26.976 35.829 5.8421 12.5491 21.4021 10 %10 %10 .2001

-1 .1984 -2 .2000 -3 .1998 -4 .1991 1- J.Boss et A. le GARFF: La recherche operationnelle: que sais-j no 941 Puf paris 1980 2- J.L.LAURIERE: Elements de programmation dynamique Gauthier-villars Paris 1979 3- KAUF MANN A: GRUON R La programmation dynamique et ses application Paris DUNOD 1965 4- Pierre MASSE: Le choix des investissements DUNOD Paris 1965. 5- Robert Faure Precise de recherche operatoinnelle DUNOD decision Paris 1979. 1- BELLMANN. R Dynamic programming; Princeton university pres 1957. 2- BUNN D Applied decision analysis; New York. Mc GRAW - Hill 1984. 3- HOWARD R-A Dynamic programming and Markov Processes Cambridge 1960. 4- HILLIER. F and G.J LIEBERMANN introduction to operation research San-Francisco Holden day 1980. 5- RICHARD Lerin David S Rubin Joel P. Stinson Quantitative approaches to Management Mo - GRAU-HILL BOOK Company 2000.

.2002/12/18