
MOMENT OF INERTIA 

The Second moment of area 



1- The Second moment of area, The MOMENT OF 
 INERTIA: (mm4, m4) 

The Moment of Inertia (I) is a 
term used to describe the 
capacity of a cross-section to 
resist bending. It is always 
considered with respect to a 
reference axis such as Z or Y. It 
is a mathematical property of a 
section concerned with a surface 
area and how that area is 
distributed about the reference 
axis. The reference axis is usually 
a centroidal axis (NOT “Y & Z” 
axes shown in the Fig). The 
moment of Inertia expressed 
mathematically as: 
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1- The Second moment of area, The MOMENT OF 
 INERTIA: (mm4, m4) 

The Moment of Inertia is an 
important value which is used 
to determine the state of stress 
in a section, to calculate the 
resistance to buckling, and to 
determine the amount of 
deflection in a beam.  
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Both boards have the same 
cross-sectional area, but the 
area is distributed differently 
about the horizontal centroidal 
axis. 



1- The Second moment of area, The MOMENT OF 
 INERTIA: (mm4, m4) 
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DETERMINATION OF THE MOMENT OF INERTIA OF AN AREA BY 
INTEGRATION  
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The moment of inertia of an area is always positive 
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2- The polar moment of Inertia  (mm4, m4) 

Polar moment of inertia, 
denoted by JO  or Ip , is the 
area moment of inertia about 
the X-axis (perpendicular to 
plan of cross-section area) 
given by:  
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This integral of great importance in problems concerning 
the torsion of cylindrical shafts and in problems dealing with 
the rotation of slabs  



3- Radius of gyration  (mm3, m3) 

The radius of gyration is the distance r away from the axis 
that all the area can be concentrated to result in the same 
moment of inertia. That is, 
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3- Radius of gyration  (mm3, m3) 

For a given area, one can define the radius of gyration 
around the Y-axis, denoted by rY ,(iY) the radius of gyration 

around the Z-axis, denoted by rZ , (iZ) and the radius of 

gyration around the X-axis, denoted by rO, (iO). These are 

calculated from the relations: 
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3- Radius of gyration  (mm3, m3) 
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3- Radius of gyration  (mm3, m3) 
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4- Product of Inertia  (mm4, m4) Y 

Z 

The product second moment 
of area, Izy , of a beam 
section with respect to z and 
y axes is defined by: 
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ZY dAYZI

when one (or both) of the 
coordinate axes is an axis of 
symmetry  0zyI



G 

d
A 

Y 

Z 
Y

Y

Z

Z

1Y

1Z

dZ

dY

1O

O 

5- Parallel-Axis Theorems: 

Suppose that we know the 
value of  IY, IZ and IZY. We 
need to determine the 
value of IY1, IZ1 and IY1Z1  
(moment of Inertia 
according to the new axes 
Y1 and Z1 “parallel axis”) 
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Product of Inertia 
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5- Parallel-Axis Theorems: 



5- Parallel-Axis Theorems: 
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IF Z & Y are CENTROIDAL axes 
Then 
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Thus for a section component having an axis of symmetry 
that is parallel to either of the section reference axes the 
product second moment of area is the product of the 
coordinates of its centroid multiplied by its area. 

It can be seen from Eqs. 
above that if either GZ or GY is 
an axis of symmetry, i.e. IGZY 
=0, then  IZ1Y1 = dY  dZ  A 



5- MOMENTS OF INERTIA OF COMPOSITE AREAS  
 



EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF 
AN AREA BY INTEGRATION  

Determine the moment of inertia for the rectangular area 
with respect to (a) the centroidal x’ axis, (b) the centroidal x’ 
axis, (c) the axis xb passing through the base of the 
rectangular, and (d) the pole or z’ axis perpendicular to the 
x’-y’ plane and passing through the centroid C. 

Part (a) 
Differential element chosen, distance y’ 
from x’ axis. 
Since dA = b dy’, 
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EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF 
AN AREA BY INTEGRATION  

Part (b) 
Differential element chosen, distance x’ from y’ axis. 
Since dA = h dx’, 
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x’ 

Part (c) 
By applying parallel axis theorem, 

3

2

32

3

1

212

1
bh

h
bhbhAdII xxb













EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF 
AN AREA BY INTEGRATION  

Part (d) 
For polar moment of inertia about point C, 
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For radius of gyration about axis x’, y’ & point C 



EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF 
AN AREA BY INTEGRATION  

Determine the moment of inertia of a triangle with respect 
to its base. 
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Using similar triangles, we have 
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EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF 
AN AREA BY INTEGRATION  
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By applying parallel axis theorem, 
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Determine the moment of inertia for the area with respect to 
xG axis 



EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF 
AN AREA BY INTEGRATION  

(a) Determine the moment of inertia of a circular area with 
respect to a diameter.  

(b) Determine the centroidal polar moment of inertia of  
     a circular area by direct integration 
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EXAMPLS- DETERMINATION OF THE MOMENT OF INERTIA OF 
AN AREA BY INTEGRATION  
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