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Abstract 

An attempt is made to develop a method for automatic artifact selection in 
an electroencephalogram. Wavelet transform and artificial neural networks 
are combined with the analysis of statistical properties, based on the 
fractional dimension dynamics. Application of the method to experimental 
EEG signals showed that it can increase the reliability of artifacts selection. 
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1. Introduction 
In human brain activity analysis of electroencephalography (EEG) is one 
of the most important techniques. EEG signal is the electric potential on 
the surface of scalp caused by the physiological activities of the brain. 
Despite  the development of modern techniques such as CT, MRI and 
others,  electroencephalography still  remains one of the best for 
nondestructive testing of brain functioning.  But being a noninvasive tool 
encephalography meets strong difficulties caused by various mechanical 
and electrical interferences. Normal amplitude of EEG signals at scalp 
electrodes does not exceed several microvolts while other electrical 
potentials on the body surface like electrocardiogram can easily reach the 
level of mille-volts. Therefore, EEG analysis requires sophisticated signal 
processing. Widely known spectral decomposition of EEG signals [1-3] 
into rhythms occupying different frequencies bands, from 0.5 Hz to more 
than 40 Hz, is enriched by new methods of quantitative analysis. Among 
them are wavelet transform, neural network methods, modeling, entropy 
and fractal methods [4-6].  These special methods were used in attempts 
to overcome difficulties caused by non-stationary character of the clinical 
EEG signals.  
 Multiple problems in EEG signal processing come from various non-
brain signals (artifacts) because of various mechanical and electrical 
interferences [7-10]. Traditionally, artifact detection is made by visual 
inspection of the encephalogram even if an automatic classification of 
transient time-varying EEG signal is used [11].  Visual inspection is 
reliable only if the artifact amplitude exceeds the regular activity signal. 
That is true for the most of automatic detection methods as well.  But 
even if the artifact amplitude is small, statistical prosperities of the 
resulting signal can be changed drastically.   
 Recently, we can see a growing flow of publications with regard to the 
analysis of signal entropy, fractal structure or to the signal decomposition 
into deterministic and random components [12-14].  Calculation of fractal 
dimension can help to classify artifacts with different statistical 
properties, but models like fractal Brownian motion are developed for 
time-invariant processes [15-18]. In the present paper we present an 
attempt of plotting the dynamic fractal dimension and its subsequent 
analysis using wavelet transform and artificial neural network classifier. 
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The combination of these techniques helps to increase the reliability of 
artifact selection from EEG signals. 
2.  Fractal dimension dynamics. 
 The most important difference between regular EEG signal and artifact is 
in their statistical properties. Typical duration of a short artifact is from 
0.1 to 1s. Within this time artifact signals should show higher level of 
correlation than a normal EEG signal.  
Statistical properties of a signal can be estimated using different tools 
[17, 20] like correlation analysis, Kullback algorithm, fractal dimension 
definition etc.  One of the ways is to present the signal as a fractal 
Brownian movement [16].  We choose a part of the signal (window) with 
the length L and make a linear regression presenting the signal inside the 
window as a straight line using the least square approximation. Next we 
estimate fluctuations of the signal from that straight line. Then we 
increase the length of the window and repeat the procedure. Plotting root 
mean square fluctuation Y as a function of the window length X in 
logarithmic scale should give us a straight line 

Y = B + Hx  ………………………………………………………..(1) 
 For uncorrelated sequence H=1/2. And deviation of H from 1/2 shows 
the level of the sequence correlation. It can be explained with the aid of 
the model of fractal Brownian movement developed in the works of 
Mandelbrot, Van Ness and others [14-17].  
 Fractal Brownian movement with parameter H is a continuous function 
of time X(t) while  
∆ X = X(t2) – X(t1)……………………………..…………………..(2) 

 where  t2 > t1 is a random Gaussian sequence , that is 
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Fractal Brownian movement with H=1/2 coincides with the classical 
Brownian movement [16,17]. 
Variance of the fractal Brownian movement is 
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As the variance depends only on the difference t2 - t1, then the increments 
∆ X do not depend on the time of observation. At H=1/2 dispersion is 
equal zero, and increments are independent (Markov process).  If H≠1/2 
then the increments are correlated, but still they are scale invariant, that is 
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And the distributions  
)()( tXttX −∆+ and      )()((1 tXtrtXr H −∆+

have the same mean value and variance, that is they are statistically 
equivalent. 
Simple expression  

d = 2 – H ................................................................................... (6) 
shows the connection between the parameter H and the fractal dimension 
d [16 ]. 
 In reality experimental EEG records can be considered as approximately 
scale invariant processes only over a short period of time close to  
100…1000 ms.  We cut the experimental EEG record into sections 2.5 
seconds long each and applied the above described procedure to every 
section increasing window length from the minimum length 10ms to the 
maximum length 1s. The initial point of the window was put at the initial 
point of the chosen 2.5s section. The parameter H was calculated and 
then the window initial point to, was 10 ms shifted and the procedure was 
repeated and so long until the end of the longest 1s window touched the 
end of the 2.5s section.  The result was a plot of H parameter or the 
fractal dimension of a signal (d =2-H) as a function of the window initial 
point To.  
Several examples of a regular EEG signal taken from an encephalogram 
of a healthy volunteer sitting with open eyes in a shielded room are 
presented in the following figures.   The experimental encephalogram 
was taken from an international 10-20 system of electrodes (see Fig.1 A, 
B, C)    
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The internationally standardized 10-20 system is usually employed to 
record the spontaneous EEG. In this system 21 electrodes are located on 
the surface of the scalp, as shown in Figure 1A and Figure 1B. The 
positions are determined as follows: Reference points are nasion, which 
is the delve at the top of the nose, level with the eyes; and inion, which is 
the bony lump at the base of the skull on the midline at the back of the 
head. From these points, the skull perimeters are measured in the 
transverse and median planes. Electrode locations are determined by 
dividing these perimeters into 10% and 20% intervals. Three other 
electrodes are placed on each side equidistant from the neighboring 
points, as shown in Figure 1B [25]. 
 In addition to the 21 electrodes of the international 10-20 system, 
intermediate 10% electrode positions are also used. The locations and 
nomenclature of these electrodes are standardized by the American 
Electroencephalographic Society[26] see Figure 1C). In this 
recommendation, four electrodes have different names compared to the 
10-20 system; these are T7, T8, P7, and P8. These electrodes are drawn 
black with white text in the figure. 
 Besides the international 10-20 system, many other electrode 
systems exist for recording electric potentials on the scalp. The Queen 
Square system of electrode placement has been proposed as a standard in 
recording the pattern of evoked potentials in clinical testings [27]. 
The example shown in Fig.2a is a section of a regular EEG signal from a 
frontal F4 electrode. Fig. 2b shows H parameter of the same signal as a 
function of To.  For comparison Fig.3a and Fig.3b present similar 
functions for an artifact caused by eyes movement and taken from the 
same F4 electrode. Eyes movement gives a strong signal at frontal 
electrodes (see Fig. 3a), and visual detection of such an artifact is not 
difficult. But at the same time the signal from the right temporal electrode 
T4 (see Fig.4a), shows a very slight difference from a regular activity 
signal (Fig.2a) and visual inspection can fail to detect such an artifact. 
The processing of the signal results in the function H (To) (see Fig.4b), 
which differs drastically from the similar function for the case of a 
regular activity (Fig.2b).  Fig.5 presents a strong artifact signal from T4 
electrode caused by a muscle movement . In figures 6 and 7 represented 
two kinds of original signal, detected with electrode configuration 
showed in figure 1. As we can see original EEG signal can be represented 
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in different amplitudes. At the same time the same muscle movement 
gives a weak artifact signal at the right parietal electrode P4 (see Fig.6). 
Signals shown at the next two figures are not proper artifact signals. They 
present regular EEG signals taken at the time when the patient was sitting 
with his eyes closed.  Fig.7 shows the signal from P4 electrode (strong 
signal), while the signal shown at Fig.8 is taken from T4 electrode.  
 For automatic artifact selection a further signal processing was 
necessary. It included feature extraction and a classifier design. 
3. Feature extraction 
 For feature extraction Multiresolution Wavelet Analysis (MRWA) was 
chosen. MRWA reflects the energy concentration in low and high 
frequency components. In addition, MRWA overcomes the fixed 
resolution problem and has been widely used in signal analysis, image 
denoising and compression [19-21]. 
The wavelet transform is a transformation to basis functions that are 
localized in scale and in time as well (where the Fourier transform is only 
localized in frequency, never giving any information about where in 
space or time the frequency happens). The frequency (similar in that 
sense to Fourier-related transforms) is derived from the scale. As basis 
functions one uses wavelets. These functions are scaled and convolved 
with the function you are analyzing all over the time axis. 
The discrete wavelet transforms (DWT) of a signal x[n] is calculated by 
passing it through a series of filters. First the samples are passed through 
a low pass filter with impulse response g[n] resulting in a convolution of 
the two: 

∑∞
−∞=

−⋅=∗=
k

kngkxngnxny ][][][][][ ……………………..(7) 
The signal is also decomposed simultaneously using a high-pass filter 
h[n]. The outputs giving the detail coefficients (from the high-pass filter), 
and approximation coefficients (from the low-pass). It is important that 
the two filters are related to each other and they are known as a 
quadrature mirror filter.  However, since half the frequencies of the signal 
have now been removed, half the samples can be discarding according to 
Nyquist’s rule. The filter outputs are then down-sampled (or sub-
sampled) by 2: 
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This decomposition has halved the time resolution since only half of each 
filter output characterizes the signal (Fig 10.). However, each output has 
half the frequency band of the input so the frequency resolution has been 
doubled. This is in keeping with the Heisenberg Uncertainty Principle.  
This decomposition is repeated to further increase the frequency 
resolution and  
the approximation coefficients decomposed with high and low pass filters 
and  
then down-sampled. This is represented as a binary tree with nodes 
representing  
a sub-space with a different time-frequency localisation. The tree is 
known as a filter bank (fig 11). 
At each level in the above diagram the signal is decomposed into low and 
high  
frequencies. Due to the decomposition process the input signal must be a  
multiple of 2n where n is the number of levels. 
For example a signal with 16 samples, frequency range 0 to fn and 3 
levels of  
decomposition, 4 output scales are produced: 
Table 1. Example of  wavelet transform 

Level Frequencies Samples
0 to fn / 8 43
fn / 8 to fn / 4 4

2 fn / 4 to fn / 2 8
1 fn / 2 to fn 16 

Frequency domain for this example represented in fig.10. 
 
Wavelets analysis is the process of dilations and translations of a mother 

wavelet, ψ(x) [19]: 
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{ψ ψj k
j jx x k j k Z,
/( ) ( ), ,= − ∈2 22 } …………….(10) 

where j and k are the scale and time shift respectively. A function f(x) can 
be represented in terms of the superposition of wavelets of different 
dilations and translations:  
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where {dj,k :j,k∈Z} are the detailed coefficients of wavelets 
decomposition. If f(x) contains a constant term, then the last equation  is 
modified to include a scaling function (father wavelet), φ(x):
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The mother and father wavelet functions are defined as:  
φ φ( ) ( ) ( )x h k x kk= −∑ 2 2  …………………….… (13) 
ψ φ( ) ( ) ( )x g k x kk= −∑ 2 2  ……………………... (14) 

where the sequences { h k k Z( ), ∈ } and { g k k Z( ), ∈ } are coefficients 
of a low pass filter H(ω) and a high pass filter G(ω), respectively. They 
form a pair of quadrature mirror filters, which are used in the wavelet 
decomposition [19]. Applying wavelet transform on signals does not 
reduce the amount of data for compression or classification. However, 
elimination of some wavelet coefficients can take place without 
sacrificing the performance of signal classification.  
 At each resolution level the wavelet coefficients vary in magnitude and 
hence their importance to the quality of classification or even 
compression is different. So in a relative sense some of these coefficients 
can be eliminated. Making such reduction in the feature extraction 
coefficients vector would provide a way to reduce the number of free 
parameters of the classifier, which would lead to a better generalization 
capability.  
For feature extraction experimental EEG signals from different electrodes 
and for different patients were analyzed and cut into 2.5s sections. Then 
for the above mentioned H, two plots were made for each section. Those 
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transformed signals were submitted to wavelet transform instead of the 
original EEG signals. Wavelet technique was similar to one previously 
described in [22], so we just summarize the results. The decomposition 
was fulfilled up to level 5 using Daubechies 8 functions. Analyzing 
various wavelet coefficients we came to a decision [22] to calculate for 
each level the mean values of  LPF approximation coefficients h(k) . It 
gave 5 characteristic features for every section. Other variants turned to 
be less informative. 
Figures 9a and 9b   show the mean values of wavelet coefficients at 
different levels for various artifacts. One can compare the plots for 
regular activities (solid line) with similar plots for various artifacts. Dash-
dot lines with circles close to regular activity plots correspond to closed 
eyes situation when no explicit artifacts were present. It is interesting to 
mention that Fig.9a and Fig.9b depict different cases of the closed eyes 
activity (from Fig.7 and Fig.8 correspondingly). As we can see from the 
figures wavelet coefficients at resolution level r=5 have similar values for 
different artifacts and for regular activity while they become strongly 
different as r decreases. This indicates the importance of coefficients at 
low r for classification purposes. But at the same time the figure 
illustrates the difficulties of classification as the difference between 
regular activity (solid line) and various artifacts is small and has different 
sign for different levels and different artifacts. Despite of the strong 
difference in the signal amplitudes at Fig. 7 and Fig.8, mean values of 
wavelet coefficients are practically the same for the two cases. It 
illustrates the fact that fractal dimension strongly depends on statistical 
properties but not on the signal amplitude. The most important feature of  
Fig.9a and Fig.9b is the different character of the regular activity curves 
and those of artifacts . This feature helps to increase the probability of 
artifacts selection and classification. 
4. Classification of artifacts 
 Artificial Neural Networks (ANN) was chosen as a classifier [24]. 
Using this method we again followed the procedure which we described 
in details in [22] so we briefly repeat its main features. Its main 
advantage over other classifiers is the ability to learn by training. 
Furthermore, its complexity (i.e. number of free parameters in the 
classifier) does not grow with the dimension of the input or the size of the 
training set [23]. Although there are various types and structures of neural 
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networks found in the literature, Multilayer Feed forward Networks with 
the back propagation training algorithm are the most successful and 
popular [24].  
The backpropogation training algorithm is commonly used to iteratively 
minimize the following cost function with respect to the interconnection 
weights and neurons thresholds:  

∑∑
=

−=
P N

i
ii zdE

1 1

2)(2
1 ………………………..………(15) 

Where P is the number of training patterns and N is the number of output 
nodes. di and zi are the desired and actual responses for output node i
respectively.  
The update of the network weights is calculated as:  
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0'' )()()()1( ηα …..(16) 
Where α is a momentum constant, η is the learning rate, xi is the input 
pattern at the iterative sample t, 0

Nnet  is the input to node N at the output 
layer and netj

k is the input to a node j in the kth layer.  
The training process is terminated either when the Mean-Square Error 
(MSE) between the observed data and the ANN outcomes for all 
elements in the training set has reached a pre-specified threshold or after 
the completion of a pre-specified number of learning epochs.  
The neural network was trained to give desired output values of 0.1 and 
0.9 to represent 0 and 1. This was done to decrease the training time. 
Classification performance was further enhanced by interpreting the 
output in excess of 0.8 as 0.9 and less than 0.2 as 0.1. The Neurosolution 
software [24] was used for constructing, training and testing the neural 
network. 
5.Experimental results 
The experiment was done at the King Hussein Medical Center, Jordan. 
For  the experiment EEG records of 15 healthy volunteers  were taken. 
The electrodes were placed according to the above mentioned 10 – 20 
international system and the patients were sitting in the electrically 
shielded room.  
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 For classification we chose two main types of artifacts – eyes movement 
and muscle movement- together with the regular activity signals for 
positions with open eyes and with closed eyes.  
 Signals from every electrode were cut into small sections 2.5 s long. 
Visual inspection of strong artifacts was done. Then signals from all 
electrodes for the same patient at the time when strong artifact was 
detected were considered as artifacts. Then the dynamics of fractal 
dimension was plotted for every sample. The samples after processing 
were submitted to wavelet packet decomposition up to level 5. Wavelet 
function was Daubechies 8. . For each type of artifacts the wavelet 
coefficients were averaged over the group of samples and after that the 
mean wavelet coefficients at levels from 1 to 5 formed 5 features used for 
training of the neural network classifier. 80% of samples were used for 
training, then full EEG records including 100% of samples  were used for 
recognition. 
 
Classification results are shown in the Table 2 
Table 2 

No Character 
of the 
signal 

Full 
identification
(%) 

Identification as 
an artifact (%) 

Identification 
as a 
non-artifact 
(%) 

1 Regular 
activity 
(eyes open) 

92 0 100 

2 Regular 
activity 
eyes closed 

80 6 94 

3
4

Eyes 
movement 
Muscle 
movement 
 

85 
78 

97 
90 

3
10 
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6. Legends of figures  
Fig. 1. the internationally standardized 10-20 system that usually 
employed to record the spontaneous EEG. In this system 21 electrodes 
are located on the surface of the scalp, as  
shown in Figure 1A, 1B and Figure 1C. 
Fig 2.a. The section of a regular EEG signal from a frontal F4 electrode. 
Fig. 2b. The H parameter of the regular EEG signal from a frontal F4 
electrode as a function of T0. 
Fig. 3A. The EEG signal from frontal electrodes together with artifact 
caused by eyes movement. As we can see the signal represented by strong 
amplitude.  
Fig 3B represented the  function of T0 for an artifact caused by eyes 
movement and taken from the same (as in fig 3A) F4 electrode. 
Fig 4a. the signal from the right temporal electrode T4. It is original 
signal together with artifact caused by eyes movement. 
Fig 4.B the results of signal  processing of the. in the function H (To). 
Source signal is same that shown in fig 4a. 
Fig.5. Strong artifact signal from T4 electrode caused by a muscle 
movement. It is shown, that the signal amplitude is greatly increased to 
compare with the signal together with artifact caused by eyes movement. 
The frequency of muscle movement artifact as minimum four times 
greater to compare with eyes movement artifact. 
Fig 6. Original signal, detected by electrode P4 at the right parietal part 
together with muscle movement artifact. 
Fig 7. The strong signal from P4 electrode at the right parietal part 
together with muscle movement artifact. 
Fig 8. The regular EEG signals taken at the time when the patient was 
sitting with his eyes closed. This signal  was detected from T4 electrode. 
As we can see original EEG signal can be represented in different 
amplitudes, the same muscle movement gives a weak artifact signal 
Fig. 9.a The mean values of wavelet coefficients at different levels for 
various artifacts of high amplitude original signal, that shown in fig 7..  It 
is shown the plots for regular activities (solid line) with similar plots for 
various artifacts. Dash-dot lines with circles close to regular activity plots 
correspond to closed eyes situation when no explicit artifacts were 
present. 



Damascus Univ. Journal Vol. (22)-No. (2)2006                 Al- Kasasbeh  -  Lvov 

21 

Fig 9.b  The mean values of wavelet coefficients of original low-
amplitude signal that was represented in fig 8. Its depict different cases of 
the closed eyes activity for the regular EEG signals taken at the time 
when the patient was sitting with his eyes closed. As we can see, the form 
of curves in fig 9b practically the same with curves represented in figure 
9.a. Comparing fig 9a and 9b we can  come to a conclusion that strong 
difference in the signal amplitudes at Fig. 7 and Fig.8, mean values of 
wavelet coefficients are practically the same for the two cases. It 
illustrates the fact that fractal dimension strongly depends on signal 
statistical properties but not on the signal amplitude. The most important 
feature of  Fig.9a and Fig.9b is the different character of the regular 
activity curves and those of artifacts . 
Fig 10. Representation of discreet wavelet transform with using filters 
bank.  At each level in the above diagram the signal is decomposed into 
low and high frequencies. Due to the decomposition process the input 
signal must be a multiple of 2n where n is the number of levels. 
Fig 11. The result of filter bank implementation. This figure illustrated 
decomposition of signal with 16 samples, frequency range 0 to fn and 3 
levels of decomposition. 
7. Conclusion 
An attempt of automatic detection of  EEG artifacts was made using 
fractal dimension dynamics graphs, wavelet transform and artificial 
neural networks. Compared with the direct application of wavelet 
transform to the original EEG signals, this method  previously transforms 
the signal into a plot of its fractal dimension as a function of time. It helps 
to identify artifact signals with small amplitude through the analysis of  
their statistical properties. 
Total number of analyzed signals was about 300, and the number of 
artifacts with different amplitudes was more than one thousand, but they 
were only partially independent 
Signals from different electrodes at the same time showed the same 
artifact. It was good for visual detection of the artifacts used for system 
training but it increased the number of wrong automatic identifications as 
at some electrodes the artifact signal was so weak, that the method failed 
to recognize it. On the other hand a very small artifact signal can be 
ignored as it does not change strongly the regular signal. We could not fix 
the exact threshold for artifact detection but visual inspection showed that 
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artifacts were successfully detected if their amplitude was approximately 
equal to the amplitude of the regular signal before the moment when the 
artifact signal appeared.  
Conducted researches have shown efficiency of proposed approach to 
automatic artifact   classification, and also confirmed adequacy of 
proposed features description based on wavelet-transform. However, for 
more consistent conclusions it is necessary to consider wavelet filters 
selection problem more thoroughly. 
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Fig.1 A,B,C 
Electrode schema position 
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Fig.2a 

 

Fig.2b 
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Fig.3a 

 

Fig.3b 
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Fig.4a 

Fig.4b 
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Fig.5 
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Fig.6Fig.7 
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Fig.8 

The mean values of wavelet coefficients of original signal strong 

Fig.9a    wavelet coefficients at different levels for various artifacts 

Fig.9b wavelet coefficients at different levels for various artifacts 
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Fig 10. Block diagram of filter analysis 

 

11. Frequency domain representation of the DWT 
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