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Abstract 

The principal objective of this research is an adoption of the Genetic 
Algorithm (GA) for studying it firstly, and to stop over the operations which 
are introduced from the genetic algorithm.The candidate field for applying 
the operations of the genetic algorithm is the sound data compression field. 
This research uses the operations of the genetic algorithm for the 
enhancement of the performance of one of the popular compression method. 
Vector Quantization (VQ) method is selected in this work. After studying 
this method, new proposed algorithm for mixing the (GA) with this method 
was constructed and then the required programs for testing this algorithm 
was written. A good enhancement was recorded for the performance of the 
(VQ) method when mixed with the (GA). The proposed algorithm was 
tested by applying it on some sound data files. Some fidelity measures are 
calculated to evaluate the performance of the new proposed algorithm. 
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1. Introduction 
Firstly, we note that through the context of this paper, we refered to the 
sound signal as a data, because its treated as a set of data values.  Vector 
quantization (VQ) has been widely used for data compression due to its 
theoretical advantages compared with scalar quantization schemes. 
However, the computational complexity of both the codebook design and 
the vector lookup during the encoding phase is obviously a burden of its 
realization. Since the codebook can be pre-generated before the encoding 
process, the efficiency of the vector lookup is comparatively more 
significant [Chan]. Vector Quantization (VQ) has been successfully used 
in speech and image data compression [Liang]. 
One of the emerging technologies for lossy data (sound data in this work) 
compression is Vector Quantization (VQ). Vector Quantization can be 
used to take advantage of the correlation between neighboring values of 
the signal (i.e., in the sound signal) by quantizing these values in groups 
(or vectors) rather than individually and symbolically representing the 
vector with a codeword. The appropriate codeword is chosen from the 
available codebook by minimizing a given distortion measure. Often, the 
most common distortion measure, between vectors of the codebook,  is 
the mean-square error (MSE): 
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where the distortion is defined per dimension. The popularity of the 
(MSE) lies mainly in its simplicity and mathematical tractability. A more 
general distorton measure based on the Lr norm is defined by: 
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Note that dr is equal to d2 for r = 2. The other most popular values of r are 
r=1 and     r = ∞. d1 represent the average absolute error and d∞ tends 
towards the maximum error [Cabral]. 
Vector quantization (VQ) is a source coding methodology with a 
provable rate-distortion optimality. However, despite more than two 
decades of intensive research, VQ’s theoretical promise is yet to be fully 
realized in image compression practice [Xiaolin]. Data compression using 
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vector quantization (VQ) has received great attention in the last decade of 
its promising compression ratio and relatively simple structure. In its 
simplest implementation, VQ requires divide the signal, to be 
compressed, into vectors (which may be referred to as a blocks). Each 
vector of the signal to be compressed is compared to the entries of a 
codebook containing representative vectors. The address of the codebook 
entry most similar to the signal vector is then transmitted to the receiver, 
where it is used to fetch the same entry from an identical codebook, thus 
reconstructing an approximating to the original signal. Compression is 
obtained because transmitting the address of a codebook entry requires 
fewer bits than transmitting the vector itself [Huang, Nasrabadi, 
Midanda-Trigueros, Kumar]. 
A surprising number of everyday problems are difficult to solve by 
traditional algorithms. A problem may qualify as difficult for a number of 
different reasons; for example, the data may be too noisy or irregular; the 
problem may be difficult to model; or it may simply take too long to 
solve. It’s easy to find examples: finding the shortest path connecting a 
set of cities, dividing a set of different tasks among a group of people to 
meet a deadline, or fitting a set of various sized boxes into the fewest 
trucks. In the past, programmers might have crafted a special-purpose 
program for each problem; now they can reduce their time significantly 
by using a genetic algorithm (GA) [Grant, Louis, Al-Rawi, Ryu]. 
The genetic algorithm is a highly parallel mathematical algorithm that 
transforms a set (population) of individual mathematical objects 
(typically fixed-length character (genes) strings), each with an associated 
fitness value, into a new population (i.e., the next generation) using 
operations patterned after the Darwinian principle of reproduction and 
survival of the fittest and after naturally occurring genetic operations (i.e., 
crossover and mutation operations) [Koza]. 
The genetic algorithm relies primarily on the creative effects of sexual  
genetic recombination (crossover) and the exploitative effects of the 
Darwinian principle of survival and reproduction of the fittest. Mutation 
is a decidedly secondary operation in genetic algorithms. 
The four major steps in preparing to use the conventional genetic 
algorithm (on fixed-length character strings) to solve a problem involve: 
1. determining the representation scheme, 
2. determining the fitness measure, 
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3. determining the parameters and variables for controlling the 
algorithm, and 
4. determining the way of designating the result and the criterion for 
terminating a run. 
The crossover operation for genetic algorithm creates variation in the 
population by producing new offspring that consist of parts taken from 
each parent. The crossover operation starts with two parental strings of 
genes and produces two offspring strings of genes. The two parents are 
chosen from the population by using different selection methods (random 
selection method from the same cluster in this work). Also there are many 
selection method of the genes in the parents that are participate in the 
crossover operation (also random selection method is used in this work). 
The mutation operation introduces random changes of structures in the 
population. In conventional genetic algorithms operating on strings, the 
mutation operation can be beneficial by reintroducing diversity in a 
population that may be tending to converge prematurely. Mutation is 
asexual and operates on only one parental string of genes. The mutation 
operation begins by selecting a point (gene) at random within the string 
of genes. The mutation operation then change whatever is currently at the 
selected point and inserts a randomly generated gene. 
The above explaination of the genetic algorithm and its operations is a 
breif explaination. For more details about the use of genetic algorithm 
and how to set the parameters and variables that are used to control the 
work of the genetic algorithm we advise to return to [Koza]. 
2. VQ Using Genetic Algorithm (GAVQ): A Proposed Algorithm 
In this section, a new algorithm for data compression is suggested. This 
algorithm tries to exploit the facilities of Genetic Algorithm (GA) and 
then uses these facilities to make the performance of the Vector 
Quantization technique more efficient and powerful. The main steps of 
the proposed algorithm can be stated as follows: 
 

Step1: Problem Representation (focusing on the choice of a 
suitable representation of the problem). 
Step2: Clustering (grouping the most similar input instances in 
sets that have common characteristics between these input 
instances). 
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Step3: Genetic Operations (performing the Crossover and 
Mutation operations on the elements of the sets that are 
produced from Step2). 
Step4: Merging (merging those sets becomes nearest after 
performing the genetic operations in Step3). 
Step5: Performance Evaluation and Termination Criteria 
(testing the performance of the algorithm at each generation 
and termination criteria, if the termination criteria are satisfied 
then STOP, otherwise GOTO Step3). 

2.1 Problem Representation 
The first step of the GAVQ algorithm is the preparing step, which 
involves the representation of the problem in such a way that it becomes 
suitable to be applied by the GAVQ algorithm. 
2.1.1 Vector Representation  
Initially, the sound data file is divided into a sequence of vectors of D-
dimension (for examples 4, 8, 12, 16, 24, 32 or 64). It is important to 
mention here that the algorithm look to the sound data file as a file that 
contains a sequence of unsigned bytes (i.e., a sequence of values between 
0 and 255). Now, consider the case that one has to represent a given D-
dimensional input vector iX

r
= (x0, x1, x2, …, xD-1) with a particular 

codeword jC
r

= ( c0, c1, c2, …, cD-1) selected as the best representative of 

the vector iX
r

 within a codebook (i.e., the codevectors are extracted 
from the input vectors). The selection is based on the minimum distance 
criterion. The VQ approach is the process that finds a mapping from the 
set of N input vectors ( 1N210 X,...,X,X,X −

rrrr
) to the M output vectors 

(codewords or codevectors) ( 1M210 C,...,C,C,C −

rrrr
), these M codevectors 

represent the codebook as shown in figure (1). 
2.1.2 Chromosomal Representation  
For any GA, a chromosome representation is needed to describe each 
individual in the population. The representation scheme determines how 
the problem is structured in the GA and also determines the genetic 
operators that are used. Each individual or chromosome is made up of a 
sequence of genes from a certain alphabet (i.e., letters, integer numbers, 
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floating point number or bytes). Consider an input vector iX
r

= ( x0, x1, 
x2, …, xD-1 ) be an individual (chromosome) in the population that 
consists of N individuals (input vectors), each chromosome consists of D 
number of unsigned bytes (genes), so the chromosome contains a string 
of (D*8) binary digits or bits (i.e., 0 or 1), where (D*8) represents a 
chromosome length, as shown in figure (1). 
Genetic algorithms use a number of parameters to control their 
evolutionary search for the solution to their given problem. These 
parameters include selection operator, crossover operator, mutation 
operator, crossover rate, mutation rate and maximum number of 
generations. 
At the start of the proposed algorithm, the population size is equal to N, 
which contains all input vectors ( 1N210 X,...,X,X,X −

rrrr
), and we note that 

at start of the algorithm the codebook is empty so M=0, which will 
contain the codevectors ( 1M210 C,...,C,C,C −

rrrr
) at the end of the 

compresion operation.  
 

Gene (One value of the sound signal) 
 

Figure (1): Problem Representation. 
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2.2 Clustering 
This operation assigns each vector iX

r
 in the population to the codevector 

jC
r

 (for j = 0,1,2, …, M-1) according to the similarities between iX
r

and 

jC
r

, in another words, a vector iX
r

 is assigned to the codevector jC
r

 if 

jC
r

is the nearest codevector to iX
r

, such that: 

),(),( liji CXDCXD
rrrr

≤  (j, l=0,1…M-1), (i=0,1…N-1), j ≠ l …(1) 

where D( iX
r

, jC
r

) means the distortion measure between two vectors of 

D-dimension given as: 
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To explain this step, when the algorithm start (i.e., in the first generation). 
The algorithm calculates the distortion, between the vectors iX

r
 (for 

i=0,1,…,N-1) and the codevectors in the codebook, by using the equation 
(1) and (2) and check the following cases: 
1. If there are no codevectors in the codebook (i.e., when M=0 in the 
start of the first generation), the algorithm set the vector iX

r
 as the first 

codevector in the codebook. This case is done especially for the vector 
0X
r

 only. 
2. If there are some codevector in the codebook, the algorithm try to find 

the vector jC
r

from the equation (1). After that the algorithm checks: 
a) If the D( iX

r
, jC
r

) ≤ ε, where ε is a small number less than one (for 

example: if the vector dimension D=100 then ε = 0.05. But in this 
algorithm when the vector dimension is selected to be D=8 as in table(1), 
the value of ε = 0.4). Then a vector iX

r
 is assigned to the codevector jC

r
 

because it is similar to this codevector. 

b) If the D( iX
r

, jC
r

) > ε. Then a vector iX
r

is add as a new codevector in 
the codebook and set M=M+1. 
The selection of the nearest codevector needs search through all the 
individuals in the population using a full sequential search. This is done 
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because the algorithm considered firstly that all the input vectors are 
codevectors (i.e., M=N). This may take a long time (for a large number of 
input vectors) because the clustering operation is done only once at the 
start of the algorithm. 
The clustering operation produces to the next step (i.e., Step 3) a 
codebook of M codevectors ( 1210 ,...,,, −MCCCC

rrrr
), where M ≤ N. Each 

codevector jC
r

 involves a list of indexes (members) that represent all 

input vectors (members) which belong to this codevector.   
2.3 Genetic Operations 
Genetic operations (crossover and mutation) are applied to each element 

jC
r

 of the codebook to get a more suitable codevector that represents its 

members. 
Initially, before the start of the algorithm, the parameters that control the 
working of the GA must be set. The random selection of individuals 
(parent(s)) for genetic operations is considered to be the selection 
operator. The crossover operator is a single point (byte or value) in each 
individual (parent). The complement method is considered to be the 
mutation operator. The crossover and mutation are applied on the 
population in rates %50 for each. The maximum number of generations 
assumed 20. 
2.3.1 Crossover Operation 
For each codevector jC

r
 in the codebook, select randomly from its 

member’s list one index for example i (i.e., one input vector iX
r
∈{ jC

r
}) 

as a first parent and assume that the codevector jC
r

 itself is to be the 

second parent. Then one point (byte), in each of the above selected 
parent, is randomly selected (xik and cjk for k = 0,1,2,…,D-1) and then 
exchange these points between the two parents to produce two child (i.e., 
two new vectors) 1V

r
 and 2V

r
. Note that in this algorithm, any popular 

algorithm that is used to generate random numbers can be used here. 
After that, the checking step begins to check the most adequate vector 
among the vectors ( jC

r
, 1V
r

 and 2V
r

), to replace it as a new codevector jC
r

 

that represents its member’s list as a better codevector, and ignore the two 
others. This check process is performed by calculating the total distortion 
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over the members (vectors) that belong to the codevector jC
r

, for each 

one of the three vectors ( jC
r

, 1V
r

 and 2V
r

). The Total Distortion (TD) can 

be calculated as: 

∑∑
−

=

−

=
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j
ijj xyYTD rrr

……………….….(3) 

Where: 
E is the number of members (vectors) in the list of members of the 
codevector jC

r
.  

D is the vector dimension (i.e., chromosome length in byte). 
Y
r

is represent one of the three vectors ( jC
r

, 1V
r

 , 2V
r

). 

The crossover operation is illustrated in figure (2). 
2.3.2 Mutation Operation 
For each codevector jC

r
 in the codebook, select randomly one point 

(gene) and complement it. Then, replace the new gene in the place of the 
old one to produce a new vector V

r
. Now, calculate the total distortion for 

the new vector TD(V
r

) as in equation (3) and compare it with the total 
distortion TD( jC

r
) for the original codevector. The new vector V

r
is set as 

a new codevector in place of the original codevector jC
r

 if TD(V
r

) ≤ 

TD( jC
r

), otherwise ignore this new vector V
r

. The mutation operation is 

illustrated in figure (3). 
For more details, in this algorithm each vector is consider to be consist of 
a set of genes (i.e., unsigned bytes (0..255)). This assumption allows the 
algrithm to treat the sound values, in the sound signal, without regarding 
to their orginal vlaues (if they are positive or negative). For example: if 
the source sound value, in the sound signal, is (–30) and it is obviously 
represented as a signed byte. But the algorithm consider that this sound 
value is represented as unsigned value (226). Therefore, there is no 
problem if the algorithm use the complement operation |255-c3| in figure 
(3). For examples: if c3=0 then |255-0|=255, and if  c3=255 then |255-
255|=0. This means that any new value of c3 , in the new vector V

r
, that is 

produces from this complement operation between (0…255) and will 
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cause to accept or reject the vector V
r

 after checking the relation TD(V
r

) 
≤ TD( jC

r
). 

 

 

Figure (2): Crossover Operation. 
 

 

Figure (3): Mutation Operation. 
2.4 Merging 
The goal of this step is to merge each two codevectors iC

r
and jC

r
if the 

rate of the distortion per each two genes within the two codevectors 
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(D( iC
r

, jC
r

)) ≤ ε, where ε is a small number less than one (0.4 in this 

algorithm), D is the vector dimension and i, j = 0,1,2, …, M-1 (where M 
is the number of codevectors in the codebook). We must note here that 
from generation to generation, the merging operation try to minimize the 
number of codevectors in the coodebook. But it is necessary to know that 
the number of codevectors that will passed to the next generation may be 
from 1 to any number less or equal M. 
2.5 Performance Evaluation and Termination Criteria 
After each generation, some performance evaluation and termination 
measures are calculated to decide if the algorithm goes to do a next 
generation or to stop. Signal to Noise Ratio (SNR), Peak Signal to Noise 
Ratio (PSNR) should be calculated between each input vector and the 
reproduction codevector within the codebook that these input vectors 
belong to. This means that these measures are calculated between each 
byte in the source sound file and the reconstructed sound file after the de-
compression operation is done. For simplicity, let )(ib  and )(ib

)
 be the 

byte in the sequence i within the source and decompression sound data 
file respectively, and S be the size in byte for the source and 
decompression sound data file. 
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The peak value of )(ib is the total dynamic range of the input sound data. 
To check the compression performance, the values of Compression Ratio 
(CR) is calculated. The compression ratio is the amount of compression 
and is calculated in two forms, On-line (when the codebook is taken into 
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consideration) and Off-line (when the codebook is not taken into 
consideration). In this algorithm the on-line CR is used: 
• On-line: 

sizecodebook size file VQ
size file sound sourceCR

+
= …………..….(6) 

• Off-line: 

size file VQ
size file sound sourceCR = …...…….…….(7) 

The better compression performance of the algorithm is with the highest 
compression ratio CR and the highest SNR that can the algorithm be 
satisfy, obviously this is mainly depending on the nature of the sound 
data. 
The termination criterion in this algorithm is that the algorithm will stop 
on at least if one of the following condition is satisfied: 

1. SNR ≥ 22.0 and CR ≥ 4.0 or. 
2. The number of generation reached the Max, (where Max is the 
maximum number of generations that are allowed in the algorithm (i.e., 
to prevent the compression operation take a very long time)).  
3. Experimental Results 
The performance of using GA in VQ technique for data compression has 
been tested by applying it to a set of various sound and speech data files. 
The performance of the proposed algorithm is evaluated in terms of the 
number of codewords required to achieve a particular SNR while 
encoding a number of test data files. The following table show the results 
that are obtained after applying the (GAVQ) proposed algorithm and the 
one of the classical VQ algorithms (k-means in this table) to the some 
(sound and speech) data files. It is necessary to clearify that both GAVQ 
and k-means algorithm are considered firstly that all the input vectors are 
codevectors and each of them try to find as little as possible number of 
codevectors, that can be used to represent all the input vectors of the 
sound data. To satisfy that, both algorithms depend on the same 
termination criterias that are mentioned above. All programs were written 
by using Visual C++  language (version 6.0) and these programs were 
executed on the Pentium III (500 MHz) personal computer. 
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Table (1): Comparison Table between GAVQ and Classical k-means VQ 

Compression Algorithm. 
 
 

 
 
 
From the above comparison table, we can note : 
1. The GAVQ algorithm success to increase CR with saving the SNR in 
the acceptable range. 
2. The number of codevector is less than the classical k-means 
algorithm.  
3. The number of crossover and the mutation operations recorded in the 
above table represent the successful crossover and mutation operations 
that are participate in increase the CR. Because the algorithm excludes 
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any crossover and mutation operations that are not cause to increase the 
CR and saving the SNR at the acceptable value. In other words, the 
algorithm is excluded any new vector produced from crossover and 
mutation operation when its total distortion (TD) not satisfying the 
required conditions as this is mentioned in (section 2.3.1 and section 
2.3.2). 
4. Inspite of the major problem (i.e., the long time) of using GA in any 
application. The required time for compression when using the GA (in 
this work), by mixing it with the VQ method, is near to the required time 
by the k-means. Certainly, it is not suitable to use this algorithm in the 
real-time systems because the genetic algorithm required long time 
(especially when the population become very large). 
5. The above table presents some examples of sound and speech file of 
small size. Certainly, when using a file of large size, the algorithm firstly 
divide the file into a number of segments and then apply the steps of the 
algorithm on these segments to reduce the amount of time and memory 
space that are required to complete the compression operation. 
6. Obviously, when we used the SNR and PSNR measures to calculate 
the distortion (noise) that will appear in the sound signal during the 
compression operation is not enough to ensure that this noise not causes a 
bad effects on the hearing (and then understanding) the sound or speech. 
We can ensure the effect of this noise by adding another subjective test to 
the algorithm, but for comparing the performance of the proposed 
algorithm and another classical algorithm, it is obvious in the first step of 
the comarision to use objective test as SNR and PSNR. 
4.Conclusion 
Vector Quantization (VQ) compression method was first studied and 
implemented, then the GAVQ algorithm that makes use of the GA to 
design the VQ codebook was proposed, it exploits the crossover and the 
mutation operations of the genetic algorithm. The GAVQ algorithm was 
tested on some sound and speech data files. The recorded results showed 
that the idea of mixing between the genetic algorithm and the vector 
quantization compression method enhances the performance of the (VQ) 
method alone. 
The conclusions that can be drawn from this work is that when mixing 
the (GA) with Vector Quantization method (VQ), we can get a good 
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enhancement for the performance of this method in term of increasing the 
compression ratio and saving the SNR in the acceptable level. 
We must mentioned here that the proposed (GAVQ) algorithm was 
previously applied on the image files and its prove that is good to use it in 
compressing the image files. In the future, after these successes of 
application of this algorithm. We will try to apply this algorithm on the 
multimedia files (or video files) which are contain a mixed data of sound 
and image files 
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