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Abstract 
Morphological analysis is an important step in natural language processing and its 

various applications. Each kind of these applications needs a certain balance between:  
performance, accuracy, and generality of solutions (i.e. getting all possible roots); while 
we focus on performance with a good accuracy in Information retrieval applications, 
we try to achieve high accuracy in systems like pos-tagger and machine translation, and 
both high accuracy and high generality in systems like language learning systems and 
Arabic lexical dictionaries. In this paper, we describe our approach to build a flexible 
and application oriented Arabic morphological analyzer; this approach is designed to 
satisfy various requirements of most applications which need morphological processing. 
It also provides a separate stage (Original Letters Detection Algorithm) which can be 
plugged easily in any Other morphological analyzer to improve its performance, and 
with no negative effect on its reliability.  
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1. Introduction 

The importance of Arabic language 
processing tools has dramatically increased  in 
the last decade because of the huge increment 
of Arabic digital content on the internet, and 
in internet users who speak Arabic. This fact 
increases the importance of creating language 
processing tools that can process this content, 
and interact with these users in better ways.  

Morphological analysis is an important 
step in Arabic language processing because of 
the complex morphological structure of 
Arabic where we have infixes along with 
prefixes and suffixes. In addition, each prefix 
or suffix may have its own syntactical tag; this 
means that we have to use the result of the 
morphological analysis stage in higher stages 
of Arabic processing like POS-tagging, 
syntactical analysis. For example, the Arabic 
word " " 

 

which means I wrote it- 
consists of a verb " ", a subject " ", and an 
object " ", so it is very useful to analyze the 
word to its "simplest" parts before we 
determine its syntactical tags. 

Moreover, morphological analysis is a 
basic step in various applications including 
text mining, information retrieval (IR), 
machine translation, automatic 
summarization, and Arabic learning systems. 
This diversity in applications is reflected as a  
variety in morphological analyzer's 
requirements; each application needs a certain 
balance between: 

high accuracy, 

high performance , 

generality in solutions i.e. finding all 
possible roots for each word. 

In IR applications, for example, the most 
important metric is performance. This does 
not mean that accuracy and generality are not 
important, but that we can accept intermediate 
values for these two metrics to improve the 
performance. On the other hand, it is very 
important to have a high accurate 
morphological analyzer in applications like 
machine translation. Moreover, there are 
many applications which need both generality 
and accuracy, like Arabic learning systems 

where we need to find all possible results, and 
only correct ones. 

Therefore, the effort spent on creating a 
reliable, efficient, and "flexible" Arabic 
morphological analyzer is justified by its 
reuse in many of these applications. 

In this paper, we will present an approach 
to build a high flexible Arabic morphological 
analyzer. Our morphological analyzer can be 
adjusted to satisfy the requirements of all kind 
of applications with simple parameterization.  

In section 2 we will present an overview of 
previous Arabic Morphology processing 
approaches. Section 3 will provide a 
description of Original Letters Detection 
Algorithm which we consider the main axe of 
our morphological analyzer. In section 4, we 
describe our flexible morphological analyzer. 
We provide our methodology to evaluate the 
approach in section 5, and we finally conclude 
our study in section 6. 
2.Overview of Previous Works 
Several approaches have been proposed for 
Arabic stemming; many papers survey these 
techniques (Al-Sughaiyer et al. 2004; Larkey 
et al, 2001; Darwish, 2002; Al-Fedaghi et al., 
1989). 
Buckwalter s morphological analyzer follows 
a dictionary-based approach (Buckwalter, 
2002), It divides the Arabic word into all 
possible three parts: prefix, stem, and suffix. 
Then the analyzer checks the correctness of 
each segmentation using three Arabic 
dictionaries (prefixes, stems, and suffixes), 
and three compatibility tables representing 
pairs of compatible morphological categories. 
This system provides high reliable results 
which leads it to be one of the most useful 
analyzer in NLP tasks. However, it needs a 
huge size of manually entered data which 
produces many limitations in performance, 
and generality of solutions. 
To avoid such limitations, a number of 
approaches depend on a strong linguistic base 
(Al-Bawab et al., 1994). These approaches 
give, in general, high accurate results, but 
need long time to construct and very strong 
linguistic base. 

Khoja and Garside (Khoja et al, 1999) 
developed an effective stemmer depending on 
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simpler linguistic rules, this approach (1) 
removes prefixes and suffixes, then (2) 
matches the remaining word against the 
patterns to extract the root, and finally (3) 
checks whether the extracted root is a valid 
root using an Arabic roots dictionary. Khoja 
stemmer is considered as a high performance 
stemmer, but it has some drawbacks such that 
removing prefixes and suffixes may lead to 
wrong solutions or a failure state. Moreover, it 
generates wrong roots for words which 
contain Ebdal cases like  (kawala). This 
stemmer gives one solution for each word, so 
it ignores other possible solutions. This fact 
makes the use of this stemmer in NLP 
applications that needs providing all possible 
solutions less effective. 

3. Original Letters Detection Algorithm 

The aim of Original Letters Detection 
Algorithm is to detect morphological 
information about each letter in an Arabic 
word to facilitate retrieving its root; this does 
not just include the detection of some original 
letters, i.e. the root letters, but also the 
detection of some additional letters, and the 
extraction of available morphological 
information about the rest of word letters. 

We emphasize here that this algorithm is 
not a stemming algorithm, but an auxiliary 
algorithm to help Arabic stemming process to 
retrieve more accurate results in better 
performance. However, experiments showed 
that this algorithm can retrieve the root for 
more than one third of the Arabic words. 

Original Letters Detection Algorithm 
provides in two stages very useful 
information, without using stored data. In the 
first stage, we will encode Arabic letters by 
their initial "morphological states" codes. In 
the second stage, we will apply 
"transformation rules" to change the current 
morphological states of letters to "better" and 
more precise ones to facilitate retrieving the 
root. 

In next paragraphs, we will describe, in 
detail, the two stages of this algorithm. 
3.1. First Stage (Initialization) 

In the first stage, we start from the static 
property for each Arabic letter to determine its 

initial "morphological state". Each 
morphological state defines a limited number 
of possibilities for the concerned letter. In 
fact, we have two kinds of morphological 
states: deterministic, and ambiguous. In the 
deterministic cases, we know if the concerned 
letter belongs to the root or not, while we do 
not know this information in the ambiguous 
cases (we will see later that there are several 
levels of ambiguity). 

For instance, we have a morphological 
state that says: the concerned letter surly 
belongs to the root. Of course, it is a 
deterministic case; we will call it O-Case. On 
the other hand, an ambiguous case says: if the 
concerned letter is an additional one, then it 
surly belongs to the prefixes side of the word, 
we will call this ambiguous state P-State. 
Another ambiguous case (the S-case) says: if 
the concerned letter is an additional one, then 
it surly belongs to the suffixes side of the 
word. And so on. 

A complete description of all the defined 
morphological states is shown in the Table-1. 

Table 1. Description of 
defined morphological states 

State Description 

O The concerned letter is surely part 
of the root. 

A The concerned letter is always 
considered as an additional letter. 

P The concerned letter can only be 
added in the prefix part. 

S The concerned letter can only be 
added in the suffix part. 

T The concerned letter can be added 
in both sides of the word, i.e. in 
the suffix part or in the prefix part. 

U The concerned letter can be added 
anywhere in the word. 

 

After encoding each letter by its initial 
morphological state code (Table-2), we obtain 
an encoded word that can be more useful for 
morphological analysis. The root can be 
extracted directly in some cases, like when we 
have 3 Os (or more) in the encoded word, and 
in this case they represent root letters. 
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Table 2. The initial 

morphological state of 
Arabic letter 

Arabic Letters Initial 
State 

 

O 

 

A 

 

P 

 

S 

 

T 

 

U 

3.1.1. Example: 

We can extract the root of the Arabic word 
' ' only by using this initial stage, but 
we can not do that in the case of the word  
' ' (Figure-1):      

3.2. Second Stage (Applying Transformation 
Rules) 

In fact, the six morphological states are 
located at four levels of information. Each 
level has certain values of ambiguity: 

O and A states are at the highest level of 
information (the deterministic level); because 
we can certainly determine that the concerned 
letter is from the root letters or not (zero-
ambiguity).  

Figure 2. Classifying morphological states 
depending on their ambiguity 

P and S states are from the second level of 
information, where we have two choices for 
the concerned letter: it is from the root letter, 
or it is an additional letter in one side of the 
word (the prefixes side for P state and the 
suffixes side for S state).               

T state is from the third level of 
information, where we have three choices for 
the concerned letter: it is from the root letter, 
it is additional letter in the prefixes side of the 
word, or it is from the suffixes side of the 
word. 

U state is at the lowest level of information, 
where all choices are available: from the root 
letter, additional in the prefixes side, 

      

U

 

O

 

S

 

P

 

O

 

T

   

?

          

U

 

U

 

O

 

P O

 

U

 

A

 

U

 

O

    

=> The Root is ' ' 

D
et

er
m

in
is

ti
c 

C
as

es

 

U

 
S

 
P

 
T

 
A

 
O

 

Fourth level 

Third level 

Second level 

First level 

A
m

bi
gu

ou
s 

Figure 1 . Applying the initial step on the word  ' ' is sufficient to 
retrieve the root, but is not sufficient on the word  ' '  
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additional in the suffixes side, or additional 
between the root letter. 

In the second stage, we will apply 
"transformation rules" which consider the 
context of each letter in the word. The aim of 
these rules is to move word's letters each from 
its morphological state to a higher one with 
less ambiguity. 

 We use the following transformation Rules*: 

R1) Change each 'P' after 'O' to 'O'. 

R2) Change each 'S' before 'O' to 'O'. 

R3) Change each 'P' after 'S' to 'O', and 
each 'S' before 'P' to 'O'.  

R4) Change each 'T' before 'P' to 'P'. 

R5) Change each 'T' before 'O' to 'P'.  

R6) Change each 'T' after 'S' to 'S'. 

R7) Change each 'T' after 'O' to 'S'. 

R8) Change the first letter to 'P' if it is 
not 'O' or 'A'. 

R9) Change the last letter to 'S' if it is not 
'O' or 'A'. 

R10) Cutting Rule: 

Let: nr: Maximum length of the root. 

no: Number of O letters in the encoded word. 

np: Index of the first P letter. 

ns: Index of the last S letter. 

So, for each letter at an index i where: 

[0, ] [ , ]p si n n len

 

and 

min(| |,| |) ( )p s r oi n i n n n

 

Change it to 'A'. 

These rules are concluded from the 
properties of each morphological state. For 
example, we can not have P-Letter after O-
Letter, because if so, all letters before this P 
should be part of the prefix. 

                                                          

 

* Note that when using the words "before" and "after" in the 
transformation rules, we consider the direction of Arabic 
reading (right to left).  

3.2.1. Example: 

For example, we can extract the root of ' ' 
immediately after applying this step (Figure-
3). 

Figure 3. Applying Original Letters 
Detection Algorithm on the word ' '  

3.3. Additional Improvement: 

We add some improvements to the last stages 
by adding the position conditions (Sonbol et 
al., 2008) when processing some letters. In 
fact, there is a maximum index for each letter 
when it is situated in a prefix. For example, 
the letter Baa ' ' can be part of a prefix only if 
it is situated in the first three letters like 
' '. And it can not be part of the prefix if 
it is not situated in the first three letters like 
' '. 

We can apply the same idea for suffixes, 
by using the minimum index in suffixes for 
each letter, but we found that this idea is not 
efficient for S letters (except Haa ' '). 

Table-3 presents the maximum index in 
prefix and the minimum index in suffix for 
certain letters (P, S, and T letters). The symbol 
'*' indicates that it is not effective to put such 
condition for this letter.  
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Table 3. Statistics about the position of 

some letters in the word 

The letter 

The 
maximum 
index in 
prefixes 

The 
minimum 
index in 
suffixes 

Baa ' ' 3 

 

Lam ' ' 5 

 

Seen ' ' 4 

 

Faa ' ' 2 

 

Haa ' ' 

 

3 

Kaf ' ' 3 * 

Noon ' ' * * 

Meem ' ' * * 

In addition, the maximum length for any 
prefix or suffix is (len-2) where len is the 
length of the word. For example, this 
maximum is satisfied in ' ' where the prefix 
is ' ' and in '  where the suffix is ' '. 

3.4. The Effectiveness of Applying 
Original Letters Detection 
Algorithm in finding roots: 

To prove the effectiveness of Original Letters 
Detection Algorithm we will describe the 
distributions of Arabic words after applying 
this algorithm. 

Our statistics on about 375000 words show 
that we can divide Arabic words after 
applying Original Letters Detection Algorithm 
to three parts (Figure-4): 
30% of Arabic words are solved 
directly after applying Original letters 
detection algorithm, 
30% of Arabic words represent 
particles, foreign words, and other 
static words, 
40% of Arabic words are solved 
partially after applying Original letters 
detection algorithms, i.e. we found part 
of root's letters. Most of this part 
(about 25% of Arabic words) 
represents words that contain two 
original letters. 

It is important here to emphasize that each 
original letter (O) adds more constraints on 
the process of root extraction; this means 
retrieving more accurate result. 

Figure 4-The Distribution of Arabic Words 
after Applying Original Letters Detection 

Algorithm 
In addition, we evaluate Original Letters 

Detection Algorithm by checking the 
correctness of the Arabic words classified in 
the first part (where we find the root directly). 
The results (Table-4) show that we retrieve a 
correct root for about 99% of the words. 

Table 4- Original Letters Detection 
Algorithm's Accuracy 

No. of 
words 

Accuracy 
of 

Tri-root 
words 

Accuracy of 
NonTri-root 

words 

Total 
Accuracy 

3200 99.7% 68.7% 98.9% 

After a study of errors states, we 
concluded that: 

 

About 75% of errors are because of 
words from non tri-root. 

 

Some errors related to Ebdal 
problem. 

Depending on the last experiments, we 
can  conclude that Original Letters 
Detection Algorithm is very useful to 
improve both the performance and the 
accuracy of a morphological analyzer. 

 

Particles, 
Foreign 
Words 
30%  

Two-O 
25% 

One-O 
10% 

Zero-O 
5% Three-O 

30% 
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4. Our Approach for an Arabic 

Morphological Analyzer 

In this section, we will present our approach 
for a flexible and application oriented Arabic 
morphological analyzer. This flexibility is due 
to the Original Letters Detection Algorithm, 
and to other techniques that we use to achieve 
a balance between accuracy, performance, and 
generality. 

4.1.  Algorithm: 

We summarize our approach by the following 
steps: 

Step1: Check if the word is a particle or a 
foreign word using a dictionary of 
particles and common foreign words. 

Step2: Apply normalization steps: 

a. Remove diacritics, and the Shadda. 

b. Replace all distinct forms of Hamza with 
( ). 

c. Replace Madda ( ) with Hamza and Alef (

). 

d. Replace Alef Maksura ( ) with Alef ( ). 

Step3: Apply Original Letters Detection 
Algorithm. 

Step4: Generate a bank of solutions which 
consist of each sequence of letters 
satisfying the following conditions: 

a. Contains all Original letters (letters in the 
state O). 

b. Does not contain any Additional letters 
(letters in the state A). 

c. The pre-string is valid. We define the pre-
string as the string of letters that are 
situated before the first root's letter in the 
word (which is called Faa AL-Fel). For 
example, in the word ' ' we consider 

' ' as a pre-String, while the classical 

prefix is only ' '. 

d. The suf-string is valid. We define the suf-
string as the string of letters that are 
found after the last root's letter in the 

word (which is called Lam AL-Fel). We 
consider a string as a valid suf-string if it 
satisfies the following conditions: 

i. There is no letters in the state P.  

ii. If we have the letter Meem ' ' in the suf-

string, it should be one of the following 
suf-string: { } . 

iii. If we have the letter Taa Marbuta ' ' in the 

suffix, it should be one of the following 
suffixes: }{ 

iv. If we have the letter Hamza in the suffix, 
the previous letter of Hamza should be 
Alef ' '. 

Step5: Generate solutions that represent 
shadda case, elimination case, and non-tri 
roots (optional step). 

Step6: Correcting solutions in the bank of 
solution: we can make a balance between 
the three metrics ( reliability, 
performance, generality) by applying the 
next optional steps: 

a. Pattern existence test using a list of 
available patterns. 

b. Root existence test using a list of available 
roots. 

c. Apply Ebdal and Ealal rules: we do this 
step only for invalid roots to check if it is 
invalid because of a special case.  

d. Derivation test: in this test we try to derive 
the original word from the root using 
Arabic derivation rules. To achieve this, 
we use SARF system (Al-Bawab et al., 
2007). However, this test affects clearly 
the performance of our morphological 
analyzer, but it still an optional check to 
provide the possibility of using this 
system in high accurate applications. 

4.2. Controlling Technique: 

To control the balance point (accuracy, 
performance, generality) we use the 
next two techniques: 
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Adding some parameters to control the 
different modules of the system. We 
add 11 parameters (Table-5). 

Ranking the solutions by its "accuracy" 

.Table 5- Morphological Analyzer's 
parameters 

Description 
Value's 
type 

Parameter

 

ID 

Do StopWord 
Test or not. 

Boolean Stp 1 

Do 
ForignWords 
Test or not. 

Boolean Frg 2 

Do 
RootExistance 
Test or not. 

Boolean Rot 3 

Do Patterns 
Test or not. Boolean Pat 4 

Do Ebdal Test 
or not. 

Boolean Ebd 5 

Do Ealal Test 
or not. Boolean Eal 6 

Do Shadda Test 
or not. 

Boolean Shd 7 

Do Eliminating 
Test or not. 

Boolean Elm 8 

Do Derivation 
Test or not 

Boolean Drv 9 

Satisfying the 
best solution or 
not. 

Boolean Bst 10 

ROOT_MAX_
LENGTH 

Integer (3, 
4, or 5) 

RML 11 

5. Evaluation: 
The main goal of this evaluation is to 

prove the flexibility of our approach, i.e. to 
prove that it can satisfy the needs of most 
applications. To do this, we will describe our 
test corpora, choose evaluation metrics, and 
choose some states for our morphological 
analyzer (providing that each state represents 
certain values of  morphological analyzers' 
parameters). For each state, we will evaluate 
chosen metrics on the test corpora (or on a 
part of it). 

5.1. Evaluation metrics: 
We choose our metrics to predict how our 

morphological analyzer acts in different kinds 
of applications. These metrics include 
performance, accuracy, and contextual 
metrics: 
Speed of processing: we are interested 
here in the performance comparison 
between our morphological analyzer in 

its different states and other analyzers, 
and in the relation between the 
performance and other metrics. 
Accuracy of the first solution. 
Accuracy of all solutions. 
Contextual correctness of the first 
solution. 
Existence of the contextual correct 
solution in the solutions. 

5.2. Test corpora: 
We conducted our experiments using three 
different corpuses: 

The first corpus consists of a lists of word-
root pairs (167162 pairs) extracted from 
HIAST Arabic lexical database (Al-Attar et 
al., 2007) which covers the morphological 
categories in Arabic (verbs, nouns, infinitives, 
plural of nouns, analogous adjectives,  
exaggeration forms of active participle, non-
standard plural etc). Because of this variety, 
this corpus has an important role to determine 
if a morphological analyzer acts with the same 
effectiveness on all morphological categories. 

The second corpus is a collection of 585 
Arabic articles covering different categories 
(politics, economy, culture, science and 
technology, and sport). This corpus consists of 
more than 375000 words. We will use this 
corpus to evaluate the first metric (speed of 
processing). 

The third corpus is a manually verified 
sample consists of five articles (more than 
2000 words). We will use this corpus to 
evaluate the contextual metrics (fourth and 
fifth ones). 

5.3. Chosen states for the 
morphological analyzer: 

As we mentioned later, we have ten 
parameters to control the balance point 
between performance, accuracy, and 
generality. In this section, we will choose the 
most important states that represent our 
system's capability to cover the needs of most 
NLP applications. 

To name morphological analyzers' states, 
we follow the form Rn(+)(a|b|c) where: 

 

Rn means that we set the values of the 
first nth parameters (according to the 
numbers in Table-5) to true. For 
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example, R3 means that the values of the 
parameters 1, 2, and 3 are true. 

 
We add '+' to the form if we set Bst 
parameter to true. 

 

We add a letter to represent the value of 
the root maximum length RML (a for 3, 
b for 4, and c for 5), if we do not add 
anything RML=3. 

Table-6 shows the states we choose in the 
evaluation and their names; we represent the 
values of Bst and RML in the first two rows, 
and the first eight columns for the first eight 
parameters where we shadow the field only if 
it is true. 

Table 6- The most important states in the 
morphological analyzer 

3 5 RML

         

True False

 

Bst         

R0+ R0c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R1+ R1c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R2+ R2c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R3+ R3c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R4+ R4c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R5+ R5c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R6+ R6c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R7+ R7c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R8+ R8c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

R9+ R9c Drv Elm

 

Shd Ela Ebd Pat Rot Frg Stp 

5.4. Results:  

a- Performance, Accuracy, and Generality 
of solutions: 

We evaluate our morphological analyzer 
using the last three corpora. Figure-5 shows 
the most important balance points we 
achieved using our analyzer. 

The Horizontal axe represents the 
processing speed, while the vertical axe 
represents the accuracy. Filled circles with 
bold names represent Rn states in which we 
try to find all possible solutions, where 
empty circles represent Rn+ states in which 
we get the best solution. In this way we 
represent the accuracy, performance, and 
generality (for more detailed results: see 
Table-7, and Table-8). 

In addition, we place some previous 
related works (Buckwalter and Khoja) in the 
same figure to compare all approaches.  

In figure 5, we can see clearly that our 
approach provides different balance points 
which can support the needs of most 
applications. It provide states like (R0+, R1+, 
R2+, R3+, R4+) which have the advantage of 
high performance and outperform the 
performance of most others stemmers. 

States R7+, R6+, R5+ are high 
performance and high accurate balance 
points. Their accuracy (about 97%) can be 
compared to high accurate rule-based 
stemmers like khoja one, but we achieve this 
accuracy with four times better 
performance. 

Rn states outperform Rn+ ones in 
generality. We did not notice much difference in 
accuracy in states R0, R1, R2, R3, R4 where the 
generality affects mainly the performance (as we 
do not cover solutions that represent elimination, 
shadda, and Ealal cases).  

 

Figure 5- Most important balance points in 
our morphological analyzer and its position 

according to Koja and Buckwalter analyzers. 
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R5+, R6+, R7+ solve these problems 

without great effect on the performance, and 
still outperform other stemmers, because in 
these states we look for the best solution 
which is not one of these three difficult cases 
for most Arabic words. 

In addition, we provide R5, R6, R7, R8 in 
which we try to include all right solutions 
even those representing elimination and 
shadda, which affects the accuracy. For 
example, the accuracy of R7 (where we solve 
all special cases) is about 87%. We can use 
these states for learning systems or lexical 
dictionaries where the stored data in these 
systems help to correct the result and raise 
the accuracy. But the main advantages here 
are: the high performance (comparing to 
dictionary-based system) and the 
achievement of all correct solutions. 

On the other hand, we provide state R9 
which focus mainly on high accuracy and 
high generality (we can conclude all the 
correct solutions and only the correct solutions 
with an accuracy exceeding 99%) i.e. we delete 
most wrong solutions which are concluded at 
state R8. This state represents the best choice 
for applications like learning systems, corpus 
building, machine translation and other 
critical systems. 

Table 7- The Accuracy of the 
different states  

The 
State 

The Accuracy of 
Rn+ 

(Finding the best 
solution only) 

The Accuracy of Rnc 
(Finding all possible 

solutions) 

R0 57.30% 54.30% 
R1 64.70% 64.45% 
R2 78.90% 75.50% 
R3 97.30% 97.30% 
R4 97.70% 97.60% 
R5 97.20% 94.80% 
R6 96.80% 94.80% 
R7 96.90% 90.80% 
R8 96.90% 87.10% 
R9 99.90% 99.10% 

   
Table 8- The Performance of the 
different states (words/seconds) 

The State

 
The Performance of 

Rn+ 

(Finding the best 
solution only) 

The Performance of Rnc 

 

(Finding all possible 
solutions) 

R0 78000 66000 

R1 60500 53000 

R2 51500 46000 

R3 50000 43000 

R4 43500 35000 

R5 43000 34000 

R6 39000 31000 

R7 29000 23000 

R8 19000 13000 

R9 9000 1000 

 

b- Contextual Correctness: 

Moreover, we are interested in 
contextual evaluation which is very 
important in most applications. Table-9 
shows that the contextual correctness of the 
first solution in most states of our analyzer 
is more than 96%. These values do not 
differ a lot from the last values in accuracy 
test because we found that more than 99.6% 
of correct analyses are contextually correct 
analysis.  

In addition, we have tested the existence 
of the contextual correct solution in the 
output. The results are presented in the 
Table -1.      
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Table 9- The Contextual Correctness of the 

Different States  

The 
State

 
The Contextual 

Correctness of Rn+ 

(The Contextual 
Correctness  

for the best solution) 

The Contextual Correctness 
of Rnc 

(Finding the Contextual 
Correct solution in the 

solutions) 

R0 56.90% 97.50% 

R1 64.10% 97.50% 

R2 78.88% 97.50% 

R3 97.10% 97.50% 

R4 97.50% 97.50% 

R5 97.00% 97.57% 

R6 96.60% 99.20% 

R7 96.70% 99.67% 

R8 96.60% 100.00%    

c- Number of solutions & Failure 
percentage: 

To complete our evaluation, we do some 
statistics about the number of solutions and 
the failure percentage in each case. The failure 
in R3 state is about 8%, because we do not 
process any special cases. Such state is useful 
in IR applications where we can accept these 
values. The failure is decreased gradually with 
the processing of special cases. We get 
approximately zero-failure in R7 and R8 
states where we test special cases. 

On the other hand, the average number of 
solutions (without diacritics) is not exceeding 
3 solutions even when we look for a 
maximum percentage of generality, contextual 
correctness and accuracy (R8). We consider 
this result as an advantage because we do not 
need a big number of solutions to get the 
correct ones.   

Table 10- Statistics About  the Number Of 
Retrieved Solutions ( without diacritics) 

Number of Solutions for a Word 
The 

State 
zero

 

one

 

two

 

three

 

more 

Average 

number of 

solutions 

R3 8% 83%

 

9% 1% 0% 1.11 

R4 8% 84%

 

8% 0% 0% 1.09 

R5 8% 84%

 

8% 0% 0% 1.09 

R6 1% 78%

 

15%

 

6% 0% 1.27 

R7 0% 61%

 

23%

 

12%

 

3% 1.59 

R8 0% 56%

 

6% 8% 31% 2.53 

  

6. Conclusion 

In this paper, we propose Original Letters 
Detection Algorithm as an auxiliary algorithm 
to improve the accuracy and the performance 
of any stemmer. Using this algorithm, we 
present an Application Oriented Arabic 
morphological analyzer which can satisfy the 
needs of most kinds of applications including 
those which need high performance, high 
accuracy, or generality in solutions. 

7. Future Works 

Our future work will focus on the use of 
this morphological analyzer in IR applications 
to evaluate its performance in the relevant 
tasks. In addition, we started to build an 
Arabic Part of Speech Tagger, where using a 
good morphological analyzer helps getting 
better results.  
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Appendix:  sample outputs from Buckwalter system, Khoja system, and our system. 

1- The input is  /sakah/ 

B
uk

w
al

te
r 

INPUT STRING: 

 
LOOK-UP WORD: sAqAh 

  SOLUTION 1: (sAqAhu) [sAqaY_1] sAqA/VERB_PERFECT+(null)/PVSUFF_SUBJ:3MS+hu/PVSUFF_DO:3MS 

     (GLOSS):  + give to drink + he/it <verb> it/him 

  SOLUTION 2: (sAqAhu) [sAq-u_1] sAq/VERB_PERFECT+A/PVSUFF_SUBJ:3MD+hu/PVSUFF_DO:3MS 

     (GLOSS):  + drive/lead/direct + they (both) <verb> it/him 

  SOLUTION 3: (sAqAhu) [sAq_1] sAq/NOUN+A/NSUFF_MASC_DU_NOM+hu/POSS_PRON_3MS 

     (GLOSS):  + leg + its/his two 

K
ho

ja
 

  

ROOT 

O
ur

 a
pp

ro
ac

h 
(R

9)
  

details suf state root pattern type pre vocalized 

        

//

        

////

        

////

        

2- The input is  /astaf/ 

B
uk

w
al

te
r 

INPUT STRING: 

 

LOOK-UP WORD: >STf 
  SOLUTION 1: (>aSoTaf~) [{iSoTaf~_1] >a/IV1S+SoTaf~/VERB_IMPERFECT 
     (GLOSS): I + get in line/stand in formation +  
  SOLUTION 2: (>aSoTaf) [{iSoTafaY_1] >a/IV1S+SoTaf/VERB_IMPERFECT 
     (GLOSS): I + choose/select + 

K
ho

ja
 

  

NOT STEMMED 

O
ur

 a
pp

ro
ac

h 
(R

9)
  

details suf state root pattern type pre vocalized 
////

        

////

        

////

        

////
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