
Damascus University Journal Vol. (29) - No. (2) 2013 Al-Shihabi

 27

Development of an Object Oriented Library based on Java 3D

to Facilitate the Construction of Virtual Environments
in Driving Simulators

Dr. Talal Al-Shihabi*

Abstract

A driving simulator is a combination of hardware and software that enables the user to
navigate through a real-time computer-generated virtual driving environment. Driving
simulators are very valuable for conducting driving studies that are infeasible or
unethical to conduct on the road. For studies that can be conducted in the real world,
driving simulators provide a more cost effective solution and allow a much higher degree
of flexibility in terms of changing the conditions of the environment for experimental
purposes.
The corner stone when conducting any study on the driving simulator is the construction
of a virtual driving environment that serves the purposes of this study. Even though
driving environments can considerably vary between different studies, they all share the
presence of common components that exist throughout the environment like roads,
traffic signs and other components. The objective of this paper is to present the design of
an object-oriented library that facilitates the construction of virtual driving
environments when conducting studies on a driving simulator. The proposed library
uses object orientation to hide implementation details from the designer of the
environment which results in making the construction of such environments easier and
more productive as well as their modification later if needed. The proposed library is
based on the Java programming language and on Java 3D technology which makes it
portable and usable on any platform that has an implementation of these two
technologies.

Keywords: Virtual Environments, Driving Simulators, Java 3D

* Faculty of Civil Engineering-Damascus University

Development of an Object Oriented Library based on Java 3Dto Facilitate the Construction of Virtual

 28

1. Introduction
A driving simulator is a combination of
hardware and software that enables the user to
navigate through a real-time computer-
generated virtual driving environment.
Driving simulators are very valuable for
conducting driving studies that are infeasible
or unethical to conduct on the road. For
studies that can be conducted in the real
world, driving simulators provide a more cost
effective solution and allow a much higher
degree of flexibility in terms of changing the
conditions of the environment for
experimental purposes.
One of the main conditions for a driving
simulator is to have an acceptable level of
presence to be regarded as a legitimate
representative of the real world. The measure
of presence that a driving simulator has on its
human operators is complex. It can be
summarized as the operators’ degree of belief
that they are driving in the real world when
they actually are operating the simulator [2].
Each element of the driving simulator, be it a
hardware or a software element, should be
designed in a way that effectively improves
the sense of presence within that simulator.
The components of a virtual driving
environment have important impact on the
results of any study conducted on the
simulator since the environment is supposed
to serve the purposes of the study. Even
though driving environments can vary
considerably between different studies, they
all share the presence of common components
that exist throughout the environment. Since
the components of a driving environment are
expected to give the user of the simulator the
sense of being in a physical environment, it is
very difficult to find a driving environment
that does not include roads, traffic signs,
buildings, trees, grass, walls, and scene
background. The objective of this paper is to
present the design of an object-oriented
library that facilitates the construction of
virtual driving environments when conducting
studies on a driving simulator. The presented
library has classes that simulate the physical
components of a driving environment and

uses object orientation to hide their
implementation details from the designer of
the environment which results in making the
construction of such environments easier and
more productive as well as their modification
later if needed. Each component can be added
to the virtual driving environment only by
instantiating its equivalent class and pass the
data needed for construction. The proposed
library is based on the Java programming
language and on Java 3D technology which
makes it portable and usable on any platform
that has an implementation of these two
technologies. The developed library does not
have dynamic components because these
components have a specific nature that define
their behaviour within the environment and
thus they need special treatment.
Before presenting the library, we introduce
the concepts of virtual environments and
driving simulator to provide the reader with a
background about the relevant technologies.
After this brief introduction, we describe the
overall design of the proposed library and its
external dependencies. We then highlight the
internal details of the classes within the
library.
2. Virtual Environments
The term Virtual Environments (VE) or
Virtual Reality (VR) represents a
revolutionary approach to the way humans
interact with computers. The emergence of
VR was celebrated with the promise of
replacing conventional input devices, such as
the mouse and the keyboard, by others that
facilitate direct interaction with computers
through movement, speech, touching, and
pointing. It turned out, however, that what
VR can offer, because of its dependence on
other fields of science, is largely determined
by the existing technology of the time. The
evolving nature of VR makes it very difficult
to find a definition for VR that everyone
agrees on. Generally speaking, a VR system
is a system that consists of hardware and
software components that collaborate to create
“the illusion of immersion of the user in a
computer generated environment” [7].
The roots of VR can be traced to the mid

Damascus University Journal Vol. (29) - No. (2) 2013 Al-Shihabi

 29

1960s when Ivan Sutherland envisioned a
system that combined position tracking and a
head mounted display with computer-
generated images that behaved like their
physical counterparts [12]. Ivan Sutherland
has come to be regarded as the father of
modern VR.
Although the scientific community has always
preferred the name Virtual Environments
(VE), the term Virtual Reality has survived
because of its extensive use by the public, the
press, and the media. While the terms VR and
VE both refer to the same thing, only the term
Virtual Environments (VE) will be used
throughout this paper.
Among all those who tried to come up with a
definition for VE, Rory Stuart has come up
with one of the most descriptive definitions:
“In the most strict sense, a VE system is a
human-computer interface that provides
‘interactive immersive multi-sensory 3-D
synthetic environment’; it uses position
tracking and real-time update of visual,
auditory, and other displays (e.g. tactile) in
response to the user’s motions to give the user
a sense of being ‘in’ the environment, and it
could be either a single- or a multi-user
system” [10].
Roy Kalawsky gave a more visionary than
descriptive definition to VE:
“Virtual environments are synthetic sensory
experiences that communicate physical and
abstract components to a human operator or
participant. The synthetic sensory experience
is generated by a computer system that one
day may present an interface to the human
sensory systems that is indistinguishable from
the real physical world. Until then, we have
to be content with a virtual environment that
approximates several attributes of the real
world” [5].
While this vision of VE systems that
encompass all human senses is still far from
realization, many virtual environments have
been developed with support for one or two
senses and have proven to be immersive ones.
Of all human senses, vision has always been
regarded as the most important for any VE
system. In most VE systems, the display

device is a head mounted display (HMD) with
head motion tracking system connected to it.
While some has required that using a HMD is
a must for any system strives to be a VE
system [5], it is widely accepted to use other
display devices, including conventional
computer monitors, in VE systems [1].
One of the most critical concepts in virtual
environments is the concept of immersion or
presence. The sense of immersion of presence
within a virtual environment is what
distinguishes them from other computer
applications. Despite the importance of the
concept of presence to VE, there are as many
definitions to presence as those to VE itself
[8]. Presence is a very complicated measure
that can be summarized as the degree of belief
the users of a VE system have that they are in
the real physical environment while they
actually are operating with the virtual
environment [2]. Sheridan in [8] defines the
followings as the main determents of presence
within any VE: 1) the ability of the user to
navigate through the environment, 2) the
ability of the user to modify the environment,
and 3) the extent of sensory information
provided to the user.
Kalawsky believed that unnatural behaviours
of certain objects within a virtual environment
might have an effect on feeling within this
environment that is more powerful than that
of the high quality images. This was evident
in certain works that were highly successful in
the animation field yet they failed to meet the
criteria of VE [5].

3. Driving Simulators
Driving simulation is considered to be a
relatively new application of computer
technology. The first wave of driving
simulators started in 1980s. Compared to the
aerospace industry, the automotive industry
was slow in adopting simulation technology.
This is believed to be partially due to the high
cost of driving simulators prior to the 1980s in
relation to the cost of motor vehicles
especially that driving simulators may require
higher-resolution graphics and faster response
time than flight simulators which further

Development of an Object Oriented Library based on Java 3Dto Facilitate the Construction of Virtual

 30

increases their cost. With the constant
increase of computers’ capabilities coupled
with the continuing decrease in their cost, it
has become more possible than ever to build
driving simulators at a very reasonable cost.
Driving simulators can be built now at a cost
as low as few tens of thousands of dollars like
many fixed-base driving simulators that are
spread in research labs in many universities in
the world or as high as few tens of millions of
dollars like the National Advanced Driving
Simulator, NADS, at Iowa State University
and other simulators built by major auto
companies around the world.
Driving simulators are generally divided into
two categories: fixed-base simulators and
motion-based simulators with the former costs
much less than the latter. Fixed-base
simulators generally include, but does not
require, partial vehicle body with steering,
gas, and brake controls connected to one of
the simulator’s computers. The simulator user
navigates through the virtual driving scene
while sitting in a seat within the vehicle body.
Images are generated by one of the
simulator’s computers and are displayed on
the computer monitor, a Head Mounted
Display (HMD), and/or projected on a special
screen that can be flat or curvy based on the
horizontal field of view supported by the
simulator.
The driving simulator of the Virtual
Environments Laboratory at Northeastern
University is a fixed-base simulator that
facilitates the use of either a HMD or a
projected screen. Three projectors are used to
present a 180 degree field of view on a curved
screen and a distortion correction algorithm is
used to match the image to the screen's
curvature. Figure 1 shows a driving
environment with snow conditions generated
on this simulator. An edge blending
algorithm is used to blend the 3 projector
images into one. Users can operate the
simulator while sitting in a partial vehicle
body through a real-vehicle pedal system and
through a force-feedback steering wheel that
is integrated with a high-fidelity car dynamics
system. The simulator is enhanced with a

side-view mirror that is attached to the vehicle
body and with a rear-view mirror that is
projected on the main driving scene. The
simulator may also be used in "turning cabin
mode" which provides a more realistic driving
experience due to the driver physically turning
when using the steering wheel.
The simulator was used for major studies on
the divided attention capabilities of elder
drivers, the effects of adverse conditions in
driving environments on patients after
performing refractive laser surgery, a study on
simulation sickness in driving simulators [6],
and a study on developing scenarios in virtual
driving environments [11].

Figure 1. A driving environment with snow
conditions generated on the driving simulator
at Northeastern University

Motion-based driving simulators provide the
simulator operator with a motion feedback
and are generally much more expensive. The
most prominent example of motion-based
simulators is the National Advanced Driving
Simulator, NADS. NADS has recently been
built by the National Highway Traffic Safety
Administration, NHTSA, at Iowa State
University.
An important fact that the simulator user
should be aware of is that he should agree to
suspend his disbelief in the simulation and to
act and react in the same ways he would on a
real road [2].
Driving simulators can provide support to
more than one user simultaneously. Each user
in a multi-user driving simulator generally
operates from a separate computer. All
computers have copies of the simulator

environment and are networked together.

Damascus University Journal Vol. (29) - No. (2) 2013 Al-Shihabi

 31

Each computer sends to other machines on the
network the updates on the environment that
was done by the user of that computer. Multi-
user driving simulators predominantly use
peer-to-peer distributed simulation. The most
widely established implementation of
distributed driving simulators is the
Distributed Interactive Simulation (DIS)
protocol, IEEE standard 1278-1993 [3].

4. The Java 3D Technology
The Java 3D API is described as: “an
application programming interface used for
writing three-dimensional graphics
applications and applets. It gives developers
high-level constructs for creating and
manipulating 3D geometry and for
constructing the structures used in rendering
that geometry. Application developers can
describe very large virtual worlds using these
constructs, which provide Java 3D with
enough information to render these worlds
efficiently.” [9]
Java 3D extends the Java programming
language with advanced 3D graphics and
imaging capabilities [4]. It is platform
independent, so it allows developers of 3D
graphics to “Write Once, Run Anywhere”.
This feature enables users to reduce
application development time and cost, by
writing one version of an application for
running on multiple types of platforms. In
addition, Java 3D provides a set of object-
oriented interfaces for applications that
require high-performance 3D graphics.
Object-oriented programming is easier to
understand and make additions to. This
feature can greatly reduce development time
for improvements or additions to a Java 3D
application.
Objects within a Java 3D based virtual
environment are contained within virtual
universe and compose what is called a “scene
graph” in Java terminology. A scene graph
represents instances of Java 3D classes in a
graph-like data structure presented as nodes
and arcs. The nodes in the scene graph are the
instances of Java 3D classes while the arcs
represent the relationships between these

instances. The scene graph is composed of
two main branches, the content branch and the
view branch. The content branch contains all
the objects in the environment, while the view
branch contains everything necessary for
appropriate viewing of the virtual
environment.
Figure 2 shows the content side of the virtual
driving environment that is consistent with the
components that could be created using the
proposed library. The VirtualUniverse is
composed of a locale. The locale is composed
of a BranchGroup object, called objRoot in
the figure, that serves as the root pointer of all
other nodes in the scene graph. BranchGroup
objects are the only objects that can be
inserted into a Locale's set of objects. objRoot
has another BranchGroup as its child, called
bgColorBG in the figure, as its child that has
bgNode, a Shape3D, as its child. This object
is responsible for presenting the driving scene
background.

Figure 2. Content side of the scene graph

Development of an Object Oriented Library based on Java 3Dto Facilitate the Construction of Virtual

 32

5. An Object-Oriented based design of a
library of objects in a Java 3D virtual
driving environment
5.1. The library description
An object oriented library was designed to
facilitate the construction of virtual driving
environments. The proposed modular design
uses the object-oriented features of object
orientation to hide implementation details
from the user. This allows the construction
and the modification of virtual driving
environments easily and effectively. Since

Figure 3. Library classes and their relationships

the implementation of the library is based on
Java and Java 3D technology, this library is
portable and can be used on any platform that
supports these two technologies.
The main advantage of having such a library
is the modularity and flexibility in

constructing the building blocks of a virtual
driving environment within the simulator.
The classes included in this library and their
relationships are shown in Figure 3. The
external dependencies include two classes

Damascus University Journal Vol. (29) - No. (2) 2013 Al-Shihabi

 33

from the Java 3D API, the javax. media. j3d.
Shape3D abstract class and the javax. media.
j3d. BranchGroup class.
The general design approach in building this
library consists of mapping the characteristics
of the physical elements in a driving
environment into logical objects in a
corresponding virtual driving environment.

5.2. The library classes

The DrivingEnvShape Class
This class is an abstract class that extends the
“javax.media.j3d.Shape3D” class from the
Java 3D API and adds functionalities that
characterize components of a virtual driving
environment. The class detailed design is
shown in Figure 4.

Figure 4. Detailed class diagram of the

DrivingEnvShape class

Every other class in the library that represents
a shape has to extend this library and thus
implements the abstract methods:
createGeometry, and possibly override the
method: createAppearance.
The BackgroundPlane component class
This class represents the background of the
virtual driving scene. The background plane
is supposed to face the user of the simulator
as he navigates through the virtual driving
environment. Only one object of this class is
instantiated in the environment. This object
is added to the bgColorBG as shown in
Figure 2 above. Code Listing 1 shows the
implementation of the createGeometry
method in this class. A detailed class
diagram for this class is shown in Figure 5.

Figure 5. Detailed class diagram of the

BackgroundPlane class

public Geometry createGeometry() {
 QuadArray bkgrnd = new QuadArray(4,

QuadArray.COORDINAT
ES |
QuadArray.COLOR_3 |
QuadArray.TEXTURE_C
OORDINATE_2);

 bkgrnd.setCoordinates(0, verts);
 setTextureMapping(bkgrnd);
 return bkgrnd; }

Code Listing 1. the implementation of the
createGeometry method in the

BackgroundPlane class

The Wall component class
This class represents a wall component in a
virtual driving scene. The wall object is a
very small object whose geometry and
appearance are very similar to the
BackgroundPlane object except that it is not
connected to the view object. Figure 6 shows
a detailed class diagram for this class.

Figure 6. Detailed class diagram of the Wall

class

The Grass component class
This class represents a plane of grass which
is a very common component and repeatable
in a virtual driving scene. The grass object is
defined as a plane geometry with an image

mapped as a texture to make its

Wall extends DrivingEnvShape
Attributes
- Point3f[] verts
Operations
+ Geometry createGeometry()
+ Wall(Point3f p1, Point3f p2, Point3f p3, Point3f p4, String filena …

Development of an Object Oriented Library based on Java 3Dto Facilitate the Construction of Virtual

 34

appearance realistic and at the same time
maintain the efficiency in viewing this object.
Figure 7 shows a detailed class diagram for
this class.

Figure 7. Detailed class diagram of the Grass

class
The Building component classes
The addition of a “Building” component to a
virtual driving environment requires the
collaboration of two objects, the
BuildingFacade and the Building objects.
The BuildingFacade class represents one
façade of the building. A Building object is
composed using four BuildingFacade
objects. A building object is constructed
using the location, dimensions and
orientation of the building as well as an array
of four images that are used for the four
facades as explained in Figure 9 while the
internal implementation of the Building class
is shown in its class diagram in Figure 8.

Figure 8. Detailed class diagram of the

Building class

Figure 9. Characteristics of a Building

component
The Tree component classes:
The addition of a Tree component to a virtual
driving environment requires the
collaboration of the TreeShape and the Tree
classes.
The TreeShape class defines the geometry of
the tree as two perpendicular planes with the
same image mapped to both to create the
illusion of a 3D tree in the scene. A Tree
object is composed of one TreeShape object.
A Tree object is constructed using the
location, width and height of the tree as well
as the image that will be mapped to each
plane in the TreeShape object as explained in
Figure 10.

Damascus University Journal Vol. (29) - No. (2) 2013 Al-Shihabi

 35

Figure 10. Characteristics of a Tree
component

The construction of a Tree object is shown in
Code Listing 2.
public Tree(float angle, Vector3f pos, float

height, float width, String
filename) {

tree= new TreeShape(width, height,
filename);

Transform3D rot=new Transform3D();
rot.rotY(angle);
TransformGroup TG1= new

TransformGroup(rot);
TG1.addChild(tree);
Transform3D trans=new

Transform3D();
trans.set(new Vector3f(pos.x, pos.y,

pos.z));
TransformGroup TG2= new

TransformGroup(trans);
TG2.addChild(TG1);
this.addChild(TG2);
this.compile();}

Code Listing 2. The construction of a Tree

object

The TrafficSign component classes:
The addition of a TrafficSign component to a
virtual driving environment requires the
collaboration of three objects, a
SignLowerShape object, a SignUpperShape
object, and a TrafficSign object.
The SignLowerShape class represents the

lower part of a traffic sign. An object of
this class is represented as a colored

rectangle. The SignUpperShape class
represents the upper part of a traffic sign.
An object of this class is represented as a
rectangle with an image mapped on it. A

TrafficSign object is composed of a
SignLowerShape object and a

SignUpperShape object. A TrafficSign
object is constructed using the location,
dimensions and orientation of the traffic
sign as well as the image of the traffic

sign upper part and the color of its lower
part as explained in Figure 11.

Figure 11. Characteristics of a TrafficSign
component

The construction of a TrafficSign object is
shown in Code Listing 3.

Code Listing 3. The construction of a
TrafficSign object

The detailed class diagram for class
TrafficSign is shown in Figure 12.

Development of an Object Oriented Library based on Java 3Dto Facilitate the Construction of Virtual

 36

Figure 12. Detailed class diagram of the
TrafficSign class
The StraigntRoad component classes
The addition of a straight road component to
a virtual driving environment requires the
collaboration of two objects, a
StraigntRoadSegment object and a
StraigntRoad object.
The StraigntRoadSegment class defines the
geometry and appearance of a straight rod.
An object of type StraigntRoad is constructed
using its start point, its end point and its
width as illustrated in Figure 13.
The StraightRoad class serves as a wrapper
over the StraightRoadSegment to facilitate
the addition of straight road components to
the virtual driving environment and to unify
the addition interface of straight roads and
curvy roads.

Figure 13. Characteristics of a StraightRoad

component
The CurveRoad component classes
The addition of a curvy road component to a
virtual driving environment requires the

collaboration of two objects, a
CurveRoadSegment object and a CurveRoad
object.
The CurveRoadSegment class defines the
geometry and appearance of one segment of a
curvy road.
An object of type CurveRoad is constructed
using its start point, its end point, its center,
its width, and the number of segments
throughout the curve. Figure 14 shows the
characteristics of such an object.

Figure 14. Characteristics of a CurveRoad

component

5.3. An Example

As stated before, the purpose of this library is
to facilitate and assist in building virtual
driving environments easily and effectively
through hiding the internal details of the
components from the environment designer.
To demonstrate the use of the library, a part
of a driving environment is shown in Figure
15. The use of the library components for
constructing this part is shown in code listing
4 below.

Damascus University Journal Vol. (29) - No. (2) 2013 Al-Shihabi

 37

Figure 15. Part of a driving environment
// spreading the grass throughout the environment at level -0.1
Grass grass = new Grass(new Point3f(0,0,-0.1f), new Point3f(100,0,-0.1f), new
Point3f(100,52,-0.1f),new Point3f(0,52,-0.1f), "grass.jpg");
// building the two road segments as defined
StraightRoad road1 = new StraightRoad(new Point3f(24,0,0), new Point3f(24,40,0), 8,
"road_pattern_1.jpg");
StraightRoad road2 = new StraightRoad(new Point3f(0,46,0), new Point3f(100,46,0), 12,
"road_pattern_2.jpg");
// putting a Stop Sign at the end of road1
TrafficSign stop_sign = new TrafficSign(0.0f, new Vector3f (28f,40f,0f), 2f, 0.1f, new Color3f
(0.7f,0.7f,0.7f), 0.6f, 1.9f, 0.6f, "stop_sign.jpg");
// putting the three buildings around road1
String[] facades1= {"b1_f1.jpg", "b1_f2.jpg", "b1_f3.jpg", "b1_f3.jpg"};
String[] facades2= {"b2_f1.jpg", "b2_f2.jpg", "b2_f3.jpg", "b2_f3.jpg"};
Building small_building_1 = new Building(0.0f, new Vector3f (10f,6f,0f), 10f, 8f, 5f,
facades1);
Building small_building_2 = new Building(0.0f, new Vector3f (10f,25f,0f), 10f, 8f, 5f,
facades1);
Building large_building_1 = new Building(0.0f, new Vector3f (40f,20f,0f), 30f, 15f, 8f,
facades2);
// putting the four trees on the right side of road2
Tree tree1 = new Tree(0.0f, new Vector3f (10f,35f,0f), 15f, 5f, "tree1.jpg");
Tree tree2 = new Tree(0.0f, new Vector3f (38f,35f,0f), 20f, 8f, "tree2.jpg");
Tree tree3 = new Tree(0.0f, new Vector3f (60f,35f,0f), 16f, 7f, "tree2.jpg");
Tree tree4 = new Tree(0.0f, new Vector3f (80f,35f,0f), 22f, 9f, "tree1.jpg");

Code Listing 4. Code for building the contents of Figure 15.

Development of an Object Oriented Library based on Java 3Dto Facilitate the Construction of Virtual

 38

6. Discussion and conclusion

In this paper, we described a library that can
be used to create virtual driving
environments easily and effectively. The
use of the object-oriented methodology has
helped greatly in hiding the implementation
details of the environment and in
transforming the process of constructing
virtual environments into a high level
process. The use of the library can yield
elegant and quality code and improve
usability.
The reliance of the Java and Java 3D
technology make the virtual environments
produced using the described library
portable and can be used on any platform
that supports these two technologies.

Damascus University Journal Vol. (29) - No. (2) 2013 Al-Shihabi

 39

REFERENCES:*

[1] Arther, K.W., Booth, K.S., and Ware,C.

(1993). Evaluating 3D Task
Performance for Fish Tank Virtual
Worlds. ACM Transactions for
Information systems, 11(3). 239-265.

[2] Hein, C. M. (1993). Driving Simulators:

Six Years of Hands – on Experience at
Hughes Aircraft Company. In
proceedings of the Human Factors and
Ergonomics society 37th Annual
Meeting. Santa Monica, CA, 607-611.

 [3] IEEE , Institute of election and

electronics engineer. (1993).
International standard, ANSI, IEEE Std
1278-1993, Standard for Information
Technology, Protocols for Distributed
Interactive Simulation. New York, NY.

[4] Java 3D API, https://java3d.dev.java.net

[5] Kalawsky, R. S. (1993). The Science of

Virtual Realty and Virtual Environment.
Wokingham, UK:Addison-Wesley.

 [6] Mourant, R. R. and Zhishuai Yin.

(2010). “A Turning Cabin Simulator to
Reduce Simulator Sickness.”
Proceeding of IS&T/SPIE Electronic
Imaging 2010, San Jose, CA, pp. 17-21.

 [7] Paush, R., van Dam, A., Robinett, w.

and Bryson, S. (1994). CHI’ 94 Tutorial
Notes: Implementing Virtual Realty.
Boston, MA: Association for
Computing Machinery.

[8] Sheridan, T.B (1992). Musings on

Telepresence and Virtual Presence.
Precence 1(1). 120-125.

[9] Sowizral H., Rushforth K., Deering M.
(1997) The Java 3D API Specification.
Addison-Wesley Pub Co.

[10] Stuart, R. (1996) The Design of Virtual

Environments, McGraw-Hill, New York.

[11] Suresh, Piriyakala and Mourant,

Ronald R. (2005). “A Tile Manager for
Deploying Scenarios in Virtual Driving

* Received 11/11/2012

Environments”. Proceedings of the
Driving Simulation Conference North
America, pages 21-29.

[12] Sutherland, I. (1965). The Ultimate

Display. In proceeding of the IFIP
congress, Vol. 2, 506-508.

https://java3d.dev.java.net

