
二islipál cishé．

－伍说，＝
系约
＿$=$ تill
up

 véal

－ب＇p upall．

unsil dyell

Conir \mathbb{R}^{n} velóx = Lipesl

$$
\mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} \times \ldots \times \pi \times \pi=4 \pi=2010
$$

$$
\begin{gathered}
\forall x, y \in \mathbb{R}^{n} \\
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n} \dot{\sim} \\
\forall \alpha \in \mathbb{R} \\
\text { \& } x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}-y_{n}\right) \\
\text { 2) } \alpha x=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)
\end{gathered}
$$

- ñís she i w vérsher ($\left.\mathbb{R}^{n},+\ldots\right)$
su no ces peed
- X vañ she ole án al., A

$11.11: X \longrightarrow \mathbb{R}$

चِ
is $y x \in X$

$$
\|x\| \geqslant 0
$$

2) $1 x \in X$
$\|x\|=0 \Leftrightarrow x=0 x$ shed sur
3) $\forall x \in X ; \forall \propto \in \mathbb{B}$

$$
\|\alpha \cdot x\|=|\alpha| \cdot\|x\|
$$

4) $\quad Y x, y \in X ; \quad\|x+y\| \leqslant\|x\|+\|y\|$

 - NEs.

$$
x \longmapsto\|x\|=\sum_{i=1}^{n}\left|x_{i}\right|
$$

reis slë $\left(\mathbb{R}^{n}, \| .11\right)$
二i ipr cll

$\forall x, y \in \mathbb{R}^{n} ; \quad \forall \alpha \in \mathbb{R}^{2}$
$1 \quad\left|x_{i}\right| \geqslant 0 \quad ; \quad(i=1,2, \ldots, n)$

$$
\Rightarrow \sum_{i=1}^{n}\left|x_{i}\right| \geqslant 0 \Rightarrow\|x\| \geqslant 0
$$

$\underline{2}\|x\|=0 \Leftrightarrow \sum_{i=1}^{n}\left|x_{i}\right|=0 \Leftrightarrow\left|x_{i}\right|+\left|x_{2}\right|+\ldots+\left|x_{A}\right|=0$

$$
\begin{aligned}
& \Leftrightarrow \quad\left|x_{1}\right|=0 \quad, \quad(i=1,2, \ldots, n) \\
& \Leftrightarrow \quad x_{i}=0 \quad ; \quad i=(1,2, \ldots, n) \\
& \Leftrightarrow \quad x \quad=\left(x_{1}, x_{2}, \ldots, x_{0}\right)=(0,0, \ldots)=0 \mathbb{1 R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
3\|\alpha x\|=\sum_{i=1}^{n}\left|\alpha \cdot x_{i}\right| & =\sum_{i=1}^{n}|\alpha| \cdot\left|x_{i}\right| \\
& =|\alpha| \cdot \sum_{i=1}^{n}\left|x_{i}\right|=|\alpha| \cdot\|x\|
\end{aligned}
$$

4

$$
\|x+y\| ? \leqslant\|x\|+\|y\|
$$

$$
\begin{aligned}
&\left|x_{i}+y_{i}\right| \leqslant\left|x_{i}\right|+\left|y_{i}\right| ;(i=1, \ldots, n \mid \\
& \sum_{i=1}^{n}\left|x_{i}+y_{i}\right| \leqslant \sum_{i=1}^{n}\left|x_{i}\right|+\left|y_{i}\right| \\
& \leqslant \sum_{i=1}^{n}\left|x_{i}\right|+\sum_{i=1}^{n}\left|y_{i}\right|
\end{aligned}
$$

$$
\|x+y\| \leqslant\|x\|+\|y\|
$$

مèr she $\left.(1)^{n}, 11.11\right) \leq:$

$$
\begin{aligned}
\|.\|: \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
x & \longmapsto\|x\|=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}
\end{aligned}
$$

- T1. ${ }^{n}$ de rüë ~ui =

$$
\begin{aligned}
x & =\left\{x_{i}\right\}_{i>1} \in \ell^{\infty} \\
\left|x_{i}\right| & \leqslant C_{x} \quad
\end{aligned}
$$

$$
\begin{align*}
x+y=\left\{x_{i}+y_{i}\right\}_{i \geqslant 1} & =\left\{x_{i}\right\}_{i 21}+\left\{y_{i}\right\}_{i>1} \\
\alpha \cdot x=\left\{\alpha, x_{i}\right\}_{i \geqslant 1} & =\alpha \cdot\left\{x_{i}\right\}_{i>1} \\
\|x\| & =\operatorname{Siup}_{\substack{ \\
i \in \mathbb{N}^{*}}}\left|x_{i}\right| \quad-i i
\end{align*}
$$

Nim slee $\left(1^{\infty},+, \quad-i=i, 2^{\infty}\right.$ ds inei ，s，

三－小川
1）$\forall t \in[a, b]:\|x\|_{1}=\max |x(t)|$
2) $\left\|x_{2}\right\|={ }_{a}^{b}| | x(t) \mid d t$

$$
\left(x,\|.\|_{1}\right) \quad ; \quad\left(x,\left\|_{2}\right\|_{2}\right)
$$

$\therefore i$ ins,
\therefore 二ér
Sin

zus 1,11 st, 5

<ivi \langle,$\rangle joll$

$$
\begin{aligned}
& \langle,\rangle: X \times X \longrightarrow \mathbb{R} \\
& (x, y) \longmapsto\langle x, y\rangle
\end{aligned}
$$

च玉ا =

$$
\begin{array}{ll}
1 \forall x \in X ; & \langle x, x\rangle \geqslant 0 \\
2 \forall x \in X ; & \langle x, x\rangle=0 \Leftrightarrow x=0 x \\
\& \forall x, y \in X ; & \langle x, y\rangle=\langle y, x\rangle \\
\hdashline \forall x, y \in X ; & \forall \alpha \in \mathbb{R}
\end{array}
$$

$$
\langle\alpha x, y\rangle=\langle x, \alpha y\rangle=\alpha,\langle x, y\rangle
$$

$\mathscr{E} 4 x, y, 3 \in X:\langle x+y, 3\rangle=\langle x, 3\rangle+\langle y, 3\rangle$

$$
\langle x, y+3\rangle=\langle x, y\rangle+\langle x, 3\rangle
$$

wold it she $(x,<,>)$ sheal sis ais

- N户ا, sि . -131

$$
1 \forall x \in \mathbb{R}^{n} ; \quad\langle x, x\rangle=\sum_{i=1}^{n} x_{i}^{2} \geqslant 0
$$

$2 \quad \forall x \in \mathbb{R}^{n} ;\langle x, x\rangle=0$

$$
\begin{aligned}
& \Longleftrightarrow \sum_{i=1}^{n} x_{i}^{2}=0 \quad \Longleftrightarrow x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=0 \\
& \Longleftrightarrow x_{1}^{2}=0 \quad ;(i=1, \ldots, n) \\
& \Leftrightarrow x_{1}=0 ;(i=1, \ldots, n) \\
& \Leftrightarrow \quad x=(0,0, \ldots, 0) \in O \mathrm{~m}^{n}
\end{aligned}
$$

$3 \quad \mid x, y \in \mathbb{R}^{n}:\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$

$$
=\sum_{i=1}^{n} y_{i} \cdot x_{i}=\langle y, x\rangle
$$

$\mathbb{H} \forall x, y \in \mathbb{R}^{n} ; \quad \forall \alpha \in \mathbb{R}$

$$
\begin{aligned}
\langle\alpha x, y\rangle=\sum_{i=1}^{n}\left(\alpha \cdot x_{i}\right) \cdot y_{i} & =\alpha \cdot \sum_{i=1}^{n} x: \cdot y_{i} \\
& =\alpha \cdot\langle x, y\rangle
\end{aligned}
$$

$$
\begin{gathered}
\langle x, \alpha y\rangle-\sum_{1=1}^{n} x,(\alpha, y,)=\alpha \cdot \sum_{i=1}^{n} x, y,=\alpha\langle x, y\rangle \\
\langle\alpha x, y\rangle=\langle x, \alpha, y\rangle=\alpha,\langle x, y\rangle
\end{gathered}
$$

$\underline{d} \quad x, y, 3 \in \mathbb{R}^{n}$

$$
\begin{aligned}
\langle x+y, z\rangle & =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right), 3_{i} \\
& =\sum_{i=1}^{n}\left(x_{i}, 3_{i}+y_{i}, 3_{i}\right) \\
& =\sum_{i=1}^{n} x, 3,+\sum_{i=1}^{n} y_{i}, 3_{i} \\
& =\langle x, 3\rangle+\langle y, 3\rangle \\
\langle x, y+3\rangle & =\sum_{i=1}^{n} x_{i}\left(y_{i}+3_{i}\right) \\
& =\sum_{i=1}^{n}\left(x_{i}, y_{i}+x_{i}, 3_{i}\right) \\
& =\sum_{i=1}^{n} x, y,+\sum_{i=1}^{n} x, 3 i \\
& =\langle x, y\rangle+\langle x, 3\rangle
\end{aligned}
$$

NLS $<,>$～川 $X=C[a, b]$ जls ijes

$$
\begin{aligned}
\langle,\rangle: & {[[a, b] \times c[a, b]}
\end{aligned} \quad \text { UR }
$$

