APPROACH TO THE RESPIRATORY PATIENT

Differential Diagnosis of Dyspnea

Respiratory Airway disease Asthma* COPD exacerbation* upper airway obstruction (anaphylaxis, foreign body, etc)* mucus plugging* Parenchymal lung disease ARDS* Pneumonia* interstitial lung disease Pulmonary vascular disease PE* pulmonary HTN pulmonary vasculitis Pleural disease pneumothorax* pleural effusion Neuromuscular and chest wall disorders polymyositis, myasthenia gravis, Guillain-Barré syndrome kyphoscoliosis C-spine injury* Cardiovascular Elevated pulmonary venous pressure LVF with pulmonary edema* mitral stenosis Decreased cardiac output

* denotes causes that should be considered for acute dyspnea

Severe anemia

Anxiety/psychosomatic*

Differential Diagnosis of Cough

Airway irritants

inhaled smoke, dusts, fumes aspiration gastric contents oral secretions foreign body postnasal drip

Airway disease

URTI including postnasal drip and sinusitis acute or chronic bronchitis bronchiectasis neoplasm external compression by node or mass lesion asthma COPD

Parenchymal disease

pneumonia lung abscess interstitial lung disease

CHF

Drug-induced

Differential Diagnosis of Hemoptysis

Airway disease

acute or chronic bronchitis bronchiectasis bronchogenic CA bronchial carcinoid tumour

Parenchymal disease

TB
lung abscess
pneumonia
miscellaneous
Goodpasture's syndrome
idiopathic pulmonary hemosiderosis

Vascular disease

PE
elevated pulmonary venous pressure
LVF
mitral stenosis
vascular malformation

Miscellaneous

impaired coagulation pulmonary endometriosis

Differential Diagnosis of Chest Pain

Nonpleuritic	Pleuritic	
Pulmonary neoplastic pneumonia PE Cardiac MI ischemia myocarditis/pericarditis Esophageal spasm esophagitis ulceration achalasia neoplasm Mediastinal lymphoma thymoma Subdiaphragmatic PUD gastritis biliary colic pancreatic Vascular dissecting aortic aneurysm MSK costochondritis skin breast ribs	Pulmonary pneumothorax hemothorax PE pneumonia bronchiectasis neoplasm TB empyema Cardiac pericarditis Dressler's syndrome GI pancreatitis MSK costochondritis fractured rib myositis herpes zoster	

dyspnea/SOB

• orthopnea:

SOB when recumbent in CHF, asthma, COPD, or GERD

• trepopnea:

SOB when right or LLD position in CHF, cardiac mass

platypnea:

SOB when upright in post-pneumonectomy, neurologic disease, hepatopulmonary syndrome (ie. liver failure), hypovolemia

• episodic: in bronchospasm, transient pulmonary edema

Degree of Dyspnea

A frequently used scale to assess the degree of dyspnea due to lung diseases is that of the British Medical Research Council:

- Grade 0: dyspnea only during strenuous exercise
- Grade I: dyspnea only caused by brisk walking

- Grade II: brisk walking not possible due to shortness of breath
- Grade III: stopping due to dyspnea after 100 m walking
- Grade IV: does not leave the house due to shortness of breath.

Table 2.5. Modified MRC dyspnea scale	
PLEASE TICK IN THE BOX THAT APPLIES TO YOU (ONE BOX ONLY) (Grades 0-4)	
mMRC Grade 0. I only get breathless with strenuous exercise.	
mMRC Grade 1. I get short of breath when hurrying on the level or walking up a slight hill.	۵
mMRC Grade 2. I walk slower than people of the same age on the level because of breathlessness, or I have to stop for breath when walking on my own pace on the level.	
mMRC Grade 3. I stop for breath after walking about 100 meters or after a few minutes on the level.	۵
mMRC Grade 4. I am too breathless to leave the house or I am breathless when dressing or undressing.	

MRC dyspnoea scale

- 1- Not troubled by breathlessness except on strenuous exercise
- 2 Short of breath when hurrying or walking up a slight hill
- 3 Walks slower than contemporaries on level ground because of breathlessness or has to stop for breath when walking at own pace
- 4 Stops for breath after walking about 100 m or after a few minutes on level ground
- 5 Too breathless to leave the house, or breathless when dressing or undressing.

The New York heart Association functional and therapeutic classification applied to dyspnea

- ▶ Grade I : No breathlessness
- Grade 2 :Breathlessness on severe exertion
- ▶ **Grade 3:** Breathlessness on mild exertion
- ▶ **Grade 4 :** Breathlessness at rest

cough

- <u>productive</u>: bronchiectasis, bronchitis, abscess, bacterial pneumonia, TB
- <u>nonproductive</u>: viral infections, interstitial lung disease, anxiety, allergy
- wheezy: suggests bronchospasm, asthma, allergy
- nocturnal: asthma, CHF, postnasal drip, GERD, or aspiration
- **barking:** epiglottal disease (croup) in children
- **positional**: abscess, tumour

sputum

- mucoid: asthma, tumour, TB, emphysema
- <u>purulent green</u>: bacterial pneumonia, bronchiectasis, chronic bronchitis
- **purulent rusty**: pneumococcal pneumonia
- **frothy pink:** pulmonary edema
- red currant jelly: Klebsiella pneumoniae
- foul odour: abscess (anaerobic pathogens)

Table 17.1 Causes for chronic cough

Children		Adults	
Frequent	 bronchial hyperresponsiveness after viral infections bronchial asthma gastroesophageal reflux-pulmonary aspiration "postnasal drip" 	 chronic bronchitis (smokers) "postnasal drip" bronchial asthma gastroesophageal reflux congestive left-sided heart failure 	
Rare	 aspiration of a foreign body bronchiolitis after viral infections cystic fibrosis primary cilicary dyskinesia 	 ACE inhibitors recurrent aspiration bronchial cancer tuberculosis bronchiectases pneumonia interstitial lung diseases psychogenic 	

hemoptysis

hemoptysis

VS.

- cough
- sputum present
- stable bubbles
- alkaline pH
- alveolar macrophages

hematemesis

- nausea/vomiting
- no sputum
- no stable bubbles
- acid pH
- no alveolar macrophages

chest pain

 due to parietal pleura, chest wall, diaphragm, or mediastinal involvement

• <u>pleuritic</u>: sharp knife-like pain worse with deep inspiration or coughing

PHYSICAL EXAM AND DIFFERENTIAL DIAGNOSIS OF SIGNS IN RESPIRATORY DISEASE

Inspection

- ☐ face
 - nasal flaring, pursed lip breathing
 - pallor: anemia
 - central cyanosis: inadequate SaO2
- posture
 - tripod sit
- ☐ accessory muscle use
- ☐ chest shape
 - horizontal ribs: emphysema
 - barrel chest (increased AP diameter): advanced COPD
 - kyphosis/scoliosis: restricts chest expansion
 - pectus excavatum (sternal depression): restricts chest expansion
 - flail chest: multiple rib fractures

Inspection

- □ hands
 - clubbing (base angle of nail obliterated, increased sponginess of nail bed)
 - peripheral cyanosis: excessive O2 extraction
- respiratory rate and patterns
 - apnea (complete cessation of airflow lasting at least 10 seconds)
 - hypopnea (a decrease in airflow by at least 50% lasting at least 10 seconds)
- ☐ Central cyanosis is not detectable until the SaO2 is < 85%. It is also marked in polycythemia and less readily detectable in anemia.

Differential Diagnosis of Clubbing (Hypertrophic Osteoarthropathy)

Pulmonary

CF

Pulmonary fibrosis

Chronic pus in the lung

(bronchiectasis, abscess,

infections, etc.)

Lung CA (primary or mets)

Mesothelioma

A-V fistula

Gastrointestinal

IBD

Chronic infections

Laxative abuse

Polyposis

Malignant tumours

Cirrhosis

HCC

Cardiac

Cyanotic congenital heart disease Infective endocarditis

Mediastinal

Esophageal CA

Thymoma

Achalasia

Other

Graves' disease

Thalassemia

Other malignancies

Primary hypertrophic osteoarthropathy

6. Respiration Patterns in Normal and Disease States

Respiration Pattern	Causes	
normal inspiration and expiration		
obstructive (prolonged expiration)	asthma, COPD	
bradypnea (abnormal slowness of breathing)	drug-induced respiratory depression diabetic coma increased ICP	
Kussmaul's (fast and deep)	metabolic acidosis exercise anxiety	
Biot's/ataxic (irregular with long apneic periods)	drug-induced respiratory depression increased ICP brain damage, especially medullary	
Cheyne-Stokes (changing rates and depths with apneic periods)	drug-induced respiratory depression brain damage (especially cerebral) CHF uremia	
pneustic (prolonged inspiratory pause) pontine lesion		

Palpation

- ☐ chest wall tenderness: MSK disease
- ☐ asymmetrical chest excursion
 - pleural effusion, lobar pneumonia, pulmonary fibrosis, bronchial obstruction, pleuritic pain, pneumothorax
- **□** tactile fremitus
 - increased: consolidation (pneumonia)
 - decreased
 - unilateral

VS.

- pneumothorax
- pleural effusion
- bronchial obstruction
- pleural thickening

bilateral

- COPD
- pleural effusion
- chest wall thickening (fat, muscle)

Palpation

- ☐ trachea
 - deviated
 - contralateral: pneumothorax (especially tension), pleural effusion
 - ipsilateral: atelectasis
 - decreased mobility: mediastinal fixation (neoplasm, TB)

Percussion

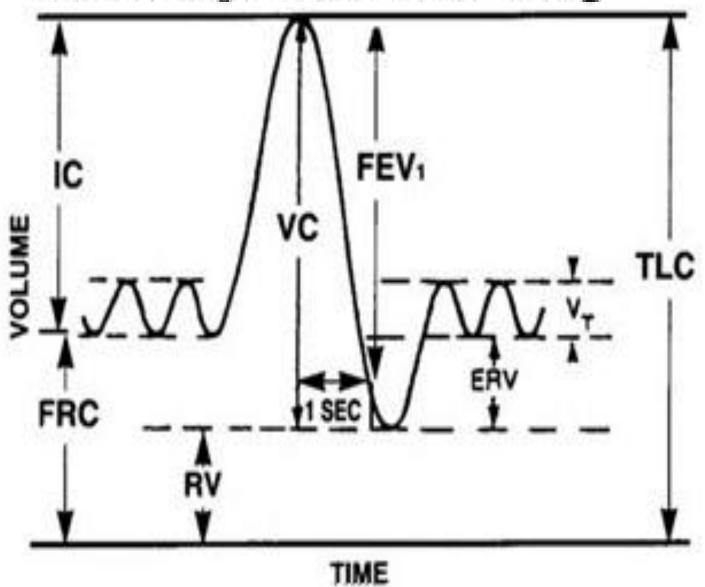
- dull: pneumonia, pleural effusion, atelectasis, hemothorax, empyema, tumour
- ☐ hyperresonant: emphysema, pneumothorax, asthma

☐ diaphragmatic excursion (normal diaphragmatic movement 4-5 cm from inspiration to expiration)

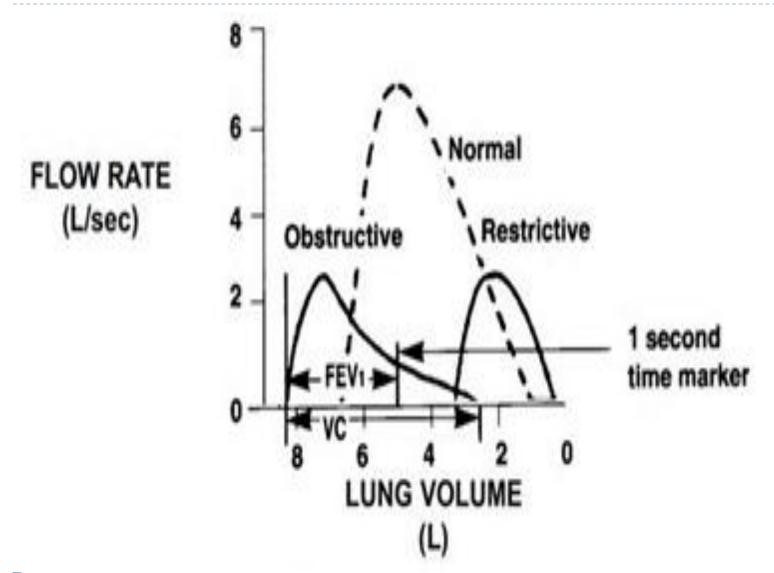
Breath Sounds

Vesicular	Bronchial	
soft low-pitched inspiratory >> expiratory phase normal over most of peripheral lung	 loud high-pitched expiratory > inspiratory phase normal over manubrium but represents consolidation elsewhere 	
Decreased air entry	Crackles (Rales/Crepitations)	
asthma emphysema pneumothorax pleural effusion atelectasis ARDS	coarse crackles: • bronchitis • respiratory infections, pneumo • pulmonary edema • interstitial fibrosis • CHF • excess airway secretions • fine crackles: interstitial fibrosis	
Wheeze (Rhonchi)	Pleural rub	
asthma bronchitis pulmonary edema CHF	pneumonia pleural effusion pulmonary infarction	
foreign body	Voice sounds	
CF aspiration tumour, vascular ring rapid airflow through obstructed airway	 egophony (e to a) whispered pectoriloquy bronchophony all are due to consolidation 	

Characteristics of Breath Sounds


	Duration of Sounds	Intensity of Expiratory Sound	Pitch of Expi- ratory Sound	Locations Where Heard Nor- mally
Vesicular*	Inspiratory sounds last longer than expiratory sounds.	Soft	Relatively low	Over most of both lungs
Broncho- vesicular	Inspiratory and expiratory sounds are about equal.	Intermediate	Intermediate	Often in the 1st and 2nd interspaces anteriorly and between the scapulae
Bronchial	Expiratory sounds last longer than inspiratory ones.	Loud	Relatively high	Over the manubrium, (larger proximal airways)
Tracheal	Inspiratory and expiratory sounds are about equal.	Very loud	Relatively high	Over the tra- chea in the neck

PULMONARY FUNCTION TESTS (PFTs)


- ☐ useful in differentiating the pattern of lung disease (obstructive vs. restrictive)
- ☐ assesses lung volumes, flow rates, and diffusion capacity
- ☐ Dco decreases with:
 - 1) decreased surface area
 - 2) decreased hemoglobin,
 - 3) interstitial lung disease, and
 - 4) pulmonary vascular disease.

. Subcompartments of Lung

Expiratory Flow Volume Curves

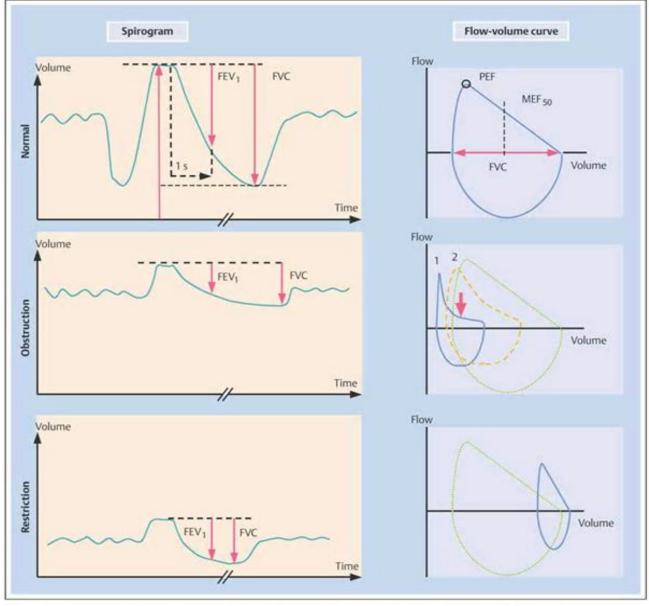


Fig. 17.1 Spirogram and flow-volume curve in a healthy person, in obstruction and restriction to airflow:

FEV₁: forced expiratory volume in the first second, i.e., the lung volume, which is expired during one second.

FVC: forced vital capacity: volume, which is measured after > 6 seconds maximal expiration.

PEF: peak expiratory flow: maximal flow (L/s). In obstructive ventilatory defects the ratio FEV_1/FVC is < 0.7. In restriction, both volumes i. e., the FEV_1 and FVC are decreased by the same degree and the ratio $FEV_1/FVC > 0.7$. Notice the characteristic flow–volume curve 1: before, and curve 2: after, inhalation of a beta-adrenergic drug: characteristic for bronchial asthma.

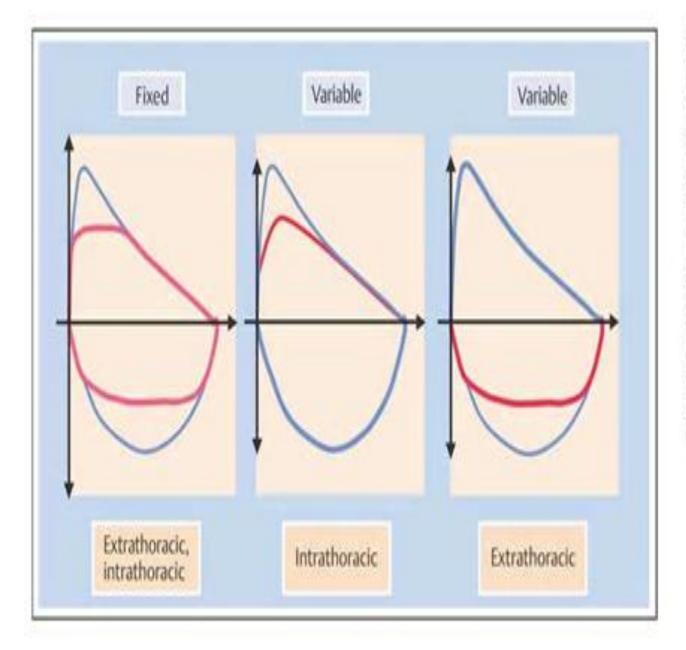


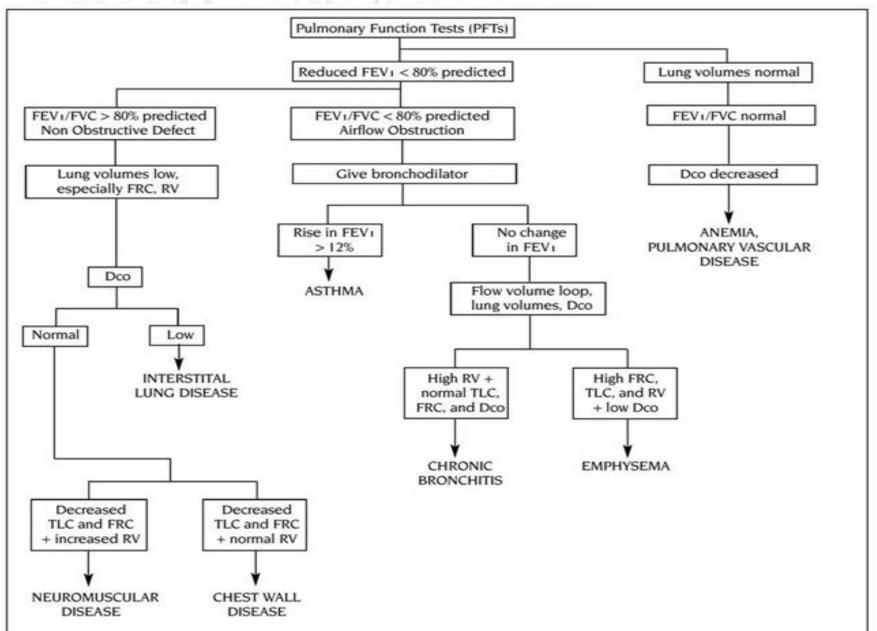
Fig. 17.2 Upper airway stenosis. The inspiratory and expiratory flows are limited both during inspiration and expiration to the same degree if the stenosis is fixed, independent of its localization. If the stenosis is variable and localized outside the thorax, only the inspiratory flow is limited. If the variable stenosis is localized inside the thorax, only the expiratory flow becomes limited.

Comparison of Lung Flow and Volume Parameters in Obstructive vs. Restrictive Lung Disease

		Obstructive	Restrictive
Flow Rates (i.e. Lung Mechanics)	FEV1 FVC FEV1/FVC FEF25-75=MMFR		or N
Lung Volumes	TLC FRC VC RV RV/TLC	or Nor Nor N	i N
Diffusing Capacity	Dco	↓ or N	l or N

Obstructive Lung Disease

- ☐ characterized by
- obstructed airflow
- decreased flow rates (most marked during expiration)
- air trapping (increased RV/TLC), and hyperinflation (increased FRC,TLC)
- ☐ DDx includes asthma, COPD, CF, bronchiectasis



Restrictive Lung Disease

- ☐ characterized by decreased lung compliance and lung volumes
- ☐ DDx includes interstitial lung, neuromuscular, or chest wall disease

Interpreting PFTs

Definitions

BE

PaO₂ Partial pressure of oxygen in arterial blood. The PaO₂ does not reveal how

much oxygen is in the blood but only the pressure exerted by dissolved O₂

molecules against the measuring electrode. Normal PaO₂ is age-

dependent; when breathing air, the normal PaO₂ is 12.5 – 13.0 kPa (95 –

100 mmHg) at the age of 20 years and approximately 10.8 kPa (80 mmHg)

at 65 years.

PaCO₂ Partial pressure of carbon dioxide in arterial blood (normal value 5.3 kPa

[4.7 - 6.0] or 40 mmHg [35 - 45])

HCO₃ Bicarbonate concentration (normal value 24 mmol l⁻¹ [22 – 26])

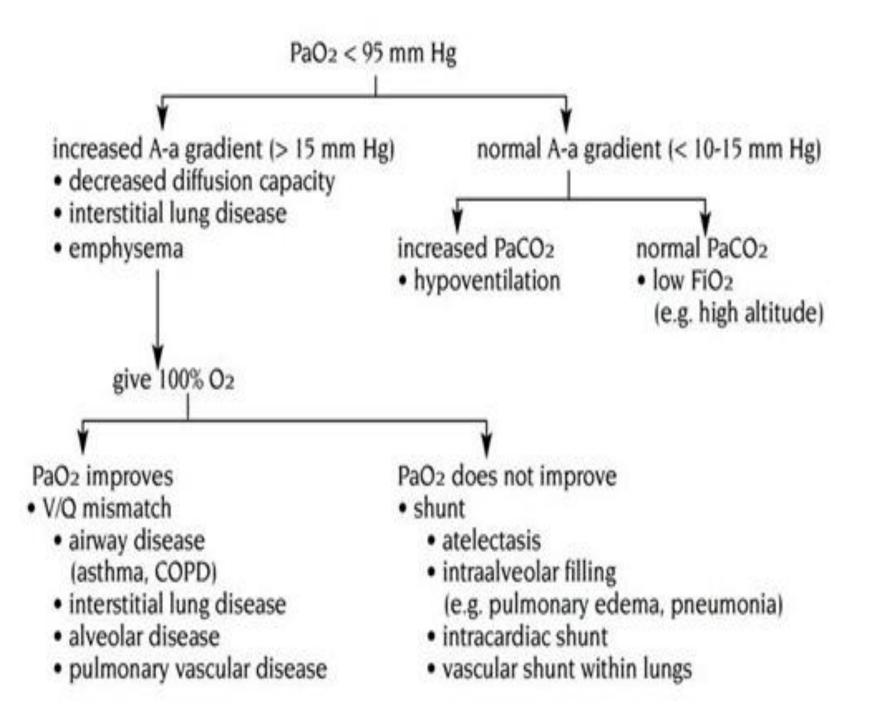
Base excess – the quantity of strong acid or base required to restore pH to

7.4. The normal range is plus 2 mmol I⁻¹ to minus 2 mmol I⁻¹. A positive value of BE indicates an excess of base (or deficit of acid), while a negative

value indicates a deficit of base (or excess of acid)

ARTERIAL BLOOD GASES (ABGs)

- I. What is the pH? acidemic (pH < 7.35), alkalemic (pH > 7.45), or normal (pH 7.35-7.45)
- 2. What is the primary disturbance?
 - metabolic: change in HCO3- and pH in same direction
 - respiratory: change in PaCO2 and pH in opposite direction
- 3. Has there been appropriate compensation?
 - metabolic compensation occurs over 2-3 days reflecting altered renal HCO3- production/excretion
 - respiratory compensation through ventilation control of PaCO2 occurs immediately
 - inadequate compensation may indicate a second acid-base disorder
- 4. If there is metabolic acidosis, what is the anion gap?
 - anion gap = [Na+]-([CI-]+[HCO3 -]); normal = 10-15 mmol/L


Expected Compensation for Specific Acid-Base Disorders

Disturbance	PaCO ₂	HCO3
Respiratory Acidosis		
Acute	10	1
Chronic	10	3
Respiratory Alkalosis	0000	2000
Acute	10	2
Chronic	10	5
Metabolic Acidosis	1	1
Metabolic Alkalosis	3	10

Approach to Oxygenation Status

- I.What is the PaO2? (normal = 95-100 mm Hg)
- 2. What is the AaDO2? (normal < 15 mm Hg)
 - AaDO2 = PAO2 PaO2 = [FiO2(Patm - PH2O) - PaCO2/RQ] - PaO2
 - On room air: FiO2 = 0.21, Patm = 760 mm Hg, PH2O = 47 mm Hg, RQ = 0.8 —>
 AaDO2 = [150 1.25(PaCO2)] PaO2
 - the normal AaDO2 increases with age
- 3. What is the cause of the hypoxemia?

