References :
1- Reddy, J. N. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, Vol (51) 1984, 745–752.
2- Reddy, J. N. Refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, Vol (20) 1984, 881–896.
3- Bathe, K. J. and Dvorkin, E. N. A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation. International Journal for Numerical Methods in Engineering, Vol (21) 1985, 367–383.
4- Kant, T. and Kommineni J. R. C 0 finite element geometrically nonlinear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory. Comput Struct, Vol (45) 1992, 511–20.
5- Putcha, N. S. A mixed shear flexible finite element for geometrically nonlinear analysis of laminated plates. PhD Dissertation, Texas AM University, 1984.
6- Chattopadhyay, B., Sinha, P. K. and Mukhopadhyay M. Geometrically nonlinear analysis of composite stiffened plates using finite elements. Compos Struct, Vol (31) 1995, 107–18.
7- Srinivas, S. and Rao, A. K. Bending, vibration and buckiling of simply supported thick orthotropic rectangular plates and laminates. International Journal of Solids and Structures, Vol (6) 1970, 1463–1481.
8- Pagano, N. J. and Hatfield, S. J. Elastic behavior of multilayered bidirectional composites. AIAA Journal, Vol (10) 1972, 931–933.
9- Fares, M. E. Non-linear bending analysis of composite laminated plates using a refined first-order theory. Composite Structures, Vol (46) 1999, 257–266.
10- Reddy, J. N. and Sandidge, D. Mixed finite element models for laminated composite plates. Journal of Engineering for Industry, Vol (109) 1986, 39-45.
11- Putcha, N. S. and Reddy, J. N. A refined mixed shear flexible finite element for the non-linear analysis of laminated plates. Comput Struct, Vol (22) 1986, 9–38.
12- Auricchio, F. and Sacco, E. A mixed-enhanced finite element for the analysis of laminated composite plates. International Journal for Numerical Methods in Engineering, Vol (44) 1999, 1481–1504.
13- Auricchio, F., Sacco, E. and Vairo, G. A mixed FSDT finite element for monoclinic laminated plates. Computers and Structures, Vol (84) 2006, 624–639.
14- Nguyen-Van, H., Nguyen-Hoai, N., Chau-Dinh, T. and Nguyen-Thoi T. Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse-mesh accuracy. Composite Structures, Vol (112) 2014, 327–338.
15- Zhang, Y. X. and Kim, K. S. Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements. ELSEVIER, Composite Structures, Vol (72) 2006, 301–310.
16- Reddy J. N. and Urthaler, Y. A Mixed Finite Element for the Nonlinear Bending Analysis of Laminated Composite Plates Based on FSDT. Mechanics of Advanced Materials and Structures, Vol (15) 2008, 335–354.
17- Abo Diab, S. Generalization of a reduced Trefftz type approach –some numerical results. sixth U.S. National congress on Computational Mechanics, Dearborn Michigan,USA,01-04, August 2001, pp.595.
18- Abo Diab, S. Formatting of Quadrilateral Finite element. Fifth World congress on Computational Mechanics (WCCMV), Vienna, Austria, (Editors: Mang H.A, Rammer stoffer,F.G, Eberhardsteinerm J. publisher Vienna University of Technology, Austria, ISBN 3-9501554-06; http://wccm.tuwien.ac.at, July 2002.
19- Abo Diab, S., Generalization of a reduced Trefftz-type approach, in B. Möller, Hrsg., Veröffent-lichungen des Lehrstuhls für Statik., Technische Universität Dresden, Heft 4 (2001), Dresden (2001), pp. 1-68. Available at: arXiv:1706.07794.
20- Abo Diab, S. Finite Element based on Reduced Trefftz Type Concepts. Sixth World Congress on Computational Mechanics (WCCM VI), Beijing, China, Tsinghua University Press & Springer-Verlag, http://www.wccm6-apcom04.org.cn.
21- Abo Diab, S. and Hssn, I. Geometrical nonlinear analysis of thin plates Using modified finite element method. Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Vol. (93) No. (4) 2017.
22- Zaghloul, S. A. and Kennedy J. B. Nonlinear behavior of symmetrically laminated plates. J Appl Mech Vol(42), 1975, 234–250.
23- Gabbasov , R., Filatov, V. and Dao, N. K. Numerical Research of Bending Flexible Plates. IOP Conf. Ser.: Mater. Sci. Eng. 661 012006, 2019.
24- Uvarova, N. and Turbinov, A. A numerical method for calculating round slabs based on generalized equations of the finite difference method. IOP Conf. Ser.: Mater. Sci. Eng. 869 052050, 2020.
25- Surendra, V., Babu, T., Singh, B. N. and Maiti, D. K. Geometrically nonlinear flexural analysis of multilayered composite plate using polynomial and non-polynomial shear deformation theories. ELSEVIER, Aerospace Science and Technology, Vol (12), May 2021.
26- Pagani, A., Azzara, R. & Carrera, E. Geometrically nonlinear analysis and vibration of in-plane-loaded variable angle tow composite plates and shells. Acta Mech 2022.
27- Carrera, E., Pagani, A. and Augello R. Large deflection of composite beams by finite elements with node-dependent kinematics. Computational Mechanics, 69:1481–1500, 2022.
28- Belkaid, K., Boutasseta, N., Aouaichia, H. ., Gaagaia, D. E., Deliou, A. . and Boubir, B. A Simple and Efficient eight node Finite Element for Multilayer Sandwich Composite Plates Bending Behavior Analysis, Frattura ed Integrità Strutturale, 16(61), pp. 372–393, 2022.
|
|