
Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 39

Sound Data Compression Method Using Genetic
Algorithm1

Mohammed A. F. Al-Husainy 2
Abstract

The principal objective of this research is an adoption of the Genetic
Algorithm (GA) for studying it firstly, and to stop over the operations which
are introduced from the genetic algorithm.The candidate field for applying
the operations of the genetic algorithm is the sound data compression field.
This research uses the operations of the genetic algorithm for the
enhancement of the performance of one of the popular compression method.
Vector Quantization (VQ) method is selected in this work. After studying
this method, new proposed algorithm for mixing the (GA) with this method
was constructed and then the required programs for testing this algorithm
was written. A good enhancement was recorded for the performance of the
(VQ) method when mixed with the (GA). The proposed algorithm was
tested by applying it on some sound data files. Some fidelity measures are
calculated to evaluate the performance of the new proposed algorithm.

 For the paper in Arabic see Pages (33-34). 1

2 Department of Computer Science, Faculty of Sciences and Information
Technology, Al-Zaytoonah Private University of Jordan

Sound Data Compression Method Using Genetic Algorithm

 40

1. Introduction
Firstly, we note that through the context of this paper, we refered to the
sound signal as a data, because its treated as a set of data values. Vector
quantization (VQ) has been widely used for data compression due to its
theoretical advantages compared with scalar quantization schemes.
However, the computational complexity of both the codebook design and
the vector lookup during the encoding phase is obviously a burden of its
realization. Since the codebook can be pre-generated before the encoding
process, the efficiency of the vector lookup is comparatively more
significant [Chan]. Vector Quantization (VQ) has been successfully used
in speech and image data compression [Liang].
One of the emerging technologies for lossy data (sound data in this work)
compression is Vector Quantization (VQ). Vector Quantization can be
used to take advantage of the correlation between neighboring values of
the signal (i.e., in the sound signal) by quantizing these values in groups
(or vectors) rather than individually and symbolically representing the
vector with a codeword. The appropriate codeword is chosen from the
available codebook by minimizing a given distortion measure. Often, the
most common distortion measure, between vectors of the codebook, is
the mean-square error (MSE):

2
k

1N

0k
k2)yx(

N
1)y,x(d rrrr ∑

−

=

−=

where the distortion is defined per dimension. The popularity of the
(MSE) lies mainly in its simplicity and mathematical tractability. A more
general distorton measure based on the Lr norm is defined by:

∑
−

=

−=
1N

0k

r
kkr yx

N
1)y,x(d rrrr

Note that dr is equal to d2 for r = 2. The other most popular values of r are
r=1 and r = ∞. d1 represent the average absolute error and d∞ tends
towards the maximum error [Cabral].
Vector quantization (VQ) is a source coding methodology with a
provable rate-distortion optimality. However, despite more than two
decades of intensive research, VQ’s theoretical promise is yet to be fully
realized in image compression practice [Xiaolin]. Data compression using

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 41

vector quantization (VQ) has received great attention in the last decade of
its promising compression ratio and relatively simple structure. In its
simplest implementation, VQ requires divide the signal, to be
compressed, into vectors (which may be referred to as a blocks). Each
vector of the signal to be compressed is compared to the entries of a
codebook containing representative vectors. The address of the codebook
entry most similar to the signal vector is then transmitted to the receiver,
where it is used to fetch the same entry from an identical codebook, thus
reconstructing an approximating to the original signal. Compression is
obtained because transmitting the address of a codebook entry requires
fewer bits than transmitting the vector itself [Huang, Nasrabadi,
Midanda-Trigueros, Kumar].
A surprising number of everyday problems are difficult to solve by
traditional algorithms. A problem may qualify as difficult for a number of
different reasons; for example, the data may be too noisy or irregular; the
problem may be difficult to model; or it may simply take too long to
solve. It’s easy to find examples: finding the shortest path connecting a
set of cities, dividing a set of different tasks among a group of people to
meet a deadline, or fitting a set of various sized boxes into the fewest
trucks. In the past, programmers might have crafted a special-purpose
program for each problem; now they can reduce their time significantly
by using a genetic algorithm (GA) [Grant, Louis, Al-Rawi, Ryu].
The genetic algorithm is a highly parallel mathematical algorithm that
transforms a set (population) of individual mathematical objects
(typically fixed-length character (genes) strings), each with an associated
fitness value, into a new population (i.e., the next generation) using
operations patterned after the Darwinian principle of reproduction and
survival of the fittest and after naturally occurring genetic operations (i.e.,
crossover and mutation operations) [Koza].
The genetic algorithm relies primarily on the creative effects of sexual
genetic recombination (crossover) and the exploitative effects of the
Darwinian principle of survival and reproduction of the fittest. Mutation
is a decidedly secondary operation in genetic algorithms.
The four major steps in preparing to use the conventional genetic
algorithm (on fixed-length character strings) to solve a problem involve:
1. determining the representation scheme,
2. determining the fitness measure,

Sound Data Compression Method Using Genetic Algorithm

 42

3. determining the parameters and variables for controlling the
algorithm, and
4. determining the way of designating the result and the criterion for
terminating a run.
The crossover operation for genetic algorithm creates variation in the
population by producing new offspring that consist of parts taken from
each parent. The crossover operation starts with two parental strings of
genes and produces two offspring strings of genes. The two parents are
chosen from the population by using different selection methods (random
selection method from the same cluster in this work). Also there are many
selection method of the genes in the parents that are participate in the
crossover operation (also random selection method is used in this work).
The mutation operation introduces random changes of structures in the
population. In conventional genetic algorithms operating on strings, the
mutation operation can be beneficial by reintroducing diversity in a
population that may be tending to converge prematurely. Mutation is
asexual and operates on only one parental string of genes. The mutation
operation begins by selecting a point (gene) at random within the string
of genes. The mutation operation then change whatever is currently at the
selected point and inserts a randomly generated gene.
The above explaination of the genetic algorithm and its operations is a
breif explaination. For more details about the use of genetic algorithm
and how to set the parameters and variables that are used to control the
work of the genetic algorithm we advise to return to [Koza].
2. VQ Using Genetic Algorithm (GAVQ): A Proposed Algorithm
In this section, a new algorithm for data compression is suggested. This
algorithm tries to exploit the facilities of Genetic Algorithm (GA) and
then uses these facilities to make the performance of the Vector
Quantization technique more efficient and powerful. The main steps of
the proposed algorithm can be stated as follows:

Step1: Problem Representation (focusing on the choice of a
suitable representation of the problem).
Step2: Clustering (grouping the most similar input instances in
sets that have common characteristics between these input
instances).

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 43

Step3: Genetic Operations (performing the Crossover and
Mutation operations on the elements of the sets that are
produced from Step2).
Step4: Merging (merging those sets becomes nearest after
performing the genetic operations in Step3).
Step5: Performance Evaluation and Termination Criteria
(testing the performance of the algorithm at each generation
and termination criteria, if the termination criteria are satisfied
then STOP, otherwise GOTO Step3).

2.1 Problem Representation
The first step of the GAVQ algorithm is the preparing step, which
involves the representation of the problem in such a way that it becomes
suitable to be applied by the GAVQ algorithm.
2.1.1 Vector Representation
Initially, the sound data file is divided into a sequence of vectors of D-
dimension (for examples 4, 8, 12, 16, 24, 32 or 64). It is important to
mention here that the algorithm look to the sound data file as a file that
contains a sequence of unsigned bytes (i.e., a sequence of values between
0 and 255). Now, consider the case that one has to represent a given D-
dimensional input vector iX

r
= (x0, x1, x2, …, xD-1) with a particular

codeword jC
r

= (c0, c1, c2, …, cD-1) selected as the best representative of

the vector iX
r

 within a codebook (i.e., the codevectors are extracted
from the input vectors). The selection is based on the minimum distance
criterion. The VQ approach is the process that finds a mapping from the
set of N input vectors (1N210 X,...,X,X,X −

rrrr
) to the M output vectors

(codewords or codevectors) (1M210 C,...,C,C,C −

rrrr
), these M codevectors

represent the codebook as shown in figure (1).
2.1.2 Chromosomal Representation
For any GA, a chromosome representation is needed to describe each
individual in the population. The representation scheme determines how
the problem is structured in the GA and also determines the genetic
operators that are used. Each individual or chromosome is made up of a
sequence of genes from a certain alphabet (i.e., letters, integer numbers,

Sound Data Compression Method Using Genetic Algorithm

 44

floating point number or bytes). Consider an input vector iX
r

= (x0, x1,
x2, …, xD-1) be an individual (chromosome) in the population that
consists of N individuals (input vectors), each chromosome consists of D
number of unsigned bytes (genes), so the chromosome contains a string
of (D*8) binary digits or bits (i.e., 0 or 1), where (D*8) represents a
chromosome length, as shown in figure (1).
Genetic algorithms use a number of parameters to control their
evolutionary search for the solution to their given problem. These
parameters include selection operator, crossover operator, mutation
operator, crossover rate, mutation rate and maximum number of
generations.
At the start of the proposed algorithm, the population size is equal to N,
which contains all input vectors (1N210 X,...,X,X,X −

rrrr
), and we note that

at start of the algorithm the codebook is empty so M=0, which will
contain the codevectors (1M210 C,...,C,C,C −

rrrr
) at the end of the

compresion operation.

Gene (One value of the sound signal)

Figure (1): Problem Representation.

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 45

2.2 Clustering
This operation assigns each vector iX

r
 in the population to the codevector

jC
r

 (for j = 0,1,2, …, M-1) according to the similarities between iX
r

and

jC
r

, in another words, a vector iX
r

 is assigned to the codevector jC
r

 if

jC
r

is the nearest codevector to iX
r

, such that:

),(),(liji CXDCXD
rrrr

≤ (j, l=0,1…M-1), (i=0,1…N-1), j ≠ l …(1)

where D(iX
r

, jC
r

) means the distortion measure between two vectors of

D-dimension given as:

∑
−

=

−=
1D

0k
jkikji cx

D
1)C,X(D

rrrr
………………….(2)

To explain this step, when the algorithm start (i.e., in the first generation).
The algorithm calculates the distortion, between the vectors iX

r
 (for

i=0,1,…,N-1) and the codevectors in the codebook, by using the equation
(1) and (2) and check the following cases:
1. If there are no codevectors in the codebook (i.e., when M=0 in the
start of the first generation), the algorithm set the vector iX

r
 as the first

codevector in the codebook. This case is done especially for the vector
0X
r

 only.
2. If there are some codevector in the codebook, the algorithm try to find

the vector jC
r

from the equation (1). After that the algorithm checks:
a) If the D(iX

r
, jC
r

) ≤ ε, where ε is a small number less than one (for

example: if the vector dimension D=100 then ε = 0.05. But in this
algorithm when the vector dimension is selected to be D=8 as in table(1),
the value of ε = 0.4). Then a vector iX

r
 is assigned to the codevector jC

r

because it is similar to this codevector.

b) If the D(iX
r

, jC
r

) > ε. Then a vector iX
r

is add as a new codevector in
the codebook and set M=M+1.
The selection of the nearest codevector needs search through all the
individuals in the population using a full sequential search. This is done

Sound Data Compression Method Using Genetic Algorithm

 46

because the algorithm considered firstly that all the input vectors are
codevectors (i.e., M=N). This may take a long time (for a large number of
input vectors) because the clustering operation is done only once at the
start of the algorithm.
The clustering operation produces to the next step (i.e., Step 3) a
codebook of M codevectors (1210 ,...,,, −MCCCC

rrrr
), where M ≤ N. Each

codevector jC
r

 involves a list of indexes (members) that represent all

input vectors (members) which belong to this codevector.
2.3 Genetic Operations
Genetic operations (crossover and mutation) are applied to each element

jC
r

 of the codebook to get a more suitable codevector that represents its

members.
Initially, before the start of the algorithm, the parameters that control the
working of the GA must be set. The random selection of individuals
(parent(s)) for genetic operations is considered to be the selection
operator. The crossover operator is a single point (byte or value) in each
individual (parent). The complement method is considered to be the
mutation operator. The crossover and mutation are applied on the
population in rates %50 for each. The maximum number of generations
assumed 20.
2.3.1 Crossover Operation
For each codevector jC

r
 in the codebook, select randomly from its

member’s list one index for example i (i.e., one input vector iX
r
∈{ jC

r
})

as a first parent and assume that the codevector jC
r

 itself is to be the

second parent. Then one point (byte), in each of the above selected
parent, is randomly selected (xik and cjk for k = 0,1,2,…,D-1) and then
exchange these points between the two parents to produce two child (i.e.,
two new vectors) 1V

r
 and 2V

r
. Note that in this algorithm, any popular

algorithm that is used to generate random numbers can be used here.
After that, the checking step begins to check the most adequate vector
among the vectors (jC

r
, 1V
r

 and 2V
r

), to replace it as a new codevector jC
r

that represents its member’s list as a better codevector, and ignore the two
others. This check process is performed by calculating the total distortion

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 47

over the members (vectors) that belong to the codevector jC
r

, for each

one of the three vectors (jC
r

, 1V
r

 and 2V
r

). The Total Distortion (TD) can

be calculated as:

∑∑
−

=

−

=

−=
1

0

1

0
)(

E

i

D

j
ijj xyYTD rrr

……………….….(3)

Where:
E is the number of members (vectors) in the list of members of the
codevector jC

r
.

D is the vector dimension (i.e., chromosome length in byte).
Y
r

is represent one of the three vectors (jC
r

, 1V
r

 , 2V
r

).

The crossover operation is illustrated in figure (2).
2.3.2 Mutation Operation
For each codevector jC

r
 in the codebook, select randomly one point

(gene) and complement it. Then, replace the new gene in the place of the
old one to produce a new vector V

r
. Now, calculate the total distortion for

the new vector TD(V
r

) as in equation (3) and compare it with the total
distortion TD(jC

r
) for the original codevector. The new vector V

r
is set as

a new codevector in place of the original codevector jC
r

 if TD(V
r

) ≤

TD(jC
r

), otherwise ignore this new vector V
r

. The mutation operation is

illustrated in figure (3).
For more details, in this algorithm each vector is consider to be consist of
a set of genes (i.e., unsigned bytes (0..255)). This assumption allows the
algrithm to treat the sound values, in the sound signal, without regarding
to their orginal vlaues (if they are positive or negative). For example: if
the source sound value, in the sound signal, is (–30) and it is obviously
represented as a signed byte. But the algorithm consider that this sound
value is represented as unsigned value (226). Therefore, there is no
problem if the algorithm use the complement operation |255-c3| in figure
(3). For examples: if c3=0 then |255-0|=255, and if c3=255 then |255-
255|=0. This means that any new value of c3 , in the new vector V

r
, that is

produces from this complement operation between (0…255) and will

Sound Data Compression Method Using Genetic Algorithm

 48

cause to accept or reject the vector V
r

 after checking the relation TD(V
r

)
≤ TD(jC

r
).

Figure (2): Crossover Operation.

Figure (3): Mutation Operation.
2.4 Merging
The goal of this step is to merge each two codevectors iC

r
and jC

r
if the

rate of the distortion per each two genes within the two codevectors

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 49

(D(iC
r

, jC
r

)) ≤ ε, where ε is a small number less than one (0.4 in this

algorithm), D is the vector dimension and i, j = 0,1,2, …, M-1 (where M
is the number of codevectors in the codebook). We must note here that
from generation to generation, the merging operation try to minimize the
number of codevectors in the coodebook. But it is necessary to know that
the number of codevectors that will passed to the next generation may be
from 1 to any number less or equal M.
2.5 Performance Evaluation and Termination Criteria
After each generation, some performance evaluation and termination
measures are calculated to decide if the algorithm goes to do a next
generation or to stop. Signal to Noise Ratio (SNR), Peak Signal to Noise
Ratio (PSNR) should be calculated between each input vector and the
reproduction codevector within the codebook that these input vectors
belong to. This means that these measures are calculated between each
byte in the source sound file and the reconstructed sound file after the de-
compression operation is done. For simplicity, let)(ib and)(ib

)
 be the

byte in the sequence i within the source and decompression sound data
file respectively, and S be the size in byte for the source and
decompression sound data file.

[] ⎥⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

∑

∑
−

=

−

=
1

0

2

1

0

2

10

)()(

)(
log10 S

i

S

i
db

ibib

ib
SNR

)
……………..….(4)

[]

[]
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

∑
−

=
S

ibib

bPSNR
S

i

db 21

0

2

10

)()(

(i) of peak valuelog10
)

………………...(5)

The peak value of)(ib is the total dynamic range of the input sound data.
To check the compression performance, the values of Compression Ratio
(CR) is calculated. The compression ratio is the amount of compression
and is calculated in two forms, On-line (when the codebook is taken into

Sound Data Compression Method Using Genetic Algorithm

 50

consideration) and Off-line (when the codebook is not taken into
consideration). In this algorithm the on-line CR is used:
• On-line:

sizecodebook size file VQ
size file sound sourceCR

+
= …………..….(6)

• Off-line:

size file VQ
size file sound sourceCR = …...…….…….(7)

The better compression performance of the algorithm is with the highest
compression ratio CR and the highest SNR that can the algorithm be
satisfy, obviously this is mainly depending on the nature of the sound
data.
The termination criterion in this algorithm is that the algorithm will stop
on at least if one of the following condition is satisfied:

1. SNR ≥ 22.0 and CR ≥ 4.0 or.
2. The number of generation reached the Max, (where Max is the
maximum number of generations that are allowed in the algorithm (i.e.,
to prevent the compression operation take a very long time)).
3. Experimental Results
The performance of using GA in VQ technique for data compression has
been tested by applying it to a set of various sound and speech data files.
The performance of the proposed algorithm is evaluated in terms of the
number of codewords required to achieve a particular SNR while
encoding a number of test data files. The following table show the results
that are obtained after applying the (GAVQ) proposed algorithm and the
one of the classical VQ algorithms (k-means in this table) to the some
(sound and speech) data files. It is necessary to clearify that both GAVQ
and k-means algorithm are considered firstly that all the input vectors are
codevectors and each of them try to find as little as possible number of
codevectors, that can be used to represent all the input vectors of the
sound data. To satisfy that, both algorithms depend on the same
termination criterias that are mentioned above. All programs were written
by using Visual C++ language (version 6.0) and these programs were
executed on the Pentium III (500 MHz) personal computer.

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 51

Table (1): Comparison Table between GAVQ and Classical k-means VQ

Compression Algorithm.

From the above comparison table, we can note :
1. The GAVQ algorithm success to increase CR with saving the SNR in
the acceptable range.
2. The number of codevector is less than the classical k-means
algorithm.
3. The number of crossover and the mutation operations recorded in the
above table represent the successful crossover and mutation operations
that are participate in increase the CR. Because the algorithm excludes

Sound Data Compression Method Using Genetic Algorithm

 52

any crossover and mutation operations that are not cause to increase the
CR and saving the SNR at the acceptable value. In other words, the
algorithm is excluded any new vector produced from crossover and
mutation operation when its total distortion (TD) not satisfying the
required conditions as this is mentioned in (section 2.3.1 and section
2.3.2).
4. Inspite of the major problem (i.e., the long time) of using GA in any
application. The required time for compression when using the GA (in
this work), by mixing it with the VQ method, is near to the required time
by the k-means. Certainly, it is not suitable to use this algorithm in the
real-time systems because the genetic algorithm required long time
(especially when the population become very large).
5. The above table presents some examples of sound and speech file of
small size. Certainly, when using a file of large size, the algorithm firstly
divide the file into a number of segments and then apply the steps of the
algorithm on these segments to reduce the amount of time and memory
space that are required to complete the compression operation.
6. Obviously, when we used the SNR and PSNR measures to calculate
the distortion (noise) that will appear in the sound signal during the
compression operation is not enough to ensure that this noise not causes a
bad effects on the hearing (and then understanding) the sound or speech.
We can ensure the effect of this noise by adding another subjective test to
the algorithm, but for comparing the performance of the proposed
algorithm and another classical algorithm, it is obvious in the first step of
the comarision to use objective test as SNR and PSNR.
4.Conclusion
Vector Quantization (VQ) compression method was first studied and
implemented, then the GAVQ algorithm that makes use of the GA to
design the VQ codebook was proposed, it exploits the crossover and the
mutation operations of the genetic algorithm. The GAVQ algorithm was
tested on some sound and speech data files. The recorded results showed
that the idea of mixing between the genetic algorithm and the vector
quantization compression method enhances the performance of the (VQ)
method alone.
The conclusions that can be drawn from this work is that when mixing
the (GA) with Vector Quantization method (VQ), we can get a good

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 53

enhancement for the performance of this method in term of increasing the
compression ratio and saving the SNR in the acceptable level.
We must mentioned here that the proposed (GAVQ) algorithm was
previously applied on the image files and its prove that is good to use it in
compressing the image files. In the future, after these successes of
application of this algorithm. We will try to apply this algorithm on the
multimedia files (or video files) which are contain a mixed data of sound
and image files

Sound Data Compression Method Using Genetic Algorithm

 54

References
• Al-Rawi Hisham, Jane J. Stephan, “Genetic Algorithm Based Image
Segmentation”, Proceeding of CATAEE’99, Philadelphia University,
Jordan, 1999.
• Cabral Jim, “3D Vector Quantization of Magnetic Resonance
Images”, Internet Paper, http://www.data-compression/vq.html, 1994.
• Chan Yuk-Hee, Wan-Chi Siu and Kin-Man Lam, “ A Novel VQ
Encoding Algorithm Based on Adaptive Searching Sequence”, IEEE
International Symposium on Speech, Image Processing and Neural
Networks, 13-16 April 1994, Hong Kong.
• Grant Keith, “An Introduction to Genetic Algorithms”, C/C++ Users
Journal, pp. 45-58, March, 1995.
• Huang C. M., Q. Bi, G. S. Stiles, “Fast Full Search Equivalent
Encoding Algorithms for Image Compression Using Vector
Quantization”, IEEE Transaction on Image Processing, Vol. 1, No. 3,
Julay 1992.
• Koza John R., “Genetic Programming: On the Programming of
Computers by Means of Natural Selection”, 1992.
• Kumar Rajeev, “Codebook Design for Vector Quantization Using
Multiobjective Genetic Algorithms”, Internet Paper,
http://www.rdg.ac.uk/~ssr97jdk/MPSN/Kumar1codebookMPSN.ps.gz,
1999.
• Liang K. M., C. M. Huang, and R. W. Harris, “Compression Between
Adaptive Search and Bit Allocation Algorithms for Image compression
Using Vector Quantizetion”, IEEE Transaction on Image Processing,
Vol. 4, No. 7, July 1995.
• Louis Sushil J., “Genetic Algorithm and Design”, Internet Paper,
http://www.cs.unr.edu/~sushil/papers/thesis/thesishtml/node2.html, 1997.

Damascus Univ. Journal Vol. (23)-No. (2)2007 Al- Husainy

 55

• Midanda-Trigueros Armando, Jesus-M. Val-Bueno, and Anibal-R.
Figueiras-Vidal, “The multiple Representation Problem in Genetic
Approaches for Index Assignment in Vector Quantization Codebook
Design”, Internet Paper,
http://www.ehis.nary.mil/tp/humanscience/papers/art18.pdf, 1999.
• Nasrabadi Nasser M., Robert A. King, “Image Coding Using Vector
Quantization: A Review”, IEEE Transaction on Communication, Vol. 36,
No. 8, Augest 1988.
• Ryu Tae-Wan, Christoph F. Eick, “MASSON: Discovering
Commonalties in Collection of Objects Using Genetic Programming”,
Internet Paper, URL: http://www.cs.uh.edu/~twryu.
• Xiaolin Wu and Jiang Wen, “Conditional entropy coding of VQ
indexes for image compression”, IEEE Transaction on Image Processing,
vol. 8, no. 8, pp. 1005-1013, Augest 1999.

Received,12 May, 2005.

