Etude Comparative des Régulateurs « PID et Flou »: « Autopilotage d'un Moteur Synchrone a **Aimant Permanent**»

K. Hachemi¹ **B.** Mazari² H. Oirkozek³

> A. Al Jazi⁴ M. Laouer⁵

Résumé

Dans cet article, nous présentons une étude comparative entre un régulateur classique PID et un régulateur moderne à logique floue, pour contrôler la variation de la vitesse d'un moteur synchrone à aimant permanent (MSAP) sans saillance et sans amortisseur.

L'alimentation est assurée par un onduleur de tension à commande MLI (modulation de largeur d'impulsion). Après modélisation mathématique du moteur utilisé, on définit la stratégie de commande basée sur le contrôle vectoriel associé au régulateur choisi et aux comparateurs à hystérésis. Le modèle du système global est conçu et simulé à l'aide du logiciel MATLAB/Simulink.

 ¹ Enseignant chercheur, CU SAIDA, Bp 138 Ennassr SAIDA 2000 ALGERIE
 ² Maître de conférence, USTO Oran, Institut d'électrotechnique

³ Docteurs, faculté de Génie Electrique et Mécanique. DAMAS, SYRIE

⁴ Docteurs, faculté de Génie Electrique et Mécanique. DAMAS, SYRI

⁵ Enseignant chercheur, CU SAIDA, Bp 138 Ennassr SAIDA 2000 ALGERIE

1) Introduction

La commande des moteurs à courant alternatif est de plus en plus utilisée dans les applications industrielles. Grâce aux développements des semi conducteurs de puissance; les moteurs synchrones à aimant permanent (MSAP) sont capables de concurrencer les moteurs à courant continu dans la variation de vitesse, car la commutation est réalisée électriquement et à l'extérieur du moteur.

Plusieurs méthodes de découplage des courants ont été proposées pour contrôler le MSAP; la plus performante consiste à amener le MSAP à se comporter comme un moteur à courant continu.

Nous avons simulé la commande vectorielle sur l'association Convertisseur - MSAP sans saillance et sans amortisseur modélisée par la transformation de PARK. La stratégie de commande du convertisseur statique est réalisée simultanément par :

- l'utilisation de comparateurs à hystérésis qui comparent les courants triphasés de référence et les courants de retour issus du moteur.
- l'utilisation du régulateur PID ou du régulateur à logique Floue, qui permet de contrôler directement la vitesse du moteur par rapport à la consigne qui lui est imposée par l'utilisateur ; la simulation est réalisée grâce au logiciel MATLAB/Simulink.

2) Modele Du Msap

Pour réaliser le contrôle du MSAP, il faut orienter le flux en quadrature avec le couple. Cette opération nécessite une décomposition des courants statoriques en courants Id direct et Iq en quadrature [1].

Le model du MSAP sans amortisseur est défini par ses équations électriques et mécaniques dans le référentiel rotorique (d,q) avec l'axe "d" aligné sur le flux rotorique **[2]**,**[3]**:

- équations électriques:

$$u_{d} = \frac{d\phi_{d}}{dt} + R_{s}i_{d} - \omega_{s}\phi_{q} \quad (1)$$

$$u_{q} = \frac{d\phi_{q}}{dt} + R_{s}i_{q} + \omega_{s}\phi_{d} \quad (2)$$

$$\phi_{d} = L_{d}i_{d} + \phi_{r} \quad (3)$$
Avec $\phi_{q} = L_{q}i_{q}$

$$\omega_{s} = p\omega_{r}$$

 $u_d et u_q$ les tensions statoriques (d, q)

 i_d et i_q courants statoriques (d, q)

 L_d et L_q inductances suivant d et q

- ϕ_{d} et ϕ_{q} flux statorique (d, q)
- ϕ_r flux rotorique permanent
- R_s Résistance statorique
- ω_s Pulsation du réseau (ou convertisseur)
- ω_r Vitesse de rotation du rotor
- p nombre de pairs de pôles

- équations mécaniques:

$$\frac{d\omega_r}{dt} = \frac{1}{J} (C_e - C_c - F\omega_r)$$
(4)
avec $\omega_r = \frac{d\theta_r}{dt}$

J inertie

- F coefficient de frottements visqueux
- θ_r Position du rotor

C_c Couple de charge

C_e Couple électromagnétique donné par

$$C_{e} = \frac{3}{2} p(\phi_{r} i_{q} + (L_{d} - L_{q}) i_{d} i_{q})$$
 (5)

Les équations (1) et (2) du MSAP sans amortisseur montrent que u_d et u_q dépendent des axes d et q.

Si $L_d = L_q$ le moteur est sans saillance et sans amortisseur, les aimants étant disposés à la surface du rotor; la commande doit maintenir $i_d = 0$ et réguler le couple par i_q car il ne dépendra que de i_q [4]; dans ce cas la puissance absorbée est optimisée pour un couple donné.

Si $L_d > L_q$ le moteur possède une saillance directe et le couple dépend de i_d et i_q ; on peut utiliser i_d pour affaiblir le flux sur l'axe d en utilisant la relation (10).

Si $L_d < L_q$ le moteur possède des aimants permanents noyés radialement dans le rotor.

3) Strategie De Commande :

Considérons le cas général pour établir les relations de la stratégie de commande [5],[6]; le flux d'induction du MSAP étant suffisant pour former le couple électromagnétique on impose alors le courant statorique exprimé par ses composantes i_d et i_q puis en tenant compte de la relation (6) qui représente la contrainte suivante :

$$i_s = \sqrt{i_d^2 + i_q^2}$$
 (6),

On forme la fonction f définie par

$$f = (L_d - L_q)i_d i_q + \phi_r i_q + \lambda (i_s^2 - i_d^2 - i_q^2)$$
(7)

Avec :

- λ facteur de Lagrange [5]
- le terme $\lambda(i_s^2 i_d^2 i_q^2)$ représentant une perturbation due au courant sur le couple

et l'on déduit alors le système d'équation suivant:

$$\frac{\partial f}{\partial i_d} = (L_d - L_q)i_q - 2\lambda i_d = 0$$

$$\frac{\partial f}{\partial i_q} = \phi_r + (L_d - L_q)i_d - 2\lambda i_q = 0$$

$$\frac{\partial f}{\partial \lambda} = i_s^2 - i_d^2 - i_q^2 = 0$$
(8)

qui donne:

$$2(L_d - L_q)i_d^2 + \phi_r i_d - (L_d - L_q)i_s^2 = 0$$
 (9)

dont la solution est:

$$\dot{i}_{d} = \frac{\sqrt{\phi_{r}^{2} + 8(L_{d} - L_{q})^{2} \dot{i}_{s}^{2}} - \phi_{r}}{4(L_{d} - L_{q})}$$
(10)

A partir de (5) on déduit:

$$i_{q} = \frac{2Ce}{3p(\phi_{r} + (L_{d} - L_{q})i_{d}}$$
(11)

Dans cette stratégie de commande, la référence du courant directe est annulée ($i_{dref} = 0$) hypothèse vérifiée grâce à la relation (9) du fait que le moteur considéré est sans saillance et sans amortisseur; par contre, la référence i_q relative au couple est issue du régulateur de vitesse; De la relation (11) on en déduit la formule correspondante (12).

Etude Comparative Des Regulateurs «PID Et Flou»: «Autopilotage D'un Moteur Synchrone A Aimant Permanent»

$$i_q = \frac{2Ce}{3p\phi_r} \tag{12}$$

Nous réglons le courant triphasé par un bloqueur d'ordre zéro suivi d'un limiteur de courant capable de délivrer des créneaux d'impulsions à largeur modulée qui commandent le convertisseur de tension MLI. les interrupteurs de l'onduleur sont commandés de façon à ce que les variations du courant dans chaque phase du moteur soit limitées dans une plage d'hystérésis susceptible d'éviter les ratés de commutation. On compare en permanence les courants réels et les courants de référence tel que représenté sur la figure 3 pour une phase.

Les sorties des comparateurs sont reliées à une logique de commande des interrupteurs.

Le schéma block du circuit utilisé est représenté sur la figure I; Le schéma symbolique sur MATLAB\Simulink est représenté sur la figure 2;

Figure 1:Contrôle vectoriel du moteur synchrone alimenté en tension et régulé en courant,

Figure 2: schéma block de commande vectorielle du MSAP.

Nous avons considérés un MSAP [1], [5] dont les paramètres sont portés sur le tableau I.

Symbole	Désignation	Valeur
R	Résistance statorique	1,2 (Ω)
Ld	Inductance axe "d"	0,011(H)
Lq	Inductance axe "q"	0,011(H)
Φr	Flux magn. permanent	0,18(Vs/rad)
J	Inertie du rotor	0,006(Kgm ²)
F	Coeff. frot. visqueux	0,0001(Nms)
Р	Nombre paires pôles	3
Cc	Couple réf. Maxi.	50 (Nm)
wref	Vitesse de référence	100 (rad/sec)

Tableau I.

Description du model:

Le modèle de simulation de la commande vectorielle se compose de deux éléments de base:

- L'algorithme de contrôle qui regroupe le régulateur PID (ou le régulateur FLOU) et les transformations dq/abc et abc/dq.
- Le réglage du courant triphasé de l'onduleur à MLI, qui se compose de trois bloqueurs d'ordre zéro, de trois comparateurs à hystérésis et d'une commande logique permettant l'aiguillage des signaux vers les six interrupteurs de puissance [7]; le modèle de réglage relatif à une seule phase est représenté sur la figure 3.

Le block 'retard' simule le retard du courant de retour vers le comparateur; son rôle est de ramener le courant de retour, en phase avec le courant de référence.

Le signal d'erreur ε_i généré entre les courants de référence et de retour

 $(i_{ref} - i_{mes})$ est ajusté par un bloqueur d'ordre zéro (B.O.Z); celui-ci doit avoir un pas inférieur à la plus petite impulsion du comparateur à hystérésis; son rôle est de maintenir Le signal d'erreur ε_i constant pendant la durée nécessaire au fonctionnement du comparateur.

Ce sont les comparateurs à hystérésis qui génèrent le signal MLI; ils imposent le rythme de commutation mais la séquence de commutation est générée par l'aiguillage logique: **[7],[8]**

Si $\epsilon_i > 0$ la sortie du comparateur est à 1 (Ra=1) sinon elle prend la valeur nulle (Ra=0). Afin de se rapprocher de la forme réelle du convertisseur nous avons modélisé ce dernier

par un pont de six transistors IGBT; leurs commutations sont synchronisées par le signal logique issu du comparateur:

Si Ra=1 le transistor T1 est conducteur.

Si Ra=0 T1 se bloque et T2 devient conducteur; dans la réalité la commande logique doit interdire l'ouverture simultanée des deux transistors (T1 et T2) se trouvant dans la même branche.

Figure 3: comparaison sur une phase des courants de référence et de retour

4) Definition De La Loi De Commande Floue [2], [5], [9] :

Cette loi est fonction de l'erreur et de sa variation $(u = f(e, \Delta e))$; Par conséquent l'activation de l'ensemble des règles de décision associées donne la variation de la commande Δu nécessaire, permettant l'ajustement de la commande u.

La forme générale de la loi de commande est donnée par :

$$u_{k+1} = u_k + G_{\Delta u} \Delta u_{k+1} \tag{13}$$

Où :

 $G_{\Delta u}$: Gain associe à la commande u_{k+1} .

 Δu_{k+1} : Variation de la commande.

L'erreur e et la variation de l'erreur Δe sont normalisées comme suit :

$$X_{e} = G_{e}e$$
$$X_{\Delta e} = G_{\Delta e}\Delta e \tag{14}$$

où :

 G_e et $G_{\varDelta e}$ Représentent les facteurs d'échelle (Gain de normalisation), on fait varier ces facteurs de façon à trouver un réglage convenable.

Exemple de régulateur à trois classes :

Dans ce régulateur, l'intervalle d'intérêt de la variable d'entrée et de sa variation est subdivisé en trois classes, comme il est montré à la figure 4.

Les classes sont notées comme suit :

PG pour positif grand EZ pour environ zéro NG pour négatif grand

Ces règles permettent de déterminer le signal de sortie du régulateur en fonction des signaux d'entrée. Par exemple, si l'erreur et sa variation sont fortement négatives, le signal de commande doit l'être également. Au contraire, si l'erreur est environ zéro ainsi que sa variation, il en sera de même de la commande. Si l'erreur est environ zéro mais sa variation est fortement négatif, ou si l'erreur est fortement négatif et sa variation est environ zéro, le signal de commande doit être fortement négatif [9].

Ces considérations nous ont conduits à adopter une table de décision, résumant les règles d'inférences choisies qui reflètent les différentes classes de la commande et par conséquent la sortie.

$\Delta e e$	NG	EZ	PG
NG	NG	NG	EZ
EZ	NG	EZ	PG
PG	EZ	PG	PG

Base de règles d'inférences

5) Resultat De Simulation:

Nous utilisons le schéma block de la figure 1, sur lequel nous inter changeons uniquement les deux régulateurs.

Les essais sont faits simultanément avec le régulateur PID et le régulateur FLOU.

Hypothèses:

Le MSAP démarre sans application de la charge ; Le courant direct I_d étant maintenu à la valeur nulle par la consigne $I_{dref} = 0$.

Nous imposons au démarrage une référence de vitesse $\omega_r = 80rd/s$ pour observer la réaction du courant en quadrature I_q avec un couple de 30Nm, puis nous la modifions brusquement de la manière suivante:

- A t=0.1 secondes, nous diminuons la consigne de vitesse jusqu'à $\omega_r = 50rd/s$
- A t=0.3 secondes, nous l'augmentons jusqu'à $\omega_r = 75 r d / s$

Lorsque le régime est établi, nous appliquons une charge de 50Nm à l'instant t=0.5 secondes; elle représente le couple limite que peut supporter le MSAP avant le décrochage.

Nous observons la réaction du système puis nous réajustons la charge à 30Nm à l'instant t=0.8 secondes.

5.1 Paramètres du régulateur PID:

Nous avons procédé à des essais successifs sur les blocs des régulateurs de vitesse et des courants (voir figure 2) ainsi que la fixation de « Te » sur le bloc de commande MLI rapprochée pour déterminer les paramètres de réglages du régulateur PID et des bloqueurs d'ordre zéro du tableau II suivant.

Paramètre	Valeur
Régulateur Vitesse	Kp=285,
	Ki=190,
	Kd=0.15
Régulateur Id	Kp=160,
	Ki=100,
	Kd=0.005
Régulateur Iq	Kp=12,
	Ki=5,
	Kd=0.1
Retard courants retour	$Te = 10^{-4} s$
Temps d'échantillonnage	$Te = 10^{-4} s$
du BOZ	10 10 5
Changement d'état du	Ec=±eps
comparateur	-

Tableau II.

Interprétation des résultats:

Lors du démarrage, la vitesse atteint la valeur imposée avec un temps de réponse Trep= 0.0119 secondes et un dépassement de 5.72%, à l'instant 0.1 secondes, la vitesse diminue vers la nouvelle consigne d'une valeur minimale égale à 49.32rd/s avant de revenir à la valeur imposée de 50 rd/s puis elle suit parfaitement la consigne imposée.

L'application d'un couple de 20Nm implique une perturbation de 0.625%à l'instant 0.5secondes ; le couple maximal lors du démarrage est une pointe de valeur Cmax=115Nm, il se stabilise ensuite à la valeur de consigne10Nm ; il atteint une valeur algébrique maximale de ±60N.m pour les instants 0.1 et 0.3 secondes, suivant le changement de la consigne imposée.

Au démarrage le courant I_d atteint une pointe de valeur maximal $I_{d \max}$ = 40A puis il se stabilise à la valeur nulle.

On note l'apparition d'autres pics -25A, +25A et 10A, relatifs aux instants 0.1, 0.3 et 0.5 secondes ; ils sont engendrés par l'application d'un couple et d'une consigne variable.

Le courant I_q atteint une valeur maximale de +140A puis il suit parfaitement le couple avec des pics aux instants 0.1 et 0.3 secondes pour les valeurs -80A et +80A.

Les courants d'alimentation, subissent une diminution lorsque le couple atteint la valeur Ce=10N.m et valeur Ce=20N.m.

Les courants augmentent jusqu'à 20A, on remarque l'apparition des pics aux alentours de 0.1, 0.3 et 0.5 secondes.

A partir de ces résultats on déduit les remarques suivantes:

La vitesse du moteur suit parfaitement les consignes imposées.

En démarrant le moteur avec une charge « 10Nm », nous remarquons que l'allure de la vitesse est obtenue avec un dépassement et lorsqu'on augmente le couple résistant, le régulateur PID rejette les perturbations d'une manière très lente.

Les pics sont très importants.

Les courbes de simulation montre que Le MSAP démarre rapidement et présente un taux de dépassement inférieur à 5% de la valeur de consigne sur la vitesse. La pointe de courant de démarrage atteint la valeur maximale puis diminue rapidement. Le taux de dépassement est négligeable sur le changement de consigne par contre les pointes sur le couple et le courant Iq sont apparentes. On remarque une légère trace sur le courant Id.

A l'application de la charge une perturbation importante apparaît sur la vitesse, néanmoins elle se rétablit progressivement au rythme de l'inertie du système.

Le temps de rétablissement de la vitesse est proportionnel à l'importance de la perturbation.

Les oscillations du courant Id demeurent stables autour de la référence zéro.

5.2 Paramètres du régulateur FLOU :

Nous avons synthétisé le régulateur à logique Floue du type MANDANI [9] pour le réglage de vitesse et de position.

Le signal de sortie est déterminé en fonction des signaux d'entrée par l'intermédiaire des règles, comme il est illustré dans le tableau III ci dessous:

∆e	е	NG	NP	EZ	PP	PG
NG		NG	NM	NP	EZ	PP
EZ		NM	NP	EZ	PP	PM
PG		NP	EZ	PP	PM	PG

Tableau III règles d'inférences.

Les classes sont notées comme suit:

NG : négatif grand NM : négatif moyen NP : négatif petit EZ : environ zéro PP : positif petit PM : positif moyen PG : positif grand

Les fonctions d'appartenances sont du type triangulaire et trapézoïdal sur les limites. L'intervalle d'intérêt des variables d'entrées est subdivisé en cinq classes pour l'erreur « e » et en trois classes pour sa dérivée « de », alors que celui de la variable de sortie « du » est subdivisé en sept classes.

fonction d'appartenance de « Δu » à sept classes

Les valeurs des gains internes associés au régulateur flou sont:

$$G_{e} = 0.06$$
; $G_{\Lambda e} = 0.05 \text{e-}3$

Les nouveaux paramètres des régulateurs de courants utilisés sont les suivants:

	REG_Id	REG_Iq
Proportionnel	120	15
Intégral	30	2
Dérivé	5e-3	0.05

Interprétation des résultats:

Pendant le démarrage, la vitesse atteint la valeur imposée à un temps de réponse de 0.0132 secondes et un dépassement de 6.25%, à l'instant 0.1secondes (figures suivantes). La vitesse diminue vers la nouvelle consigne d'une valeur minimale égale à 49rd/s avant de revenir à la valeur imposée de 50rd/s puis elle suit parfaitement la consigne imposée.

Nous pouvons interpréter de la même manière que précédemment le comportement du système avec le régulateur flou. Les résultats sont présents ci après.

5.3 Etude comparative des deux méthodes :

Il est clair que l'avantage principal du RLF par rapport au régulateur PID est le fait de pouvoir numériser le RLF ou de le modéliser par ordinateur ou par micro processeur et par conséquent ce sera un régulateur évolutif que nous pouvons modifier à la demande ; ce qui n'est pas le cas du PID. Pour procéder à la comparaison des résultats nous avons jumelé les deux schémas des simulations précédentes, aux instants identiques de manière à ce que l'on puisse agrandir ces schémas ; les résultats de la comparaison entre les régulateurs PID et RLF sont représentés sur les figures cidessous.

Interprétation des résultats:

En observant les résultats précédents, on voit que le comportement des deux régulateurs est identique durant les régimes permanents, mais le régulateur Flou présente un net avantage :

- moins d'oscillations au démarrage et lors des changements de consigne,
- Les pics des perturbations sont beaucoup moins importants avec le RLF notamment

pour le courant I_d (voir : Courant Id au démarrage, à l'instant 0.1s et à l'instant 0.3s).

6) Conclusion

Dans cette étude nous avons voulu contribuer à la réflexion sur la commande et le contrôle vectoriel d'un moteur synchrone à aimant permanent par deux types de régulateurs différents soit le régulateur PID classique puis le régulateur á logique floue ; nous avons mis en évidence le comportement de la régulation de vitesse dans ces deux types de commandes sans modifier la structure globale du système. Nous lui avons associé des comparateurs à hystérésis pour une souplesse de la commande de l'onduleur de tension à MLI.

Celui-ci est représenté par un pont triphasé six transistors IGBT identiques dont le but est de donner à la commande un aspect qui se rapproche le mieux du montage réel.

Les résultats obtenus matérialisés par les courbes de variation de la vitesse, du

couple et des courants, montrent le comportement du MSAP pour chacun des types de régulateurs étudiés.

Une réalisation peut être envisager en disposant de l'association « commande rapprochée – onduleur – moteur synchrone » et en utilisant un ensemble « DSP – micro-ordinateur » pour réaliser le régulateur.

References Bibliographiques :

[1] LE PIOUFLE Bruno "Comparaison des stratégies pour la commande numérique de servomoteurs synchrones; Algorithme linéaire et non linéaire; Robustesse; implantation". Thèse de Doctorat es science; INP Grenoble 1992.

[2] G. Zhu, O. Akhrif, A. Kaddouri, "Speed tracking control of a permanent magnet synchronous motor whith state and load torque observer". IEEE Vol. 47 N°2 P346 avril 2000.

[3] P. Barret " Régimes transitoires des machines tournantes électriques

Edition Eyrolles 1982.

[4] G. Grellet, G. Clerc, " Actionneurs électriques: Principe, modèle commande ". Edition Eyrolles 1997.

[5] Hansruedi Bühler " Réglage de systèmes d'électronique de puissance

Volume 1 et 2: Entraînement réglés. Presses polytechniques et universitaires romanes, édition 1997.

[6] D. Hamad, K. Uchida, F. Yusivar, H. Haratsu, S. Wakao and T. Onuki.

"Sensorless Control of PMSM using a linear reduced order observer including disturbance torque estimation ".

[7] Y. S. Chen, Z. Q. Zhu and D. howe "Simulation and expérimental investigation of dynamic field-weakening performance of permanent magnet brushless AC drives ". EPE 1999 Lausanne.

[8] Yaohua LI and Lu Jiang, "Sensorless Control of PMSM with an adaptive observer". EPE 1999 Lausanne.

[9] P. Borne, J. Rozinoer, J.Y. Dieulot, L. Dubois " Introduction à la commande Floue ". Edition Technip, Paris 1998.

Received, 5 Julie, 2003.