
Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

65

Parameterised Verification of
Class of Resource Allocation Systems

Jabr Romhain1 Kamel Barkaoui2

Abstract
The present work deals with two problems concerning behavioural
properties for a large class of resource allocation systems (RAS) called G-
systems generalising well-known models presented in the literature. The
first problem is the well-formedness characterisation. It exists to prove the
existence of an initial marking ensuring non-blockingness (from any state
reachable from initial state, it is always possible to reach a desirable (or
final) state). The second problem is to show that under appropriate
supervision, non-blockingness of G - sytems, can also be always ensured.
Using structure theory of Petri nets, we state, a structural and
parameterised characterisation for these two problems. In particular, the
proposed solution for the second problem can be interpreted as a synthesis
of a parameterised and modular supervisor.

1 Dep. of Electronics and Communication Engineering, Damascus University.
2 Lab. Cedric- Cnam, Paris- France.

Parameterised Verification of Class of Resource Allocation Systems

66

1. Introduction
Systems with resource sharing, where multi-process executions exist, are
common in many contemporary applications such as flexible
manufacturing systems, workflow management systems or computer
operating systems. A challenge for researchers is to develop an optimal
method ensuring the control of workflow and the resource allocation in
these systems. Considerable research have been carried out on these
topics. The present work can be related to the significant works adopting
Petri net or graphs as formalism such [1, 4, 5, 10, and 11]. In section 2,
we recall some basic notions of structure theory of Petri nets. Section 3
describes the G-systems, which are a class of resource allocation systems
(RAS). Section 4 presents a necessary and sufficient parameterised
condition for a G-system to be well-formed. Using a purely structural
reasoning, we develop in section 4 a parameterised and modular method
ensuring the non-blockingness of G-systems regardless of number of
processes to be executed.

2. Basic definitions and notions of Petri Nets
In this section, we introduce the basic Petri net definitions[8] and notions
used in this paper.

Definition 2.1. A Petri net is a tuple N = < P, T, F, W > where:

(i) P ≠ ∅ is a finite set of places ;
(ii) T ≠ ∅ is a finite set of transitions ;
(iii) F ⊆ (PxT) ∪ (TxP) is the flow relation ;
(iv) W: F → IN ∧[W(x,y)= 0 ⇔ (x,y) ∉F] is the weight function ;

In the following, we define the marking of a Petri net.

Definition 2.2. A marking of a Petri net N is a function M: P → IN.

The initial marking of N is denoted by M0.
The pair < N, M0> is called a P/T system.

Notation
∀ x ∈ P∪T,•x= {y ∈ P ∪ T /(y, x)∈ F} and x•= {y∈ P ∪ T / (x, y)∈ F}

∀ (p, t) ∈ P x T: C (p, t) = W (t, p) - W (p, t)

Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

67

Definition 2.3.
A transition t ∈ T is enabled in a marking M (denoted by M [t〉)
iff p ∈ •t : M(p) ≥ W(p,t)

If transition t is enabled in marking M, it can be fired, leading to a new
marking M' such that:

 ∀p ∈P: M'(p) = M (p) + C (p, t). The firing is denoted by M [t〉 M'
 The set of all markings reachable from M is denoted by [M〉
We recall the main properties related to behaviour of Petri nets.

Definition 2.4.

Let < N, M0> be a P/T system.
(i) A marking Mh is a home state iff M ∀ [M0〉 : Mh ∈ [M〉 ;
(ii) <N, M0> is reversible ⇔ M0 is a home state ;
(iii) <N, M0> is bounded ⇔ ∀p ∈P :[∃k∈ IN: ∀M ∈[M0〉, M(p) ≤ k]⇔

[M0〉 is finite ;
(iv) N is structurally bounded⇔ ∀M0, <N, M0> is bounded
(v) <N, M0> is quasi-live ⇔∀t ∈ T : ∃M ∈[M0〉, M[t〉 ;
(vi) <N, M0> is deadlock-free ⇔ ∀M∈ [M0〉, ∃t ∈ T : M[t〉 ;
(vii) <N, M0> is live ⇔∀t ∈ T : [∀M∈[M0〉 : ∃M' ∈[M〉, M'[t〉];
(viii) N is structurally live ⇔ ∃ M0, <N, M0> is live
Definition 2.5.
A function ν : [M0〉 → IN is a norm (strict) for a marking Mh∈[M0〉 iff :

(i) ν(M) = 0 ⇔ M = Mh;
(ii) ∀M∈ [M0〉 : [ν(M) > 0 ⇔ ∃t ∈ T : M [t〉M' ∧ ν(M') < ν(M)] ;

We recall now basic some basic structural notions of Petri nets:

Definition 2.6.
Let N be a Petri net.
An integer vector f ∈ Z|P|, f ≠0 is a place invariant (p-invariant) iff it
satisfies tf .C = 0.

The positive support of f is the set of places ||f||+ = {p ∈P: f (p) >0}
The negative support of f is the set of places ||f||- = {p∈P: f (p) <0}

Parameterised Verification of Class of Resource Allocation Systems

68

N is conservative ⇔ ∃ p-invariant f / ||f||+ = P (N conservative ⇒ N is
structurally bounded).

Definition 2.7.
Let N be a Petri net and D be a non empty subset of places (D ⊆ P).

 D is a siphon iff D ⊆ D•
D is minimal iff it contains no other siphon as a proper subset.
A place p ∈ P is said to be non-blocking iff:
 p• ≠ ∅ ⇒ Min t∈•p V (p,t)} ≥ Min t∈p• {V(p,t)}

Definition 2.8.
Let < N, M0> be a P/T system and D siphon of N.
(i) D is controlled iff ∀M ∈ [M0〉, ∃p ∈ D:M(p)≥ max{W(p,t), t∈

p•}
(ii) <N, M0> satisfies the controlled-siphon property (cs-property) iff

each minimal siphon of N is controlled

In order to check the cs-property, two main structural conditions
(sufficient but not necessary) permitting to determine whether a given
siphon is controlled are developed in [2]. These conditions are recalled
below.

Proposition 2.1. Let <N, M0> be a P/T system and D a siphon of N.
If one of the two following conditions holds, then D is controlled :
1. ∃R ⊆ D such that : R• ⊆ R• , R is marked at M0, and places of R are

non-blocking
(Siphon D is said to be containing a trap R
2. ∃ a P-invariant f (f ∈ ZP) such that D ⊆ || f || and ∀p ∈ (|| f ||- ∩ D):
V(p) =1,|| f ||+ ⊆ D, and ∑p∈ P [f(p) . M0 (p)] > ∑p∈ D[f (p). (V (p) -1)]
A siphon controlled by the first (second) mechanism is said to be trap-
controlled (invariant controlled)
Two well-known basic (and obvious) relations between liveness
properties and the cs-property are:

Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

69

Proposition 2.2.

Let <N, M0> be a P/T system. The two following properties hold :
(i) <N, M0> is live ⇒ <N, M0> satisfies the cs-property.
(ii) <N, M0> satisfies the cs-property ⇒ <N, M0> is deadlock-free .

Two other properties useful for behavioural analysis are:

Proposition 2.3.
Let <N, M0> be a P/T system:

(i) Mh is homes state ⇔ ∃ a norm for Mh.
(ii) <N,M0>is quasi-live under M0 and M0 is a home state⇒<N,M0>is

live .

Definition 2.9 :

A labelled Petri net (or Petri net generator) is a tuple G= <N, l,
M0, MF > where:
N= <P, T, F, W> is a Petri net structure;
l: T → Σ is a labelling function labels that assigns to each transition a
label from the alphabet of events of Σ ;
M0 is an initial marking; MF is a finite set of final markings.

The class of Resource allocation system (RAS) considered in this paper
is Deterministic Discrete Event System (DES) and is represented by
labelled Petri nets [6] where event set Σ can be partitioned into disjoint
subsets: the set ΣC of controllable events (events that can be prevented
from happening, or disabled, by control) and the set ΣU of uncontrollable
events (events that can not be disabled by control).

3. The Resource allocation G-System
In this section, we present a class of RAS called G-systems. A G-System
can be viewed as a labelled Petri net system describing a general problem
arising in many contemporary application domains such flexible
manufacturing systems or workflow management systems. It consists of a
set of a finite number of shared resources types and a set P of a finite

Parameterised Verification of Class of Resource Allocation Systems

70

number of part types (or case types) that the system must produce (or
execute) using resources.
For each part type (or case type) it is assigned a working process (or a
business process) describing all the possible operation sequences for a
given part-type (or a case-type). Our model can be qualified to be general
since some realistic features can be described. Among them, we notice:
(1) process flexibility i.e. a part-type (or a case type) can have more than
one routing, (2) assembly (synchronisation) /disassembly (splitting)
operations, (3) assignment flexibility i.e. a same operation can be
performed with different resource-type, (4) permutation flexibility i.e.
the order of a subsequent of operations is not fixed (some operations are
partially ordered) -.
The Petri net based description of these concurrent processes associated
to a working or a business process provides a circuit-free labelled Petri
net called G-Task [2, 9,10 ,11]

Once internal soundness (abstraction of resource use) of each G-task is
proved, we have to ensure the non blockingness of the G-System i.e. the
correctness of the shared resource allocation strategies between
processes belonging to same or different G -Task subsystems. The
generality of the entire model enhanced by the fact that each operation
may use multiple resources of different type and that major
synchronisation patterns with shared resources such generalised parallel
and sequential mutual exclusions are allowed. Finally, one can note that
the structure of a G-system can be described by standard engineering
tools as the task sequencing and resource sequencing matrices [7].
Now, we first define formally the class of DES called G-task.

Definition 3.1 : G-Task Systems (GT)
 A G-Task GT is a labelled Petri net G = <N, l, M0, MF> where:
(i) N=<P, T, F, W> is a circuit-free Petri net with two special places:

i and o.
Place i is a source place (•i =∅) place o is a sink place (o•=∅)
(ii) The augmented net N* obtained from N by adding a transition t* such

that
•t* = {o} and t*• = {i} (and W (o,t*) =W (t*,o)=n) is strongly connected.
(iii) M0 = n.i ; MF = n.o

Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

71

(iv) <N, n.i> is quasi-live

Definition 3.2:

A G-Task GT is sound iff :
(i) ∀M∈[n.i〉 , n.o ∈[M〉
(ii) ∀M∈[n.i〉, M(o) ≥ n ⇒ M = n.o

Proposition 3.1:
Let GT be a G-task, GT is sound iff
<N*, n.i> is live and bounded,

Proof
⇐) Let us suppose <N*, n.i> is live and bounded,
∀M∈[n.i〉:∃M'∈[M>,M'(o) ≥ n. Let us suppose that M'= n.o +M",M"≠ 0.
Then, M'[t*〉 n.i + M" which contradicts the boundedness hypothesis.
Therefore, M'= n.o and <N, l, n.i, n.o> is sound.
⇒) Let us assume <N, l, n.i, n.o> is sound. We first prove <N*, n.i> is
bounded. Suppose that <N*, n.i> is not bounded. Then, ∃M1∈[n.i〉 :
∃M2∈[M1〉 , M2 > M1.
As <N, l, n.i, n.o> is sound, we know (definition 3.2 (i)) that ∃σ∈T* :
M1[σ〉 n.o.
Thus, ∃M, M2 [σ〉 M: M > n.o. This contradicts the soundness
hypothesis (definition 3.2 (ii)).
We now prove <N*, n.i> is live. As <N, l, n.i, n.o> is consistent, from
(definition 3.2 (i)), ∀M∈ [n.i〉 , n.o ∈[M〉 . Then, by firing t*, we
obtain: ∀M∈[n.i〉: n.i ∈[M〉, i.e. n.i is a home state of <N*, n.i>. As by
definition 3.1, <N*, n.i> is quasi-live, then, by proposition 2.3 (ii), <N*,
n.i> is live.

Definition 3.3:
A G-Task GT is well-formed iff:
∃ M0 = n.i such that GT is sound

Theorem 3.1:
Let GT be a G-task, GT is well-formed iff
∃ M0 = n.i such that <N*, n.i> is bounded and satisfies the cs-property.

Parameterised Verification of Class of Resource Allocation Systems

72

Proof
⇒) Let us suppose that G is well-formed. From proposition 3.1., <N*,

n.i> is live and bounded, in particular, it satisfies the cs-property
(proposition 2.1).

⇐) Let us suppose that ∃n : <N*, n.i> is bounded and satisfies the cs-
property.

We first exhibit a norm ν for marking n.o. We construct function ν as
follows : we number the places of the net N in reverse topological order,
i.e. place o is numbered 0, place i has the highest number, and the other
places are such that a successor p' of a place p in the graph of the Petri
net has a lower number than place p. This can be done since N is circuit
free. We call Num this numbering function. Then, we define ∀M :
ν(M) = Σp∈P M(p).Num(p).
We now prove that ν is a norm for n.o. By construction, ν(M) = 0 ⇔ M
= x.o. If x < n, then there is no t ∈ T : M[t〉. As <N*, n.i> satisfies the cs-
property, we deduce from proposition 2.1.(ii) that <N*, n.i> is deadlock-
free, i.e.∀M ∈ [n.i〉, ∃t ∈ T : M[t〉. Thus, there is a contradiction. If x >
n, x.o[t*〉M' > n.i. This contradicts the boundedness hypothesis. Thus, we
have proved condition (i) of definition 2.5.
Let us suppose that ν(M) > 0 for a marking M. As (N*n n.i> is deadlock-
free, ∃t ∈ T : M[t〉M'. If t ≠ t*, by construction of ν, ν(M') < ν(M).
Otherwise (t = t*), as ν(M) >0 and ν(M) = 0 ⇔ M = n.o (already
proven), marking M must have the form M = n.o + M'' with M'' ≠ 0. Then
M[t*〉n.i + M'' >n.i, which contradicts the boundedness hypothesis. Thus,
⇒ of definition 2.5.(ii) is satisfied.
Let us now suppose that ∃t ∈ T: M[t〉M' ∧ ν(M') < ν(M). The
construction of function ν is such that ∀M : ν(M) ≥ 0. Then ν(M) >
ν(M') ≥ 0. Thus, ⇐ of definition 2.5. (ii) is satisfied.
We deduce from all that function ν is well a norm for n.o. From
proposition 2.3. (i), n.o is a home marking. As <N*, n.i> is quasi-live and
its initial state is a home state, it is live. From proposition 3.1., <N, n.i>
is well-formed.
Now, we define the class of G-Task with resources (GTR systems). A
GTR systems is basically a consistent G-Task plus a set of places (PR)
modelling the resources shared by its processes.

Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

73

We demand the G-task net with resources to be (externally) sound with
respect to resource use i.e. a resource requested will eventually be
released and a resource released has previously been requested. This
resource preservation property is expressed in terms of invariants in the
system (definition 3.4.(v)). Due to structure of G-Task subsystems,
subnets induced by these invariants are not necessarily state machines.
We recall that several resources can be requested/ released
simultaneously.

Definition 3.4: G-Task systems with Resources (GTR)
A G-Task system with Resources GTR is a labelled Petri net
GR= <NR, l, MRo, MRF > where:
(i) NR= < P ∪ PR, T, F ∪ FR, W ∪ WR> (the associated Petri net

structure)
(ii) PR ≠ ∅ and P∩PR = ∅ (PR is the set of resources)
(iii) FR ⊆ (PR x T) ∪ (T x PR) (the flow relation for resources)
(iv) ∀u ∈ FR, WR(u) ≥ 1 (resource use)
(v) ∀r ∈ PR, ∃fr = 0: tfr. C = 0 and ||fr|| ∩ PR = {r} (resource

preservation)
(vi) MRo= n.i + Σkj.rj, MRF= n.o + Σkj.rj (o, i ΣP ; rj PR, j=1,|PR|)
(vii) The subsystem G=< N, M0, MF, l>, where N=<P, T, F, W> and M0

and MF are respectively the restrictions of MRo and MRF to P, is a
consistent G-task.

Then, we can compose several GTR nets into a system where they share
resources. This is obtained by fusion of the places representing the
resources shared by different GTR systems.

Definition 3.5: G-Systems (GS)
a G-System GS is recursively defined. A GTR is a G-System
Let GSi = <NSi, li, MSoi, MSFi >, i ∈ {1, 2}, be two G-Systems such that
P1 ∩ P2 = T1 ∩ T2 = ∅. We denote the set of shared resources by
PR1PR2= PR1∩ PR2.
The system GS = GS1 o GS2 resulting of the fusion of systems GS1 and
GS2 over the set PR1PR2 is a G-System

Parameterised Verification of Class of Resource Allocation Systems

74

A relevant property of any system with resource sharing is to be non-
blocking i.e. from any state reachable from initial state; it is always
possible to reach a desirable (or final) state. In the following section, we
first prove that a G-system is well-formed, i.e. there exits an initial
marking for which it is non-blocking.

4. A Parameterised characterisation of well-formed G-Systems

a G-system GS is well-formed iff there exists an initial marking MSO
such that :
∀ M∈ [MSO 〉 , MSF ∈ [M〉

We prove below that a given G-system is well-formed.

Proposition 4.1. Let D a minimal siphon of NS*. There exists an initial
marking MO under which D is controlled.

Proof: Let GS be a G-system and D a minimal siphon of NS*. The
augmented net NS* is obtained from NS by augmenting the net Ni of
each G-Task (component of GS) as defined in 3.1 (ii)..Let us first
suppose that D ∩ ∪ PRi = ∅. By construction and due to minimality of D
there exists a G-Task subsystem GTi such that D ⊆ Pi and D contains the
input place of GTi . As GTi is assumed to be sound, there exists an initial
marking under which D is controlled. Let us consider now the
complementary case D ∩ ∪ PRi ≠ ∅ and suppose now that siphon D is
not controlled. We denote by f(r) a flow of minimal support associated
with resource r, and by f(p) a flow of minimal support associated with p
in its corresponding G-task net.
Let : gD = Σ f(r) , r ∈ D ∩ ∪ PRi ; Out(D)= ||gD || \ D ; hD = Σ f(p) , p
∈ Out(D) ;
λD = max g(p) , p ∈ Out(D) ∩||hD || ; zD = gD - λD . hD ;
Siphon D is controlled as soon as tzD. M0 > Σ zD(p) . (maxp•-) , p ∈ D
Therefore, there exists a marking under which D is controlled.

Theorem 4.1.
Let GS be a G-system. GS is well-formed iff there exists an initial
marking MO under which <NS*, MO > is bounded and satisfies the cs-
property (a such marking is called a controlled marking).

Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

75

Proof:
 ⇒) obvious
⇐) Let GS be a G-system. Let us suppose that there exists an initial
marking M'0 under which <NS*, M'0 > is bounded and satisfies the cs-
property. We prove now that which <NS*, M'0 > is live. To do that, we
proceed as in the proof of theorem 3.1., i.e. we exhibit a norm νR.
This norm νR is an extension of norm ν where the resources are
numbered 0. Hence, GS is well-formed.
4.2. Example
We will now apply the previous theorem to the G-System (it is also a
GTR) of figure 1.
First, we check the soundness of the associated G-Task: the
corresponding augmented net N* contains the two following minimal
siphons D1= {i, p1, p3, p5, p6, o} and D2= {i, p2, p3, p4, p5, p6, o}.
For M0 (i) > 0, these two siphons are trap controlled. Then the associated
G-task is well sound.
Now, consider the four minimal siphons of the augmented net NS*:
D3= {p3, p5, p6, r1}; D4= {p4, p5, p6, r2}; D5= {r1, r2, p5, p6}; D6= {i,
p1, p5, p6, o, r2}.
Siphons D3 and D4 are the support of positive flow, they are invariant
controlled by definition.
Their controllability conditions are M0 (r1) > 1 for D3 and M0 (r2) > 0
for D4.
We now have to determine a controllability condition for siphons D5 and
D6 as indicated in proposition 4.1.
 Consider first siphon D5= {r1, r2, p5, p6}:

gD5 = f(r1) + f(r2) = r1 + 2.p3 + 2.p5 + p6 + r2 +p4 + p5 + p6 = r1 +
r2 + 2.p3 + p4 + 3.p5 + 2.p6
Out (D5) = {p3, p4};
hD5 = f (p3) + f (p4) = i + p1 + p3 + p5 + p6 + o + i + p2 + p3 + p4 +
p5 + p6 + o

 = 2.i + p1 + p2 + 2.p3 + p4 + 2.p5 + 2.p6 + 2.o; λD5 = 2; λD5 = 2; 
zD5 = r1 + r2 + 2.p3 + p4 + 3.p5 + 2.p6 - 4.i -2.p1 - 2.p2 - 4.p3 - 2.p4
- 4.p5 - 4.p6 - 4.o
= r1 + r2 - 4.i -2.p1 - 2.p2 - 2.p3 - p4 - p5 - 2.p6 - 4.o

Parameterised Verification of Class of Resource Allocation Systems

76

Figure1. Example of a G-system
Hence, for M0 (r1) + M0 (r2) - 4.M0 (i) > 1, siphon D5 is controlled. In
the same manner, we obtain a control condition for D6= {i, p1, p5, p6, o,
r2}: M0 (r2) - M0 (i) > 0.
Finally, we can conclude that for every initial marking satisfying the
following initial conditions : M0(r1)>0 ; M0(r2)>0 ; M0(i) > 0 ; M0(r1) +
M0(r2) - 4.M0(i) > 1 and M0(r2) - M0(i) > 0
this G-System of figure1 is well-formed.

2

2

p1 p2

p3 p4

p5 p6

r1 r2

o

t1

t2 t3

t4 t5

t7t6

i

Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

77

5. A Parameterised non-blockingness characterisation of G-Systems
In the previous section, we have proved that G-systems are well-formed;
however the existence of controlled markings depends of the initial
marking of inputs places of G-Task subsystems (number of parts or cases
of each type to be executed). In practice, these input places must be
viewed as being a part of environment, so we have to ensure non-
blockingness in a manner which is independent from markings of these
input places. We solve this control problem in this section, by a method
based on a purely structural reasoning. This method can be interpreted as
a parameterised and modular synthesis of a supervisor ensuring the non-
blockingness independently of initial markings of input places.
The set of minimal siphons of such G-system can be partitioned into
three classes
The first class (type 1) contains the minimal siphon without resources
places. They are controlled since the G-task nets constituting the G-
system are non-blocking.
The second class (type 2) contains those which include resources and are
invariant controlled by construction.
The last class (type 3) contains the minimal siphons including resource
places but not necessarily invariant controlled for the initial marking.
Hence, due to the structure of G-systems, only the non-controllability of
minimal siphons of type 3 are the rudimentary causes of blockingness.
We associate with each siphon D of type 3, a local control place CD
with:
CD• = •Out (D), •CD = Out (D) • ∀p ∈ Out (D), ∀t ∈ •p, ∀t' ∈ p•:
W (CD, t) = W (t', CD) = g (p)
One can easily avoid self loops introduced by the flow relation restricted
to CD, since this operation preserves the invariant and thus the future
control. Adding place CD has created a new flow:
f(CD) = CD + Σ g(p).p, p ∈ Out(D). Let zCD = gD - f(CD).
For siphon D to be controlled, we must have: t ZcD .M0 > Σ ZcD (p).
(maxp• -1).
It is important to note that these new control places behave like
resources, i.e. they satisfy the resource preservation condition of
definition 3.4(v). Hence, the initial G-system augmented with these new
control places remains a G-system. The subnet (not necessarily

Parameterised Verification of Class of Resource Allocation Systems

78

connected) induced by added control places can be viewed as a modular
supervisor S. The flow relation of control places is such that arcs from a
control place to uncontrollable transitions (∑U) are not allowed. Such
construction can be algebraically determined: Indeed, in the case of
presence of uncontrollable transitions in •Out (D), the cardinality of the
support of the minimal flow f can be always minimally enlarged for
satisfying the condition CD• ⊆ ∑C.
Now, one could object that these new control places can create siphons
of type 3, i.e. minimal siphons including resource places but not invariant
controlled. If this is the case, we have to control them as it is previously
done. We can ensure that this iterative control process necessarily stops:
Indeed, for each new minimal siphon of type 3, it is associated a flow f
with || f || \ CD ⊆ ∪Pi,
As the power set of ∪Pi is finite (the dimension of the generator family
of flow with minimal support is finite), we reach necessarily a step where
the role of the control place C' to be added can be played by an already
existing control place C for which marking must be updated (i.e. a
supervisor is constructed): [C• = C'• and •C = •C'. Mo(C) = Min (Mo
(C), Mo (C'))].
Hence, the non-blockingness of the class of G-Systems, even with the
presence of uncontrollable transitions, can be done using a purely
structural reasoning.

6. Conclusions
In this work, we presented a model describing a large class of resource
allocation systems namely G-systems, and we presented how one can
take advantage from recent results of structure theory of Petri nets to
cope with blocking problems due to the existence of general use of
shared resources. The proposed approach has advantages compared to
approaches based on the computation of reachability set. Indeed, the
solutions obtained by our method, are modular and parameterised. In
case of internal marking modification (availability of resources, or
scalability of the system), the verification of non-blockingness conditions
requires only to compute again the initial markings of control places.
Finally, the complexity of the presented synthesis method is reducible to
the complexity of the algorithm for computing minimal siphons in Petri
nets. One of our future research topics is to develop an efficient
algorithm to compute minimal siphons of a G-system by exploiting its
structure.

Damascus Univ. Journal Vol. (21)-No. (2)2005 Romhain- Barkaoui

79

References
[1] K. Barkaoui, A. Chaoui and B. Zouari, "Supervisory Control of

Discrete Event Systems based on Structure Theory of Petri Nets", in
Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics SMC, 1997.

[2] K. Barkaoui and J.F.Peyre,"On Liveness and Controlled Siphon
Property", Proceedings of the 17th International Conference on
Application and Theory of Petri Nets, LNCS n° 1091, Springer 1996.

[3] C. G. Cassandras and S.Lafortune, "Introduction to Discrete Event
Systems", Kluwer Academic Publishers, 1999.

[4] J. Ezpeleta, F. García-Vallés and J.M.Colom,"A Class of Well
Structured Petri Nets for Flexible Manufacturing Systems",
Proceedings of the 19th International Conference on Application and
Theory of Petri Nets, LNCS Vol n°.1420, Springer, 1998.

[5] M.P Fanti, B. Maione, S. Mascolo, B. Turchiano, "Event-Based
Feed-back Control for Deadlock Avoidance in Flexible
Manufacturing Systems" IEEE Trans. On Robotics and Auto, Vol. 13,
pp 347-363,1997.

[6] A.Giua and F. DiCesare, "Blocking and Controllability of Petri nets in
supervisory control", IEEE Transactions on automatic control 39,
N°4, pp 818-823, 1994.

[7] A. Kusiak, "Intelligent Scheduling of Automated machining Systems"
in Intelligent Design and Manufacturing, Ed. Wiley, 1992.

[8] P.J. Ramadge and W.M Wonham,"The Control of discrete event
systems, Proceeding of IEEE, Volume.77, n°1, pp 81-98, 1989.

[9] W. Reisig, "Petri Nets, an Introduction.EATCS Monographs on
Theoretical Computer Science, Springer-Verlag, 1985.

[10] S.A Reveliotis and P.M Ferreira," Deadlock Avoidance policies
for automated Manufacturing cells", IEEE Trans. On robotics and
Automation, Vol. 12, No. 7, 1996.

[11] M.C Zhou and F. DiCesare, "Petri net synthesis for Discrete
Event Control of Manufacturing Systems", Kluwer academic
Publishers, 1993.

[12] F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva, F. B. Vernadat,
"Practice of Petri in Manufacturing", Chapman & Hall, 1993.

Received, 10 Julie, 2004.

