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Abstract 
The normal Costas frequencies code sequence signal is very well known and 

important signal in pulse compression Radar. In this paper we present two algorithms to 
modify Costas sequence by arranging the frequencies of Costas signal in time, first using 
binary Costas array and second using Golomb Ruler.  These methods enable us to control 
side-lobes and to improve Doppler frequency resolution of Ambiguity Function (AF).  

At first we present the principle of these methods Golomb Ruler and Costas array.  
Then we apply these two methods to normal Costas signal, modified Costas signal and step 
frequency modulation and calculate the AF for all.  

The results of comparison have shown that considerable reduction of side-lobes of 
AF is achieved by using these two methods, and consequently an improvement of AF is 
obtained.   
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1- Introduction 

The essential part of improving radar system 
performance is to develop new radar signal. 
Consideration is given to the effect of delay 
resolution, Doppler resolution, noise 
immunity, and intentional and unintentional 
interference suppression. The aforesaid 
requirements have caused to develop these 
signals assisted by modern signal processing 
systems.  

In general for good detection most Radar 
seeks to transmit long-duration pulses to 
achieve high energy, since transmitters are 
typically operated near their peak power 
limitation.  On the other hand, for good range 
measurement accuracy, radar needs short 
pulses. These divergent of the needs of long 
pulses for detection and short pulses for range 
resolution in measurements prevented early 
radars from simultaneously performing both 
functions. Fortunately, in the late 1950s and 
early 1960s a new concept was developed 
whereby both needs could be met. The 
concept is called pulse compression. It makes 
use of the fact that a long-duration pulse's 
bandwidth can be made larger by use of 
Frequency Modulation (FM). Large 
bandwidth implies narrow effective duration. 
With FM a waveform can be designed to have 
both long pulse duration and short pulse 
effective duration (large bandwidth). The 
waveform with short pulse effective duration 
is produced when the long-duration waveform 
with FM is applied to its matched filter for 
receiving pulses. Thus, by using FM over long 
transmitted pulses and a matched filter, a 
system can simultaneously obtain good 
performance for detection and range 
resolution and accurate range measurements. 

The researchers develop many pulse 
compression Radar signals assisted by 
modern signal processing systems. 
Consequently, signals in different shapes have 
been presented  like Phase coded signals 
such as Barker Code, Frank Code, P1, P2, P3, 
Px Codes, as well as m-sequence code, 
Colombo code, etc., and frequency coding 
such as Costas signal [4,6,7]. 

Each of these signals has advantages and 
disadvantages. The most important one in the 
frequency coding is Costas signal.  

Costas sequences are generally used in the 
design of frequency-coded waveform, which 
ensure high delay-Doppler Resolution.  An 
important property of Costas sequence is that 
a sequence of length N when used in the radar 
signal design would yield an Ambiguity 
Function (AF) with side-lobes of maximum 
height 1/N times of its main-lobe height.  

In radar scenario, no waveform is optimum 
for target resolution in general.  On the other 
hand, an optimum ambiguity surface should 
be of a sharp central spike surrounded by a 
clear area with no volume, then when the bulk 
of the volume pushed away from the central 
peak, then the interference can be avoided 
[1,2]. 

In this direction, by adding variable time 
spacing between sub-pulses of Costas 
sequence we will improve the AF of Costas 
sequence by reducing side-lobes and push 
away the maximum side-lobes peaks from the 
central peak without increasing the number of 
frequency and without increasing frequency 
spacing in Costas sequence.  In this paper we 
suggested two algorithms to arrange the 
frequencies in time to enable us to control the 
side-lobes by using Golomb ruler or Costas 
array.  

Costas pulse T consists of N sub-pulses; each 
sub-pulse has different frequency modulation 
as shown in Fig. 1-a. [2], [4].  Each frequency 
is chosen from a series of frequencies within 
the bandwidth B. We have N frequencies, 
each frequency is multiple of 

b
tf /1 , and 

pulse width of each sub-pulse is given by 
NTt

b
/ .  Costas has suggested algorithm 

to arrange the frequencies to enable us to 
control the side-lobes in such a way that these 
side-lobes will not exceed 1/N. Then, the 
biggest side-lobes in AF is 1/N of its value at 
the main-lobe Fig.1-b and Fig.2.  Costas 
signal has a delay resolution of 2/1 N and the 
Doppler resolution of 1/T and because of 
using a matched filter, the received signal has 
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noise immunity. However, Costas pulse is not 
an optimum signal. 

Reference [8] introduced a modified Costas 
signal , which involves an increase of 
frequency separation f

 
beyond the inverse 

of sub-pulse duration bt . Upon this, they 

decrease the side-lobes of AF at Zero Doppler 
Cut within the range bt , and the delay 

resolution is improved (The delay Resolution 
at Costas Signal is 2/1 N , and it is nearly 

btfN **/1 2 when there is frequency 

separation), but unfortunately it reveals 
grating lobes and side-lobes at bt . The 

number of grating lobes is increased when the 
frequency spacing of Costas Signal is 
increased. The second suggestion in this 
reference is by adding Linear Frequency 
Modulation (LFM) to the sub-pulse of the 
Costas signal to overcome the grating lobes, 
which appear when increasing f , of AF 
at bt . 

Reference [9] suggests another arrangement 
of the frequency-coded pushing sequence and 
also adding LFM to the sub-pulses which 
result in pushing the volume of AF outside the 
clear area.  

Pulse Radar systems using variable time 
spacing between pulses, usually found in 
moving-target indicator (MTI). It is used for 
maximizing the radar's unambiguous range 
and Doppler while minimizing blind range 
and speed.  They are called stagger and jitter 
pulse Radar.  The reference [11] presents 
invention used time-hopping codes (THC) in 
ultra-wide band radar system (UWB) for 
interference rejection and suppression, and it 
proves that the variable time spacing can be 
able to modify the spectral properties of the 
pulse trains, and can achieve a desirable 
spectral response. 

In this paper we will use variable time spacing 
between sub-pulses of Costas pulse signal to 
modify the Auto Correlation Function (ACF) 
(AF at zero Doppler cut) properties of the 
pulse.  In general the ACF equals the inverse 

Fourier transform of the power spectral 
density thus we got the relationship:  

Autocorrelation        F-1 {power spectrum} 

And we study the effect variable time spacing 
at ACF to enhance the performance 
specifications by reducing the side-lobes of 
the ACF at range bt without increasing 

Costas size or without increasing frequency 
spacing and without adding LFM to the sub-
pulses. 

bt bt2 bt6

btf

 

a.  
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b.  

Figure 1; a. Costas signal,   b. ACF to normal 
Costas signal {3 6 1 7 5 2 4} 

In Section 2, the basic concept of reduction 
the recurrent side-lobes of Costas sequence is 
shown. In Sections 3, 4 a brief description of 
techniques to reduce recurrent side-lobes of 
Costas sequence, Costas method, and Golomb 
method is given.  In Section 5, we present 
applications of using Golomb rulers, Costas 
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space time upon some of frequency coded 
signals, and a summary of results and 
comparisons between ACF of these signals 
before and after applying Golomb ruler, and 
Costas method. Finally, Section 6 presents a 
summery of results and conclusions. 

 

Figure 2  Ambiguity Function of Costas {3 6 1 7 
5 2 4}  

2- Principle of reducing recurrent side-
lobes. 

The principle of reducing the side-lobes of 
ACF of Costas sequence depends on studying 
ACF of the signal which is zero Doppler Cut 
of AF. The complex envelope of Costas signal 
(Fig. 3) whose hopping sequence 

Naaaa ,......,, 21

 

and fix time spacing 

between sub-pulses is given by: 

,])1([
1

)(
1

1

N

n
rn Tntu

N
tu 

(1 

elsewhere

tttfj
tu bn

n

0

0

),2exp(
)(

 

(2 

b

n
n t

a
f , 

(3 

- At bt :  The ACF of Costas signal with fix 
time spacing between sub-pulses is the same 
as ACF of the train stepped frequency [3] and 
[5].  It is independent of the order of pulses in 
time. This is achieved if the two signals have 
the same number of pulse train, the same 
frequency spacing, and the same spacing 

between pulses or sub-pulses (as long as the 
spacing between sub-pulses longer than the 
twice of pulse duration  br tT 2 ). 

The ACF of Costas signal with fix time 

spacing at bt

 
is  the sum of the 

autocorrelation of each sub-pulse of reference 
signal and sub-pulse of the received signal 
which has the same frequency (Fig. 3-a) as 
fellows: 

                                      

,)()(
1

N

p
uu pp

RR

                     

bt

  

(4  

where                             
b

pp

t

ppuu dttutuR
0

* ,)()()(

 

(5 

This is yielding the main-lobe area of ACF. 

- At bt :  The ACF of Costas sequence or 
stepped-frequency with fix spacing between 
sub-pulses (Fig. 3-b) consists of: 

 

Recurrent side-lobes:  The recurrent 
side-lobes are at multiple of Tr. 

N

np
uu npp

RR
1

)()( ,     At range     

brbr tnTtnT      1,..,1 Nn

 

(6 

Then first recurrent side-lobes is at 

n=1 will be ,)()(
2

1

N

p
uu pp

RR

 

The second recurrent side-lobes is at 

n=2  will be ,)()(
3

2

N

p
uu pp

RR

 

and so on. 

Because the complex envelopes )(tup of 

different pulses have different center 
frequencies, the spectral overlap is relatively 
small, yielding ACF with recurrent lobes that 
are considerably lower than the main lobe.  
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The recurrent side lobes of Costas and stepped 
frequency signals are not the same because 
the recurrent side-lobes depend on frequencies 
which are crossed. 

 
Zeros between recurrent side-lobes 
occur if the spacing between sub-
pulses is longer than the twice of 
pulse duration br tT 2 . 

In the next study, we will present two 
methods of reducing recurrent side-lobes of 
ACF by spreading them in all the range 

bt

 

and not at specific places, where the cross 
correlation between the reference Costas 
signal  and the received Costas signal at any 
time of bt

 

have only one or two 

frequencies crossed together.  

The way to achieve that is to spread the sub-
pulses of Costas sequence by time by using 
variable spacing between sub-pulses. The 
complex envelope of Costas signal (Fig. 4) 
whose hopping sequence 

Naaaa ,......,, 21

 

and variable time 

spacing between sub-pulses is given by:  

,][
1

)(
1

1

N

n
nn Ttu

N
tu 

(7 

elsewhere

tttfj
tu bn

n

,0

0

),2exp(
)(

 

(8 

,
b

n
n t

a
f

 

(9 

],,...,,[ 21 Nn TTTT

 

01T , (10 

],,...,,[ 21 Nn aaaa

 

(11 

The ACF of Costas signal with variable 

spacing Fig. 4-a at bt

 

is the same as ACF 

of the equation (1), the shape of recurrent 
lobes of ACF at bt are different  in time and 

level than the recurrent side-lobes, of the 
Costas sequence with fix spacing. First 
recurrent side-lobes of the ACF at 

bbbb tttt 22

 

is 

,)(
23uuRR

  
Second recurrent side-lobes is at   

bbbb tttt 33 will be 

,)(
24uuRR

  

Each recurrent side-lobes of ACF is a cross 
correlation between one sub-pulse of 
reference signal and one sub-pulse of the 
received signal.  This yield, recurrent lobes of 
ACF at any part of range bt

 

is lower than 

the recurrent lobe of ACF of the Costas 
sequence with constant time spacing and zeros 
side-lobes will be reduced or removed. The 
shape of recurrent side-lobes of the ACF 
depends on the time spacing design and the 
Costas signal design.  

Fig. 3 and 4 demonstrate schematically the 
difference alignments of received and 
reference sub-pulses for fix spacing and 
variable spacing, we find that the coincidence 
between the reference signal and received 
signal at constant spacing and variable 

spacing at bt

 

Fig. 3-a, 4-a are the same, 

but coincidence between the reference signal 
and received signal at bt

 

Fig. 3-b, 4-b are 

not the same where at 4-b there is only one 
pulse of reference signal u3 coincides with 
one pulse of received  signal u2.  But at 3-b 
there are many pulses of reference signal that 
coincide with received signal.  There is no 
simple theoretical expression about ACF of 
Costas signal with variable time spacing then 
in our study we calculate the ACF 
numerically. 

In the next section two methods of spreading 
the sub-pulses of Costas sequence is shown 
first by using binary Costas array and then by 
using Golomb rulers. 
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Figure 3.  Costas with fix time spacing , a: at 

bt ;  b: bt    
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Figure 4.  Costas with variable time spacing,    

a:  at bt ;    b: bt

 

3- Method 1:  Costas arrangement  
     This can be done by spreading the columns 
of binary Costas Array NN * in time.  Each 

cell in each column represent a unit time of bt . 
At first we transmit the 1st column where one 

1 represents a sub-pulse of  width  bt and   

Zero 0 represents time spacing  of length 

bt , and second we transmit the 2nd  column in 
the same way, and so on.   Then the total time 

of sending Costas sequence is btNN ** as 
shown in Fig. 5.  This yield a train of Costas 
sub-pulses with variable time spacing between 
sub-pulses. 
     To demonstrate the effect of variable space 
time, we apply this method to many Costas 
sequences with different sizes and plot the 
AF, ACF.  From plots of ACF shown in Fig. 
6-a, and Fig. 6-b, we notice the following: 

 

From Fig. 6-a and Fig. 6-b we notice a 
reduction of the level of the recurrent side-
lobes of ACF when compared with the 
recurrent side-lobes of ACF of Costas 
sequence with fix spacing and  without 
spacing as shown in Fig.11-d and Fig. 11-a. 

 

Decrease the zero spacing in ACF when 
compared with ACF of Costas sequence 

with fix spacing at bt . 

 

For  bt

 

The ACF of Costas signal with 
variable spacing is the same as ACF of 
Costas sequence with fix spacing. 

.freq

btN

2f

1f

5f

4f

3f

bt

1
N2

  
a.  

1f 2f 3f 4f 5f

  
b.  

Figure 5: Costas with variable time 
spacing,  a: Costas signal;  b:  Costas 

binary array. 
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Figure 6-a. the ACF of Costas signal {3 6 1 
7 5 2 4} with Costas array {3 6 1 7 5 2 4}. 
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Figure 6-b. ACF of Costas signal {3 4 17 6 2 
5} with Costas array {3 4 17 6 2 5}. 

4- Method 2:  Golomb ruler arrangement. 
Golomb rulers are sets of positive integer 
numbers having all the differences between 
any pair of elements of the set to be unique. 

These numbers can be thought of as ruler 
marks as an analogy with common ruler [10].  
Using the Golomb ruler in Fig. 7 one can 
measure the distances  {1; 2; 3; 4; 5; 7; 8; 9; 
10; 11} by a suitable choice of two marks but 
no other distances can be measured. Moreover 
for each of these distances, only one pair of 
marks can be used to make such a 
measurement, therefore the Golomb property 
is satisfied.  Some of known optimal Golomb 
rulers are shown in table 1. 
We will use this property to form the modified 
Costas sequence. We set Golomb ruler at time 
axis and set the sub-pulses of Costas sequence 
at the marks of Golomb ruler, and then we 
obtain a train of Costas sub-pulses with 
variable time spacing between sub-pulses. 
If for example the size of Costas sequence is 
N=7, we can use Golomb ruler with mark n=7 
and length=25 and choose the sub-pulse of 
any position of marks n=7, example 0 3 4 12 
18 23 25 or 0 2 6 9 14 24 25 etc.  

Table. 1:  Golomb rulers 

 

Common ruler 

 

Golomb Ruler 

Figure 7. 

To demonstrate the effect of using Golomb 
rulers in Costas sequence, we apply Golomb 
ruler 0 3 4 12 18 23 25

 

to many of Costas 
sequences with the same size and plot the AF, 
ACF.  From the plots AF and ACF of Fig 8, 
we notice the following: 

 

We notice a reduction of the level of the 
recurrent side-lobes of ACF when compared 
with the recurrent side-lobes of ACF of 
Costas sequence with fix spacing and  
without spacing as shown in Fig.9-c and 
Fig. 9-a . 

 

Most of zero spacing in ACF is removed 
when compared with ACF of Costas 
sequence with fix spacing at bt . 

 

For  bt

 

The ACF Fig.8 is the same as 
ACF of Costas sequence with fix spacing 
Fig 9-c and Fig. 9-a . 

 

By good selection of frequency Costas 
sequence a low levels of side-lobes near the 
main-lobes of ACF can be obtained at 
range bt .  

Table 2 shows comparisons between the 

maximum values of side-lobes at bt

 

of 
Costas sequence of N=7 without spacing 
(normal Costas), with fix spacing, with 
variable time using Costas spacing, and with 
variable time using Golomb ruler spacing. 
Table 2:  Maximum side-lobes of Costas 
signal without spacing, with fix spacing and 
with var. spacing. 

Maximum  Side-lobe 
Costas  Normal 

Costas  

(dB)  

Costas with 

fix 

spacing(dB) 

Costas with 

Var. 

Spacing 

(Costas 

array) (dB) 

Costas with 

Var. 

Spacing 

(Golomb 

Ruler) (dB) 

2-1-6-4-7-3-5 -16.49 -18.97 -24.82 -26.86 

2-1-5-7-3-6-4 -16.96 -19 -24.75 -26.86 

3-6-1-7-5-2-4 -16.98 -18.92 -25 -26.86 

2-4-7-3-1-6-5 -18.64 -21.99 -24.74 -26.86 

3-4-1-7-6-2-5 -19.97 -21.99 -24.75 -26.86 

7-1-3-6-4-5-2 -18.75 -20.99 -24.96 -26.86 
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From the table 2 we find that the side-lobes 
using Golomb rulers is the best of all 
sequences. But, the side-lobes when using fix 
space time gives zero level at range 

bb tt 2  which is helpful in some 
applications. 
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Figure 8-a. ACF of Costas signal {3 6 1 7 5 2 
4} with Golomb spacing {0 3 4 12 18 23 25}. 

0 500 1000 1500 2000 2500
-60

-50

-40

-30

-20

-10

0

X: 108.3
Y: -36.39

/t
b

A
ut

oc
or

re
la

tio
n[

dB
]

3 4 1 7 6 2 5    golombo 0 3 4 12 18 23 25 

Figure 8-b. ACF of Costas signal {3 4 1 7 6 2 
5} with Golomb spacing {0 3 4 12 18 23 25}.  

5- Application of using Golomb rulers and 
Costas space time in frequency coded 
signals. 

a. Frequency coded:  Costas sequence. 

We applied Golomb ruler 0 3 4 12 18 
23 25, and Costas time spacing to the 
frequency coded Costas sequence, with size 
N=7, frequencies {3 4 1 7 6 2 5} 
and btf /1 . Each sequence consist of N 

sub-pulses, the total time for Costas sequence 
is btN * , the total time of Costas sequence 

with Golomb ruler spacing is GT2 ,  where GT 
is the length of Golomb ruler, and the total 
time in Costas sequence with Costas time 
spacing is btNN ** .  

The ACF of the above signals at bt

 
are the 

same because the order of frequencies does 

not affect ACF. But the ACF at bt depends 
on the number of sub-pulses N, spacing 
between sub-pulses, and the order 
arrangements of frequencies.  

Comparing between the ACF of Costas 
sequence N=7, frequencies{ 3 4 1 7 6 2 5} 
and Golomb ruler  0 3 4 12 18 23 25 Fig. 9-
b,with the ACF of Costas sequence N=7, 
frequencies { 3 4 1 7 6 2 5}  Fig. 9-a, and with  
the ACF of Costas sequence N=7, frequencies 
{ 3 4 1 7 6 2 5} and fix spacing br tT 3 Fig. 9-

c, and with the ACF of Costas sequence N=7,  
frequencies {3 4 1 7 6 2 5} and Costas 
variable spacing Fig. 9-d we notice that the 
Costas sequence with Golomo ruler spacing 

time has the minimum side-lobes at bt . 
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b.  ACF of Costas sequence N=7,{3 4 1 7 6 
2 5}    with Golomb ruler  0 3 4 12 18 23 25 
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d. ACF of Costas sequence N=7,  { 3 4 1 7 
6 2 5}, with Costas variable spacing. 

Figure 9 

b. Frequency coded: Modified Costas 
sequence. 

We applied Golomb ruler 0 3 4 12 18 23 25, 
and Costas time spacing to the modified 
Costas sequence, with size N=7, frequencies 
{3 4 1 7 6 2 5}, frequency spacing 5f (In 

Costas sequence
b

tf /1 , but in modified 

Costad sequence 
b

tf /

 

where 

 

is 

integer number [8].  Each number of the 
Costas frequencies sequence multiplies by 

number ).  The ACF over bt

  

depends 
on the number of sub-pulses N, spacing 
between sub-pulses, and the order 

arrangements of frequencies.  But for bt

 

the order of frequencies does not affect ACF.  
Comparing between ACF of Costas sequence 
N=7, frequencies { 3 4 1 7 6 2 5}, and 
Golomb ruler   0 3 4 12 18 23 25  and 5f 
Fig. 10-b, with the ACF of Costas sequence 

N=7,  frequencies { 3 4 1 7 6 2 5}  Fig. 10-a, 
and with the ACF of Costas sequence N=7, 
frequencies { 3 4 1 7 6 2 5} and fix spacing  
between sub-pulses 

br tT 3 , 5f

 
Fig. 

10-c, and with the ACF of Costas sequence 
N=7, frequencies { 3 4 1 7 6 2 5}, 5f 
and Costas variable spacing Fig. 10-d we 
notice that the Costas sequence with Golomo 
ruler spacing time has the minimum side-

lobes at bt . 
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a.   ACF of Costas sequence N=7, {3 4 1 7 6 
2 5},   and 5f . 
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Figure 10 

c. Frequency coded:  Modified Stepped 
frequency signal.  
We applied Golomb ruler 0 3 4 12 18 23 25, 
and Costas time spacing 3 4 1 7 6 2 5 to the 
modified stepped frequency, with N=7, 
(where N number of sub-pulses) stepped 
frequencies and frequency spacing 5f .  
The ACF over bt

 

depends on the number 
of pulses N, spacing between pulses.  The 
ACF at bt

 

is the same as par. 5-b because 
the order of frequency does not affect the 
ACF over bt . 
Comparing between the ACF of modified 
stepped frequency 5f and Golomb ruler 
0 3 4 12 18 23 25, and 5f Fig. 11-b, with 
the ACF   of modified stepped frequency,  

5f , without spacing  Fig. 11-a, and with 
the ACF of modified stepped frequency and 
fix spacing 

br tT 3 , 5f Fig. 11-c, and 
with the ACF of modified stepped frequency  
and Costas variable spacing and 5f Fig. 
11-d we notice that the Costas sequence with 
Golomo ruler spacing has the minimum side-

lobes at bt . 
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c- ACF of modified stepped frequency 
with fix spacing, br tT 3 , and 5f . 
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Figure 11  
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6- Results and Conclusion: 

        Adding variable spacing between the 
sub-pulses of Costas signal at any frequency 
coded allows decreasing side-lobes at bt , 
and improving the Doppler resolution.  The 
delay resolution of frequency coded is the 
same as in normal signal without adding 
variable spacing (Costas sequence 2/1 N ).  
Also there is no need to increase the size N of 
frequency coded or increase the frequency 
spacing. 

Variable spacing, which achieves the previous 
properties, can be done by arranging the sub-
pulses of the costas signal in time according to 
the following conditions:  

1. The minimum space time between sub-
pulses should be more than bt2 . 

2. The space between sub-pulses should be 
different from one sub-pulse to another 
sub-pulse. 

3. At range bt

 

there are no more than 
one or two sub-pulses of received signal 
cross the reference signal. 

These requirements are achieved by using 
Golomb rulers or binary Costas array upon 
frequency coded signals. 

In addition we find that using Golomb rulers 
for variable spacing is slightly better than the 
Costas array. 
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