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Parameterised Verification of 
Class of Resource Allocation Systems 

 
Jabr Romhain1 Kamel Barkaoui2

Abstract 
The present work deals with two problems concerning behavioural 
properties for a large class of resource allocation systems (RAS) called G-
systems generalising well-known models presented in the literature. The 
first problem is the well-formedness characterisation. It exists to prove the 
existence of an initial marking ensuring non-blockingness (from any state 
reachable from initial state, it is always possible to reach a desirable (or 
final) state). The second problem is to show that under appropriate 
supervision, non-blockingness of G - sytems, can also be always ensured. 
Using structure theory of Petri nets, we state, a structural and 
parameterised characterisation for these two problems. In particular, the 
proposed solution for the second problem can be interpreted as a synthesis 
of a parameterised and modular supervisor. 
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1. Introduction 
Systems with resource sharing, where multi-process executions exist, are 
common in many contemporary applications such as flexible 
manufacturing systems, workflow management systems or computer 
operating systems. A challenge for researchers is to develop an optimal 
method ensuring the control of workflow and the resource allocation in 
these systems. Considerable research have been carried out on these 
topics. The present work can be related to the significant works adopting 
Petri net or graphs as formalism such [1, 4, 5, 10, and 11]. In section 2, 
we recall some basic notions of structure theory of Petri nets. Section 3 
describes the G-systems, which are a class of resource allocation systems 
(RAS). Section 4 presents a necessary and sufficient parameterised 
condition for a G-system to be well-formed. Using a purely structural 
reasoning, we develop in section 4 a parameterised and modular method 
ensuring the non-blockingness of G-systems regardless of number of 
processes to be executed. 
 
2. Basic definitions and notions of Petri Nets  
In this section, we introduce the basic Petri net definitions[8] and notions 
used in this paper. 
 
Definition 2.1. A Petri net is a tuple N = < P, T, F, W > where: 

(i) P ≠ ∅ is a finite set of places ; 
(ii) T ≠ ∅ is a finite set of transitions ; 
(iii) F ⊆ (PxT) ∪ (TxP) is the flow relation ; 
(iv) W: F → IN ∧[W(x,y)= 0 ⇔ (x,y) ∉F] is the weight function ; 

In the following, we define the marking of a Petri net. 
 
Definition 2.2. A marking of a Petri net N is a function M: P → IN.  

The initial marking of N is denoted by M0.
The pair < N, M0> is called a P/T system.

Notation   
∀ x ∈ P∪T,•x= {y ∈ P ∪ T /(y, x)∈ F} and x•= {y∈ P ∪ T / (x, y)∈ F} 

∀ (p, t) ∈ P x T: C (p, t) = W (t, p) - W (p, t) 
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Definition 2.3. 
A transition t ∈ T is enabled in a marking M (denoted by M [t〉 )
iff p ∈ •t : M(p) ≥ W(p,t) 

If transition t is enabled in marking M, it can be fired, leading to a new 
marking M' such that:   

 ∀p ∈P: M'(p) = M (p) + C (p, t). The firing is denoted by M [t〉 M' 
 The set of all markings reachable from M is denoted by [M〉
We recall the main properties related to behaviour of Petri nets. 
 
Definition 2.4. 

Let < N, M0> be a P/T system.
(i) A marking Mh is a home state iff  M ∀ [ M0〉 : Mh ∈ [ M〉 ;
(ii) <N, M0> is reversible ⇔ M0 is a home state ; 
(iii) <N, M0> is bounded ⇔ ∀p ∈P :[∃k∈ IN: ∀M ∈[M0〉, M(p) ≤ k]⇔

[M0〉 is finite ; 
(iv) N is structurally bounded⇔ ∀M0, <N, M0> is bounded 
(v) <N, M0> is quasi-live ⇔∀t ∈ T : ∃M ∈[ M0〉, M[t〉 ;
(vi) <N, M0> is deadlock-free ⇔ ∀M∈ [ M0〉, ∃t ∈ T : M[t〉 ;
(vii) <N, M0> is live ⇔∀t ∈ T : [∀M∈[ M0〉 : ∃M' ∈[M〉, M'[t〉 ]; 
(viii) N is structurally live ⇔ ∃ M0, <N, M0> is live 
Definition 2.5. 
A function  ν : [M0〉 → IN is a norm (strict) for a marking Mh∈[M0〉 iff : 

(i) ν(M) = 0  ⇔ M = Mh;
(ii) ∀M∈ [M0〉 : [ν(M) > 0  ⇔ ∃t ∈ T : M [t〉M' ∧ ν(M') < ν(M) ] ; 

 
We recall now basic some basic structural notions of Petri nets: 
 
Definition 2.6. 
Let N be a Petri net.  
An integer vector f ∈ Z|P|, f ≠0 is a place invariant (p-invariant) iff it 
satisfies tf .C = 0. 

The positive support of f is the set of places ||f||+ = {p ∈P: f (p) >0} 
The negative support of f is the set of places ||f||- = {p∈P: f (p) <0} 
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N is conservative ⇔ ∃ p-invariant f / ||f||+ = P (N conservative ⇒ N is 
structurally bounded). 
 

Definition 2.7. 
Let N be a Petri net and D be a non empty subset of places (D ⊆ P).  

 D is a siphon iff D ⊆ D•
D is minimal iff it contains no other siphon as a proper subset. 
A place p ∈ P is said to be non-blocking iff: 
 p• ≠ ∅ ⇒ Min t∈•p V (p,t)} ≥ Min t∈p• {V(p,t)} 
 

Definition 2.8. 
Let < N, M0> be a P/T system and D siphon of N. 
(i) D is controlled iff ∀M ∈ [M0〉, ∃p ∈ D:M(p)≥ max{W(p,t), t∈

p•}
(ii) <N, M0> satisfies the controlled-siphon property (cs-property) iff 

each minimal siphon of N is controlled 
 

In order to check the cs-property, two main structural conditions 
(sufficient but not necessary) permitting to determine whether a given 
siphon is controlled are developed in [2]. These conditions are recalled 
below. 
 
Proposition 2.1. Let <N, M0> be a P/T system and D a siphon of N. 
If one of the two following conditions holds, then D is controlled : 
1. ∃R ⊆ D such that : R• ⊆ R• , R is marked at M0, and places of R are 

non-blocking  
(Siphon D is said to be containing a trap R 
2. ∃ a P-invariant f (f ∈ ZP) such that  D ⊆ || f || and ∀p ∈ (|| f ||- ∩ D): 
V(p) =1,|| f ||+ ⊆ D, and  ∑p∈ P [f(p) . M0 (p)] > ∑p∈ D[f (p). (V (p) -1)]  
A siphon controlled by the first (second) mechanism is said to be trap-
controlled (invariant controlled) 
Two well-known basic (and obvious) relations between liveness 
properties and the cs-property are:  
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Proposition 2.2. 

Let <N, M0> be a P/T system. The two following properties hold : 
(i) <N, M0> is live  ⇒ <N, M0> satisfies the cs-property. 
(ii) <N, M0> satisfies the cs-property  ⇒ <N, M0> is deadlock-free . 

 
Two other properties useful for behavioural analysis are: 

Proposition 2.3. 
Let <N, M0> be a P/T system: 

(i) Mh is homes state  ⇔ ∃ a norm for Mh. 
(ii) <N,M0>is quasi-live under M0 and M0 is a home state⇒<N,M0>is 

live . 
 
Definition 2.9 :  

A labelled Petri net (or Petri net generator) is a tuple G= <N, l, 
M0, MF > where:  
N= <P, T, F, W> is a Petri net structure;  
l: T → Σ is a labelling function labels that assigns to each transition a 
label from the alphabet of events of Σ ;
M0 is an initial marking; MF is a finite set of final markings. 

 
The class of Resource allocation system (RAS) considered in this paper 
is Deterministic Discrete Event System (DES) and is represented by 
labelled Petri nets [6] where event set Σ can be partitioned into disjoint 
subsets: the set ΣC of controllable events (events that can be prevented 
from happening, or disabled, by control) and the set ΣU of uncontrollable 
events (events that can not be disabled by control). 
 
3. The Resource allocation G-System 
In this section, we present a class of RAS called G-systems. A G-System 
can be viewed as a labelled Petri net system describing a general problem 
arising in many contemporary application domains such flexible 
manufacturing systems or workflow management systems. It consists of a 
set of a finite number of shared resources types and a set P of a finite 
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number of part types (or case types) that the system must produce (or 
execute) using resources. 
For each part type (or case type) it is assigned a working process (or a 
business process) describing all the possible operation sequences for a 
given part-type (or a case-type). Our model can be qualified to be general 
since some realistic features can be described. Among them, we notice: 
(1) process flexibility i.e. a part-type (or a case type)  can have more than 
one routing, (2) assembly (synchronisation) /disassembly (splitting) 
operations,  (3) assignment flexibility i.e. a same operation can be 
performed with different resource-type, (4) permutation flexibility i.e. 
the order of a subsequent of operations is not fixed (some operations are 
partially ordered) -. 
The Petri net based description of these concurrent processes associated 
to a working or a business process provides a circuit-free labelled Petri 
net called G-Task [2, 9,10 ,11] 
 
Once internal soundness (abstraction of resource use) of each G-task is 
proved, we have to ensure the non blockingness of the G-System i.e. the 
correctness of the shared resource allocation strategies between 
processes belonging to same or different G -Task subsystems. The 
generality of the entire model enhanced by the fact that each operation 
may use multiple resources of different type and that major 
synchronisation patterns with shared resources such generalised parallel 
and sequential mutual exclusions are allowed. Finally, one can note that 
the structure of a G-system can be described by standard engineering 
tools as the task sequencing and resource sequencing matrices [7]. 
Now, we first define formally the class of DES called G-task.  
 
Definition 3.1 : G-Task Systems (GT) 
 A G-Task GT is a labelled Petri net G = <N, l, M0, MF> where: 
(i) N=<P, T, F, W> is a circuit-free Petri net with two special places:       

i and o.  
Place i is a source place (•i =∅) place o is a sink place (o•=∅)
(ii) The augmented net N* obtained from N by adding a transition t* such 

that 
•t* = {o} and t*• = {i} (and W (o,t*) =W (t*,o)=n) is strongly connected.  
(iii) M0 = n.i ; MF = n.o  



Damascus Univ. Journal Vol. (21)-No. (2)2005                 Romhain- Barkaoui  

71 

(iv) <N, n.i> is quasi-live  
 
Definition 3.2:

A G-Task GT is sound iff : 
(i) ∀M∈[n.i〉 , n.o ∈[M〉
(ii) ∀M∈[n.i〉, M(o) ≥ n ⇒ M = n.o 

 
Proposition 3.1:
Let GT be a G-task, GT is sound iff  
<N*, n.i> is live and bounded,  
 
Proof 
⇐) Let us suppose <N*, n.i> is live and bounded,  
∀M∈[n.i〉:∃M'∈[M>,M'(o) ≥ n. Let us suppose that M'= n.o +M",M"≠ 0.  
Then, M'[t*〉 n.i + M"  which contradicts the boundedness hypothesis.  
Therefore, M'= n.o and <N, l, n.i, n.o> is sound. 
⇒) Let us assume <N, l, n.i, n.o> is sound. We first prove <N*, n.i> is 
bounded. Suppose that <N*, n.i> is not bounded. Then, ∃M1∈[n.i〉 :
∃M2∈[M1〉 , M2 > M1.  
As <N, l, n.i, n.o> is sound, we know (definition 3.2 (i)) that ∃σ∈T* : 
M1[σ〉 n.o. 
Thus, ∃M, M2 [σ〉 M: M > n.o. This contradicts the soundness 
hypothesis (definition 3.2 (ii)). 
We now prove <N*, n.i> is live. As <N, l, n.i, n.o> is consistent, from 
(definition 3.2 (i)), ∀M∈ [n.i〉 , n.o ∈[M〉 . Then, by firing t*, we 
obtain: ∀M∈[n.i〉: n.i ∈[M〉, i.e. n.i is a home state of <N*, n.i>. As by 
definition 3.1, <N*, n.i> is quasi-live, then, by proposition 2.3 (ii), <N*, 
n.i> is live. 
 
Definition 3.3:
A G-Task GT is well-formed iff:  
∃ M0 = n.i such that GT is sound 
 
Theorem 3.1:
Let GT be a G-task, GT is well-formed iff  
∃ M0 = n.i such that <N*, n.i> is bounded and satisfies the cs-property. 
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Proof 
⇒) Let us suppose that G is well-formed. From proposition 3.1., <N*, 

n.i> is live and bounded, in particular, it satisfies the cs-property 
(proposition 2.1). 

⇐) Let us suppose that ∃n : <N*, n.i> is bounded and satisfies the cs-
property.  

We first exhibit a norm ν for marking n.o. We construct function ν as 
follows : we number the places of the net N in reverse topological order, 
i.e. place o is numbered 0, place i has the highest number, and the other 
places are such that a successor p' of a place p in the graph of the Petri 
net has a lower number than place p. This can be done since N is circuit 
free. We call Num this numbering function. Then, we define ∀M :
ν(M) = Σp∈P M(p).Num(p).  
We now prove that ν is a norm for n.o. By construction, ν(M) = 0  ⇔ M
= x.o. If x < n, then there is no t ∈ T : M[t〉. As <N*, n.i> satisfies the cs-
property, we deduce from proposition 2.1.(ii) that <N*, n.i> is deadlock-
free, i.e.∀M ∈ [n.i〉, ∃t ∈ T : M[t〉. Thus, there is a contradiction. If x > 
n, x.o[t*〉M' > n.i. This contradicts the boundedness hypothesis. Thus, we 
have proved condition (i) of definition 2.5.  
Let us suppose that ν(M) > 0 for a marking M. As (N*n n.i> is deadlock-
free, ∃t ∈ T : M[t〉M'. If t ≠ t*, by construction of ν, ν(M') < ν(M). 
Otherwise (t = t*), as ν(M) >0 and ν(M) = 0 ⇔ M = n.o (already 
proven), marking M must have the form M = n.o + M'' with M'' ≠ 0. Then 
M[t*〉n.i + M'' >n.i, which contradicts the boundedness hypothesis. Thus, 
⇒ of definition 2.5.(ii) is satisfied.  
Let us now suppose that ∃t ∈ T: M[t〉M' ∧ ν(M') < ν(M). The 
construction of function ν is such that ∀M : ν(M) ≥ 0. Then  ν(M) > 
ν(M') ≥ 0. Thus,  ⇐ of definition 2.5. (ii) is satisfied. 
We deduce from all that function ν is well a norm for n.o. From  
proposition 2.3. (i), n.o is a home marking. As <N*, n.i> is quasi-live and 
its initial state is a home state, it is live. From proposition 3.1., <N, n.i> 
is well-formed. 
Now, we define the class of G-Task with resources (GTR systems). A 
GTR systems is basically a consistent G-Task plus a set of places (PR)
modelling the resources shared by its processes.  
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We demand the G-task net with resources to be (externally) sound with 
respect to resource use i.e. a resource requested will eventually be 
released and a resource released has previously been requested. This 
resource preservation property is expressed in terms of invariants in the 
system (definition 3.4.(v)). Due to structure of G-Task subsystems, 
subnets induced by these invariants are not necessarily state machines. 
We recall that several resources can be requested/ released 
simultaneously. 
 
Definition 3.4: G-Task systems with Resources (GTR) 
A G-Task system with Resources GTR is a labelled Petri net  
GR= <NR, l, MRo, MRF > where: 
(i) NR= < P ∪ PR, T, F ∪ FR, W ∪ WR> (the associated Petri net 

structure) 
(ii) PR ≠ ∅ and P∩PR = ∅ (PR is the set of resources) 
(iii) FR ⊆ (PR x T ) ∪ (T x PR) (the flow relation for resources) 
(iv) ∀u ∈ FR, WR(u) ≥ 1 (resource use) 
(v) ∀r ∈ PR, ∃fr = 0: tfr. C = 0 and  ||fr|| ∩ PR = {r} (resource 

preservation) 
(vi) MRo= n.i + Σkj.rj, MRF= n.o + Σkj.rj (o, i ΣP ; rj PR, j=1,|PR|) 
(vii) The subsystem G=< N, M0, MF, l>, where N=<P, T, F, W> and M0

and MF are respectively the restrictions of MRo and MRF to P, is a 
consistent G-task. 

Then, we can compose several GTR nets into a system where they share 
resources. This is obtained by fusion of the places representing the 
resources shared by different GTR systems. 
 
Definition 3.5: G-Systems (GS) 
a G-System GS is recursively defined. A GTR is a G-System 
Let GSi = <NSi, li, MSoi, MSFi >, i ∈ {1, 2}, be two G-Systems such that  
P1 ∩ P2 = T1 ∩ T2 = ∅. We denote the set of shared resources by 
PR1PR2= PR1∩ PR2.
The system GS = GS1 o GS2 resulting of the fusion of systems GS1 and 
GS2 over the set  PR1PR2 is a G-System 
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A relevant property of any system with resource sharing is to be non-
blocking i.e. from any state reachable from initial state; it is always 
possible to reach a desirable (or final) state. In the following section, we 
first prove that a G-system is well-formed, i.e. there exits an initial 
marking for which it is non-blocking.   
 
4. A Parameterised characterisation of well-formed G-Systems 

a G-system GS is well-formed iff there exists an initial marking MSO
such that : 
∀ M∈ [MSO 〉 , MSF ∈ [M〉

We prove below that a given G-system is well-formed. 
 
Proposition 4.1. Let D a minimal siphon of NS*. There exists an initial 
marking MO under which D is controlled. 
 
Proof: Let GS be a G-system and D a minimal siphon of NS*. The 
augmented net NS* is obtained from NS by augmenting the net Ni of 
each G-Task (component of GS) as defined in 3.1 (ii)..Let us first 
suppose that D ∩ ∪ PRi = ∅. By construction and due to minimality of D 
there exists a G-Task subsystem GTi such that D ⊆ Pi and D contains the 
input place of GTi . As GTi is assumed to be sound, there exists an initial 
marking under which D is controlled. Let us consider now the 
complementary case D ∩ ∪ PRi ≠ ∅ and suppose now that siphon D is 
not controlled. We denote by f(r) a flow of minimal support associated 
with resource r, and by f(p) a flow of minimal support associated with p 
in its corresponding G-task net. 
Let : gD = Σ f(r)  , r ∈ D ∩ ∪ PRi ;  Out(D)= ||gD || \ D ; hD = Σ f(p) , p 
∈ Out(D) ; 
λD = max g(p) ,  p ∈ Out(D) ∩||hD || ;  zD = gD - λD . hD ;
Siphon D is controlled as soon as   tzD. M0 > Σ zD(p) . (maxp•-) , p ∈ D
Therefore, there exists a marking under which D is controlled. 

 
Theorem 4.1.  
Let GS be a G-system. GS is well-formed iff there exists an initial 
marking MO under which <NS*, MO > is bounded and satisfies the cs-
property (a such marking is called a controlled marking). 
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Proof: 
 ⇒) obvious 
⇐) Let GS be a G-system. Let us suppose that there exists an initial 
marking M'0 under which <NS*, M'0 > is bounded and satisfies the cs-
property. We prove now that which <NS*, M'0 > is live. To do that, we 
proceed as in the proof of theorem 3.1., i.e. we exhibit a norm νR.
This norm νR is an extension of norm ν where the resources are 
numbered 0. Hence, GS is well-formed. 
4.2. Example 
We will now apply the previous theorem to the G-System (it is also a 
GTR) of figure 1. 
First, we check the soundness of the associated G-Task: the 
corresponding augmented net N* contains the two following minimal 
siphons D1= {i, p1, p3, p5, p6, o} and D2= {i, p2, p3, p4, p5, p6, o}. 
For M0 (i) > 0, these two siphons are trap controlled. Then the associated 
G-task is well sound. 
Now, consider the four minimal siphons of the augmented net NS*:  
D3= {p3, p5, p6, r1}; D4= {p4, p5, p6, r2}; D5= {r1, r2, p5, p6}; D6= {i, 
p1, p5, p6, o, r2}.  
Siphons D3 and D4 are the support of positive flow, they are invariant 
controlled by definition.  
Their controllability conditions are M0 (r1) > 1 for D3 and M0 (r2) > 0 
for D4. 
We now have to determine a controllability condition for siphons D5 and 
D6 as indicated in proposition 4.1.  
 Consider first siphon D5= {r1, r2, p5, p6}: 
 

gD5 = f(r1) + f(r2) = r1 + 2.p3 + 2.p5 + p6 + r2 +p4 + p5 + p6 = r1 + 
r2 + 2.p3 + p4 + 3.p5 + 2.p6 
Out (D5) = {p3, p4};  
hD5 = f (p3) + f (p4) = i + p1 + p3 + p5 + p6 + o + i + p2 + p3 + p4 + 
p5 + p6 + o 

 = 2.i + p1 + p2 + 2.p3 + p4 + 2.p5 + 2.p6 + 2.o; λD5 = 2; λD5 = 2; 
zD5 = r1 + r2 + 2.p3 + p4 + 3.p5 + 2.p6 - 4.i -2.p1 - 2.p2 - 4.p3 - 2.p4 
- 4.p5 - 4.p6 - 4.o 
= r1 + r2 - 4.i -2.p1 - 2.p2 - 2.p3 - p4 - p5 - 2.p6 - 4.o 
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Figure1. Example of a G-system 
Hence, for M0 (r1) + M0 (r2) - 4.M0 (i) > 1, siphon D5 is controlled. In 
the same manner, we obtain a control condition for D6= {i, p1, p5, p6, o, 
r2}:   M0 (r2) - M0 (i) > 0.  
Finally, we can conclude that for every initial marking satisfying the 
following initial conditions : M0(r1)>0  ; M0(r2)>0 ; M0(i) > 0 ;  M0(r1) + 
M0(r2) - 4.M0(i) > 1 and  M0(r2) - M0(i) > 0  
this G-System of figure1 is well-formed. 
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5. A Parameterised non-blockingness characterisation of G-Systems 
In the previous section, we have proved that G-systems are well-formed; 
however the existence of controlled markings depends of the initial 
marking of inputs places of G-Task subsystems (number of parts or cases 
of each type to be executed). In practice, these input places must be 
viewed as being a part of environment, so we have to ensure non-
blockingness in a manner which is independent from markings of these 
input places. We solve this control problem in this section, by a method 
based on a purely structural reasoning. This method can be interpreted as 
a parameterised and modular synthesis of a supervisor ensuring the non-
blockingness independently of initial markings of input places. 
The set of minimal siphons of such G-system can be partitioned into 
three classes 
The first class (type 1) contains the minimal siphon without resources 
places. They are controlled since the G-task nets constituting the G-
system are non-blocking.   
The second class (type 2) contains those which include resources and are 
invariant controlled by construction.  
The last class (type 3) contains the minimal siphons including resource 
places but not necessarily invariant controlled for the initial marking. 
Hence, due to the structure of G-systems, only the non-controllability of 
minimal siphons of type 3 are the rudimentary causes of blockingness. 
We associate with each siphon D of type 3, a local control place CD
with: 
CD• = •Out (D),   •CD = Out (D) • ∀p ∈ Out (D), ∀t ∈ •p, ∀t' ∈ p•:
W (CD, t) = W (t', CD) = g (p) 
One can easily avoid self loops introduced by the flow relation restricted 
to CD, since this operation preserves the invariant and thus the future 
control. Adding place CD has created a new flow:  
f(CD) = CD + Σ g(p).p,     p ∈ Out(D).     Let zCD = gD - f(CD).  
For siphon D to be controlled, we must have: t ZcD .M0 > Σ ZcD (p). 
(maxp• -1). 
It is important to note that these new control places behave like 
resources, i.e. they satisfy the resource preservation condition of 
definition 3.4(v). Hence, the initial G-system augmented with these new 
control places remains a G-system. The subnet (not necessarily 
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connected) induced by added control places can be viewed as a modular 
supervisor S. The flow relation of control places is such that arcs from a 
control place to uncontrollable transitions (∑U) are not allowed. Such 
construction can be algebraically determined: Indeed, in the case of 
presence of uncontrollable transitions in •Out (D), the cardinality of the 
support of the minimal flow f can be always minimally enlarged for 
satisfying the condition CD• ⊆ ∑C.
Now, one could object that these new control places can create siphons 
of type 3, i.e. minimal siphons including resource places but not invariant 
controlled. If this is the case, we have to control them as it is previously 
done. We can ensure that this iterative control process necessarily stops:  
Indeed, for each new minimal siphon of type 3, it is associated a flow f 
with || f || \ CD ⊆ ∪Pi,  
As the power set of ∪Pi is finite (the dimension of the generator family 
of flow with minimal support is finite), we reach necessarily a step where 
the role of the control place C' to be added can be played by an already 
existing control place C for which marking must be updated (i.e. a 
supervisor is constructed):  [C• = C'• and •C = •C'. Mo(C) = Min (Mo 
(C), Mo (C'))]. 
Hence, the non-blockingness of the class of G-Systems, even with the 
presence of uncontrollable transitions, can be done using a purely 
structural reasoning. 
 
6. Conclusions 
In this work, we presented a model describing a large class of resource 
allocation systems namely G-systems, and we presented how one can 
take advantage from recent results of structure theory of Petri nets to 
cope with blocking problems due to the existence of general use of 
shared resources. The proposed approach has advantages compared to 
approaches based on the computation of reachability set. Indeed, the 
solutions obtained by our method, are modular and parameterised. In 
case of internal marking modification (availability of resources, or 
scalability of the system), the verification of non-blockingness conditions 
requires only to compute again the initial markings of control places. 
Finally, the complexity of the presented synthesis method is reducible to 
the complexity of the algorithm for computing minimal siphons in Petri 
nets. One of our future research topics is to develop an efficient 
algorithm to compute minimal siphons of a G-system by exploiting its 
structure. 
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