

Torsion

Generally, when a member is subjected to a torsional moment T, the cross sections rotate around the longitudinal axis of the member (axis that is defined by the shear centre of the cross sections) and warp, that is, they undergo differential longitudinal displacements, and plane sections no longer remain plane. If warping is free, which happens when the supports do not prevent it and the torsional moment is constant, the member is said to be under uniform torsion or St. Venant torsion. Conversely, if the torsional moment is variable or warping is restrained at any cross section (usually at the supports), the member is under non-uniform torsion

Forsion Uniform torsion induces distortion that is caused by the rotation of the cross sections around the longitudinal axis. As a consequence, shear stresses appear which balance the applied torsional moment T; under these circumstances, the resistance to the torsional moment T exclusively results from St Venant's torsion, T_t. Although longitudinal warping displacements may exist, they do not introduce stresses. In non-uniform torsion, besides the St. Venant shear stresses, longitudinal strains also exist (because warping varies along the member). These longitudinal strains generate self-equilibrating normal stresses at the cross sectional level that, depending on the level of restriction to warping, vary along the member. The existence of varying normal stresses implies (by equilibrium in the longitudinal direction) the existence of additional shear stresses that also resist to torsional moments, leading to: $T = T_{t} + T_{w}$ havath-Ha

Torsion

The applied torsional moment T is thus balanced by two terms, one due to the torsional rotation of the cross section (T_t) and the other caused by the restraint to warping, designated by warping torsion (T_w) . In cross sections of circular shape, because they exhibit rotational symmetry with respect to the shear centre S (that

coincides with the centroid G), only uniform torsion exists.

Forsion In thin-walled closed cross sections (the most appropriate to resist torsion), *uniform torsion* is predominant. Therefore, in the analysis of thin-walled closed cross sections subjected to torsion, the warping torsion (T_w) is normally neglected. In members with thin-walled open cross sections (such as I or H sections), so that only the uniform torsion component appears, it is necessary that the supports do not prevent warping and that the torsional moment is constant. On the opposite, if the torsional moment is variable or warping is restrained at some cross sections (usual situation), the member is under non-uniform torsion. $T = T_t + T_w$

r-Ghavath-Ha

 I_p is the polar moment of inertia, $\pi R^4/2$ in the case of a circular solid section, R is the radius of the circular section A_m is the area defined by the middle line in a thin-walled closed cross section; s is a coordinate that is defined along the outline of a thin-walled closed section Dr. Chayath Hallak

Torsion

✓ - Open sections normally used as beams are inherently weak in resisting torsion.
 ✓ - In circumstances where beams are required to withstand significant torsional loading, consideration should be given to the use of a torsionally more efficient shape such as a structural hollow section.
 ✓ - The constant of uniform torsion I_t and the warping constant I_w for standard cross sections are usually supplied by steel producers, in tables of profiles

Unrestrained Beams

-Consider a member subject to bending about the strong axis of the cross section (the y axis). Lateraltorsional buckling is characterised by lateral deformation of the compressed part of the cross section (the compressed flange in the case of I or H sections). This part behaves like a compressed member(column), but one continuously restrained by the part of the section in tension, which initially does not have any tendency to move laterally. I - As seen in the following Figure, where this phenomenon is illustrated for a cantilever beam, the resulting deformation of the cross section includes both lateral bending and torsion. This is why this phenomenon is called lateral-torsional buckling.

GAL A

Unrestrained Beams

□- The load at which the beam buckles can be **much less** than that causing the **full moment** capacity to develop. Image: Beams bent about their minor principal axis will respond by deforming in that plane i.e. there is no tendency when loaded in a weaker direction to buckle by deflecting in a stiffer direction. □ - If the sort of deflections illustrated in the following Figure are prevented by the form of construction e.g. by attaching the beam's top flange to a laterally very stiff concrete slab, then buckling of this type cannot occur. □- Finally, if the beam's cross-section is torsionally very stiff, as is the case for all SHS, its resistance to lateral torsional buckling for all practical arrangements will be so great that it will not influence the design.

DEGRAVAL

Unrestrained Beams- factors influencing LTB-Icading (shape of the bending moment diagram) **-** support conditions Isoteta - Iso sections Interal bending stiffness I, I - torsion stiffness I₊ - warping stiffness I_w I the point of application of the loading .A gravity load applied below the shear centre C (that coincides with the centroid, in case of doubly symmetric I or H sections) has a stabilizing effect, whereas the same load applied above this point has a destabilizing effect

LATERAL-TORSIONAL BUCKLING

EN 1993-1-1 contains three methods for checking the lateral-torsional stability of a structural member: 1. The primary method adopts the lateral buckling curves given in Clause 6.3.2.2 (general case) and Clause 6.3.2.3 (just for rolled sections and equivalent welded sections) 2. The second is a simplified assessment method for beams with restraints in buildings and is set out in Clause 6.3.2.4 of EN 1993-1-1. 3. The third is a general method for lateral and LTB of structural components, such as single members with monosymmetric cross sections, built-up, non-uniform or plane frames and subframes, given in Clause 6.3.4

LATERAL-TORSIONAL BUCKLING- Reduction Factor XL The primary method ii) Rolled sections and equivalent welded sections. Clause 6.3.2.3 of BS EN 1993-1-1						
LTB curve for rolled and equivalent welded cases (From NA.2.17- NA to BS EN 1993-1-1:2005)						
Section	Limits	Buckling curve				
rolled doubly symmetric I and H	h/b≤ 2	b				
sections and hot-finished hollow	$2 < h/b \le 3.1$	С				
Sections	h/b > 3.1	d				
Welded doubly symmetric sections	h/b ≤ 2	С				
and cold-formed hollow sections	$2 < h/b \le 3.1$	d				
Angles (for moments in the major principal plane)		d				
All other hot-rolled sections		d				
	\mathcal{O}^{*}	~				

Dr. Ghayath Hallak

LATERAL-TORSIONAL BUCKLING- Reduction Factor XL The primary method
ii) Rolled sections and equivalent welded sections. Clause 6.3.2.3 of BS EN 1993-1-1
According to this method, the shape of the bending moment

diagram, between braced sections, can be taken into account by considering a modified reduction factor $\chi_{LT. mod}$:

$$\chi_{LT,\text{mod}} = \frac{\chi_{LT}}{f} but \, \chi_{LT,\text{mod}} \le 1.0$$

$$f = 1 - 0.5 (1 - K_c) \Big[1 - 2.0 (\overline{\lambda}_{LT} - 0.8)^2 \Big] but \, f \le 1.0$$
is a correction factor- Table 6.6 BS EN 1993-1-1
$$W_v f_v$$

 $M_{b,Rd} = \chi_{Lt, \text{mod}} - \chi_{Lt, \text{mod}}$

LATERAL-TORSIONAL BUCKLING- Reduction Factor χ_L The primary method Comparison between general curves and curves for rolled and equivalent welded sections (I-sections – h/b>2)

LATERAL-TORSIONAL BUCKLING-**Calculation of M_{cr} Elastic critical moment** Method 1 -Method for doubly symmetric sections Access Steel Document SN003. This method only applies to: - uniform straight members □- the cross-section is symmetric about the bending plane. \square - The conditions of restraint at each end are at least : \square *- restrained against lateral movement (lateral <u>restraints</u> are defined as arrangements that only prevent lateral deflection of the compression flange i.e. Lateral deflection of the tension flange and twisting are still possible.) **- restrained against rotation about the longitudinal axis (torsional restraints are defined as arrangements that prevent both lateral deflection and twisting e.g. restraint to both the tension and compression flanges

Dr. Gnavatn Halla

ATERAL-TORSIONAL BUCKLING **Calculation of M_{cr} Elastic critical moment** Method 1 -Method for doubly symmetric sections Access Steel Document SN003 $M_{cr} = C_1 \frac{\pi^2 E I_z}{(KL)^2} \left\{ \sqrt{\left(\frac{k}{k_w}\right)^2} \frac{1}{I_z} + \frac{(kL)^2 G I_T}{\pi^2 E I_z} + (C_2 Z_g)^2 - C_2 Z_g \right\}$ *E* is the Young modulus (E = 210000 N/mm2) G is the shear modulus (G = 80770 N/mm2) is the second moment of area about the weak axis is the torsion constant is the warping constant is the beam length between points which have lateral restraint k and kw are effective length factors g is the distance between the point of load application and the shear centre. C_1 and C_2 are coefficients depending on the loading and end restraint conditions

ATERAL-TORSIONAL BUCKLING-Calculation of M_{cr} Elastic critical moment Method 1 -Method for doubly symmetric sections $Z_g=0$ $Z_g < 0$ stabilizing load stabilizing load Destabilizing load In the common case of normal support conditions at the ends (fork supports), $k = k_w = 1.0$. When the bending moment diagram is linear along a segment of a member delimited by lateral restraints, or when the transverse load is applied in the shear centre, $Z_{a} = 0$ **Sinaly**

Calculation of M_{cr} Elastic critical moment Member with end moments and transverse loading ψM^{M} w M ŢŢŢŢ₿ĨŢŢŢĸ *Values of* C_1 may be obtained from the curves given in Access Steel Document SN003. The moment distribution may be defined using two parameters : is the ratio of end moments. By definition, M is the maximum end moment, and so : $-1 \le \psi \le 1$ ($\psi = 1$ for a uniform moment) is the ratio of the moment due to transverse load to the maximum end moment M ⋌ Case a) (end moments with a uniformly distributed load) µ=qL²/8M Case b) (end moments with a concentrated load at mid-span) $\mu = FL/4M$ > 0 if M and (q or F), bend the beam in the same direction. As shown above

LATERAL-TORSIONAL BUCKLING-

ATERAL-TORSIONAL BUCKLING-Calculation of M_{cr} Elastic critical moment Method 2 The value of $M_{\rm cr}$ may be determined using the software 'LTBeam' available from www.cticm.com Method 3 As an alternative to calculating M_{cr} and hence $\overline{\chi_{1T}}$, the value of $\overline{\lambda}_{rr}$ may be calculated directly from the expression: $\lambda_{LT} = \frac{1}{\sqrt{G}} UVD\overline{\lambda}_z \sqrt{\beta_w}$ is a factor that allows for the shape of the bending moment diagram. It may be conservatively taken as equal to 1.0. For cantilevers C_1 should be taken as 1.0 The factors in the following Table assume that the load is not destabilising. Where the load is destabilising C1 should be taken as 1.0. Dr.Gnavath Ha

LATERAL-TORSIONAL BUCKLING Calculation of M_{cr} Elastic critical moment Method 3

For doubly-symmetric hot-rolled UKB and UKC sections, and for cases where the loading is not destabilizing:

For all sections symmetric about the major axis and not subjected to destabilizing loading, V=1.0 conservatively

LATERAL-T	ORS	SION	IAL	BUC	KLII	NG	/	2723	RE	-	
Calculation of M _{cr} Elastic critical moment											
Method 3	λ_z										h/t _f
and the second s		5	10	15	20	25	30	35	40	45	50
No.	30	0.77	0.91	0.96	0.97	0.98	0.99	0.99	0.99	0.99	1.00
1.	50	0.64	0.82	0.90	0.93	0.96	0.97	0.98	0.98	0.99	0.99
	75	0.53	0.72	0.82	0.88	0.91	0.93	0.95	0.96	0.97	0.97
Values of	100	0.47	0.64	0.75	0.82	0.86	0.90	0.92	0.93	0.95	0.96
slenderness	125	0.42	0.58	0.69	0.76	0.82	0.86	0.88	0.91	0.92	0.93
parameter V	150	0.38	0.53	0.64	0.72	0.77	0.82	0.85	0.88	0.90	0.91
250°	175	0.36	0.50	0.60	0.67	0.73	0.78	0.82	0.85	0.87	0.89
	200	0.33	0.47	0.56	0.64	0.70	0.75	0.79	0.82	0.84	0.86
25	225	0.31	0.44	0.53	0.61	0.67	0.72	0.76	0.79	0.82	0.84
L.S.	250	0.30	0.42	0.51	0.58	0.64	0.69	0.73	0.76	0.79	0.82
20-	275	0.28	0.40	0.49	0.56	0.61	0.66	0.70	0.74	0.77	0.79
A Contraction of the second se	300	0.27	0.38	0.47	0.53	0.59	0.64	0.68	0.72	0.75	0.77
$\beta_{\rm w}$ is a parameter that allows for the classification of the											
$rac{1}{1}$ cross-section: for Class 1 and 2 sections $R_{rac} = 1$											
while for Class 3 sections $\beta_{W} = W_{elv} / W_{plv}$											
Dr. Ghayath Hallak											

LATERAL-TORSIONAL BUCKLING Method 3 **Calculation of M**_{cr} Elastic critical moment $\overline{\lambda}_z$ is the minor axis non-dimensional slenderness of the member, given by $\overline{\lambda}_z = \lambda_z / \lambda_1$, in which $\lambda_1 = \pi \sqrt{E/f_y} = 93.9\varepsilon$, $\lambda_z = kL/i_z$, where *k* is an

effective length parameter

	Conditions of restraint at	Parameters		
			k	D
Compression flange laterally restrained: Nominal torsional restraint against	Compression flange laterally restrained:	Both flanges fully restrained against rotation on plan	0.70	1.2
	Nominal torsional restraint against	Compression flange fully restrained against rotation on plan	0.75	1.2
aram ed be	longitudinal axis	Both flanges partially restrained against rotation on plan	0.80	1.2
& D p pport		Compression flange partially restrained against rotation on plan	0.85	1.2
Su Su		Both flanges free to rotate on plan	1.00	1.2

LATERAL-TORSIONAL BUCKLING Calculation of M_{cr} Elastic critical moment

Method 3

Effective length kL for Normal and destabilising Loading for simply supported beams.

Co	kL Loading condition		
		Normal	Destabilizing
Compression flange laterally unrestrained.	Partial torsional restraint against rotation about longitudinal axis provided by connection of bottom flange to supports.	1.0 <i>L</i> + 2 <i>h</i>	1.2 <i>L</i> + 2 <i>h</i>
Both flanges free to rotate on plan.	Partial torsional restraint against rotation about longitudinal axis provided only by pressure of bottom flange onto supports.	1.2 <i>L</i> + 2 <i>h</i>	1.4 <i>L</i> + 2 <i>h</i>
h = depth of beam.		I	
2 Contraction of the second se			537. C25 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
		Dr.Ghava	th Hallak

ATERAL-TORSIONAL BUCKLING **Calculation of M_{cr} Elastic critical moment** Method 3 Columr Column 2 Cantilever beam (buckling) 2 Thin flanges 3 Stiffening plate (on both sides) 3 Cantilever beam (buckling) 4 Stiffeners (on both sides) Case of "free" warping Case of "restrained" warping conditions at support conditions at support

LATERAL-TORSIONAL BUCKLING

Effective length parameter k and destabilising D for cantilevers without intermediate restraint.

Grevein ala

LATERAL-TORSIONAL BUCKLING Calculation of M_{cr} **Elastic critical moment** *D* is a destabilizing parameter to allow for destabilizing loads (i.e. Loads applied above the shear centre of the beam, where the load can move with the beam as it buckles), given by: $D = -\frac{1}{2}$

For non-destabilizing loads, D = 1.0. For destabilizing loads, D = 1.2 for simply supported beams. As shown in the previous Table.

In practice, destabilizing loads are only considered in cases for which the applied loading offers no resistance to lateral movement, e.g. a free standing brick wall on a beam. Normal loads from floors do not constitute a destabilizing load.

Design procedure for LTB

1. Determine BMD and SFD from design loads 2. Select section and determine geometry 3. Classify cross-section (Class 1, 2, 3 or 4) 4. Determine effective (buckling) length L - depends on boundary conditions and load level 5. Calculate M_{cr} and W_yf_y 6. Non-dimensional slenderness 7. Determine imperfection factor α_{IT} 8. Calculate buckling reduction factor χ_{1} 9. Design buckling resistance $M_{b,Rd} = \chi_{LT}$ 10. Check for each unrestrained portion

LTB Example

A simply-supported primary beam is required to span 10.8m and to support two secondary beams as shown below. The secondary beams are connected through fin plates to the web of the primary beam, and full lateral restraint may be assumed at these points. Select a suitable member for the primary beam assuming grade \$ 275 steel.

Design loading is as follows:

Lateral torsional buck checks to be carried c on segments BC and (By inspection, segmer AB is not critical.

$$W_{y,pl} = M_{c,Rd} \gamma_{M0} / f_y^{SF}$$
$$W_{y,pl,trial} = M_{c,Rd} \gamma_{M0} / 0.$$

 (0.8×265)

 $M \sim -W f / \gamma$

W

y,pl,trial

y,pl,trial

Sample
prisional buckling
$$\stackrel{425.1 \text{ kN}}{\text{B}}$$
 $\stackrel{319.5 \text{ kN}}{\text{C}}$
p be carried out
ents BC and CD.
ction, segment
critical.
 $W_{y,pl}f_y/\gamma_{M0}$
 $M_{c,Rd}\gamma_{M0}/f_y$ $\stackrel{\text{SF}}{\text{SF}}$
 $= M_{c,Rd}\gamma_{M0}/0.8f_y$
 $= \frac{1362 \times 10^3}{(0.8 \times 265)}$ $\stackrel{\text{A}}{\text{BM}}$
 $= 6424.5E^3mm^3$
 $= 6424.5E^3mm^3$

Unenu

Drenavaintala

LTB Example

Try 762×267×173 UB in grade S 275 steel.

d

h = 762.2 mm, U=0.865b = 266.7 mm, $i_z=55.8 \text{mm}$

 $t_w = 14.3 \text{ mm}$ $t_f = 21.6 \text{ mm}$ r = 16.5 mm $A = 22000 \text{ mm}^2$ $W_{y,pl} = 6200 \times 10^3 \text{ mm}^3$ $I_z = 68.50 \times 10^6 \text{ mm}^4$

 $I_T = 2670 \times 10^3 \text{ mm}^4$ $I_w = 9390 \times 10^9 \text{ mm}^6$

Steel Properties

 $40 \text{mm} > t_f = 21.6 \text{mm} > 16 \text{mm}$

For S275 (to EN 10025-2) $f_y = 265N/mm^2$

LTB Example Steel Properties From clause 3.2.6: E = 210000N/mm² and G ≈ 81000N/mm² Cross-section classification (clause 5.5.2): $\varepsilon = \sqrt{235/f_v} = \sqrt{235/265} = 0.94$ Outstand flanges (Table 5.2, sheet 2) $c_f = (b - t_w - 2r) / 2 = 109.7 \text{ mm}$ $c_f / t_f = 109.7 / 21.6 = 5.08$ Limit for Class 1 flange = $9\epsilon = 8.48 > 5.08$: Flange is Class 1 Web – internal part in bending (Table 5.2, sheet 1) $c_{w} = h - 2t_{f} - 2r = 686.0 mm$ $c_w / t_w = 686.0 / 14.3 = 48.0$ Limit for Class 1 web = 72 ϵ = 67.8 > 48.0

LTB Example

Cross-section classification (clause 5.5.2):

Web is Class 1 Overall cross-section classification is therefore Class 1.

Bending resistance of cross-section (clause 6.2.5): $M_{c.y,Rd} = M_{pl, Rd} = W_{pl, y} f_y / \gamma_{M0}$ for Class 1 and 2 sections $M_{c.y,Rd} = 6200 \times 10^3 \times 265 / 1.0 = 1643 \times 10^6 \text{ N.mm}$ = 1643 kN.m > 1362 kN.m \therefore Cross-section resistance in bending is OK.

LTB Example Lateral torsional buckling check (clause 6.3.2.2) Segment BC: using Method 3 = 0.97 $+\frac{1}{20}\left(\frac{57.35}{762.2/21.6}\right)$ $\frac{1}{20} \left(\frac{\lambda_z}{h/t_f} \right)$ $\lambda_{LT} = 0.93 \times 0.865 \times 0.97 \times 1.0 \times 0.66 \times 1.0 = 0.52$ Select buckling curve and imperfection factor α_{IT} : From Table 6.4: h/b = 762.2/266.7 = 2.85For a rolled I-section with h/b > 2, use buckling curve b From Table 6.3 of EN 1993-1-1: For buckling curve b, $\alpha_{LT} = 0.34$ Calculate reduction factor for lateral torsional buckling, χ_{IT} Segment BC: Dr-Gravain-Ha

<u>Lateral torsional buckling check (clause 6.3.2.2) –</u> <u>Segment BC: using Method 3</u>

LTB Example

 $\alpha_{1T} = 0.49$

 $\frac{M_{Ed}}{M_{b,Rd}} = \frac{1362}{1429} = 0.95 \le 1.0$: Segment BC is OK. Using the second method: Rolled sections and equivalent

welded sections. Clause 6.3.2.3 of BS EN 1993-1-1

From NA.2.17- NA to BS EN 1993-1-1:2005: 3.1>h/b = 762.2/266.7 = 2.85>2, use buckling curve C

From Table 6.3 of EN 1993-1-1: For buckling curve C,

 $\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \right) + \beta \overline{\lambda}_{LT}^2 \right]$

 $\phi_{LT} = 0.5 \times [1 + 0.49(0.52 - 0.4) + 0.75 \times 0.52^2] = 0.63$

Dreinevainen

LTB Example <u>Lateral torsional buckling check (clause 6.3.2.2) –</u> Segment CD: Determine ψ from Table: ψ is the ratio of the end moments =0/1362=0 \Rightarrow C1 = 1.88 $M_{cr} = 1.88 \times \frac{\pi^2 \times 210000 \times 68.5 \times 10^6}{5100^2} \sqrt{\frac{9390 \times 10^9}{68.5 \times 10^6}} + \frac{5100^2 \times 81000 \times 2670 \times 10^3}{\pi^2 \times 210000 \times 68.5 \times 10^6}$ $M_{cr} = 4311 \times 10^6 N.mm = 4311kN.m$ Non-dimensional lateral torsional slenderness for segment CD: $= \sqrt{\frac{6200 \times 10^3 \times 265}{4311 \times 10^6}}$ $\lambda_{LT} =$ 0.62The buckling curve and imperfection factor α_{IT} are as for segment BC.

Discretine

