. . - . .

1

3 2

(Sliding Mode Control) SMC

(Photovoltaic Systems) PV's

Maximum Tracking) MPPT

.(Power Point

AVR μç

.(18~40V)

1

.

. 3

. – 4

				BASCOM		-
				HexDec.		
	Proteus					
	21%	()			
			1.5Sec	53%	()
I-V						
SMC			.PV's			
	.MPPT	,				

_

-1

(Proportional) P))

PI (Differential) D (Integral) I

((PID

.

PI

P [1]

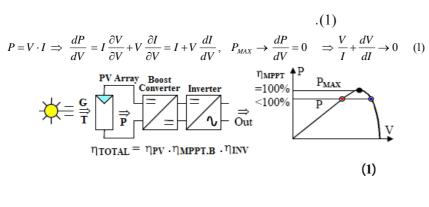
^[2] MPPT

AT90S4433 AVR

SIMULINK, Pspice,)
. (BASCOM, Proteus

(1) (1) (1) (1) (1)

•


-2 .MPPTSMC . 1 .DC-DC Boost .2 Converter .3 SMC . DC-DC .4 .5 .SMC .6 .7 .8 الأعظمية MPPT **SMC** 1-2 (1) Converter PV .Inverter .[2]

Boost Converter ()

_

.MPPT

[3]

[4]

SMC

MPPT

PV Array SMC

(Un-periodic (True) MPPT

(Fast Convergence Speed) Tuning)

(Medium Implementation Complexity)

1 37

SMC

.[5]

[6]

(G)

(T)

MPPT Technique	PV Array Dependent?	True MPPT?	Analog or Digital?	Periodic Tuning?	Convergence Speed	Implementation Complexity	Sensed Parameters
Hill-climbing/P&O	No	Yes	Both	No	Varies	Low	Voltage, Current
IncCond	No	Yes	Digital	No	Varies	Medium	Voltage, Current
Fractional Voc	Yes	No	Both	Yes	Medium	Low	Voltage
Fractional Isc	Yes	No	Both	Yes	Medium	Medium	Current
Fuzzy Logic Control	Yes	Yes	Digital	Yes	Fast	High	Varies
Neural Network	Yes	Yes	Digital	Yes	Fast	High	Varies
RCC	No	Yes	Analog	No	Fast	Low	Voltage, Current
Current Sweep	Yes	Yes	Digital	Yes	Slow	High	Voltage, Current
DC Link Capacitor Droop Control	No	No.	Both	No	Medium	Low	Voltage
Load I or V Maximization	No	No	Analog	No	Fast	Low	Voltage, Current
dP/dV or dP/dI Feedback Control	No	Yes	Digital	No	Fast	Medium	Voltage, Current
Array Reconfiguration	Yes	No	Digital	Yes	Slow	High	Voltage, Current
Linear Current Control	Yes	No	Digital	Yes	Fast	Medium	Irradiance
$I_{MPP} & V_{MPP}$ Computation	Yes	Yes	Digital	Yes	N/A	Medium	Irradiance, Temperature
State-based MPPT	Yes	Yes	Both	Yes	Fast	High	Voltage, Current
OCC MPPT	Yes	No	Both	Yes	Fast	Medium	Current
BFV	Yes	No	Both	Yes	N/A	Low	None
LRCM	Yes	No	Digital	No	N/A	High	Voltage, Current
Slide Control	No.	Yes	Digital	No	Fast	Medium	Voltage, Current

(1)

SMC

Sliding Surface

.S(x)=0

Slide Trajectory الانزلاق

.(2) Sliding Line

.(2) [4] Control Law

2008-

)
$$DC-DC$$

$$u I V$$

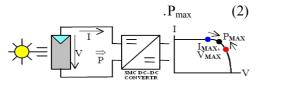
$$(1\&0)$$

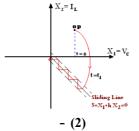
$$.off on$$

$$\begin{cases} u=0 & S\geq 0\\ u=1 & S<0 \end{cases}$$

$$S = dP/dV = I + V dI/dV$$

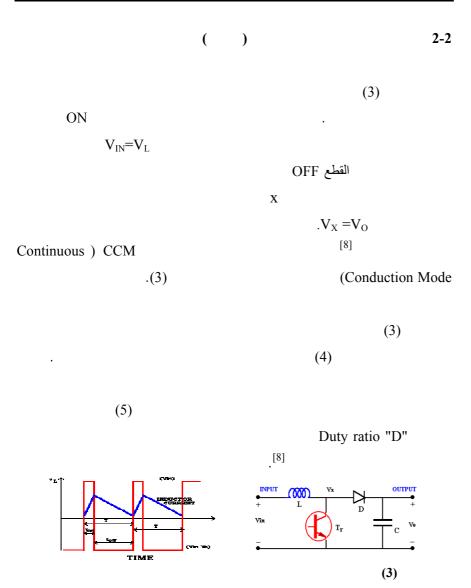
$$(2)$$


OP .(2)


Pmax

[7] MPPT

OP


I-(2)

V

 $.X_{2}\&X_{1}$ MPPT .SMC

2008-

$$\int_{0}^{T_{s}} V_{L} \cdot dt = 0 \quad \Rightarrow \quad V_{in} t_{on} + (V_{in} - V_{o}) t_{off} = 0$$

$$\frac{V_{o}}{V_{in}} = \frac{T}{t_{off}} = \frac{1}{1 - D}$$
(4)
$$\frac{I_{o}}{I_{in}} = 1 - D$$
(5) ; $1 > D \ge 0$

$$\frac{V_o}{V_{in}} = \frac{T}{t_{off}} = \frac{1}{1 - D}$$

3-2

(4)

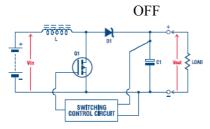
.Power MosFET

^[9] PV

40V

Duty-cycle

Duty cycle

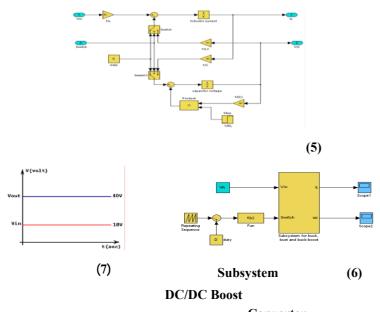

CCM

)

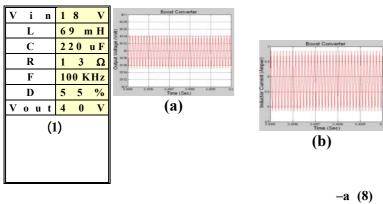
ON

(6)

.(7)

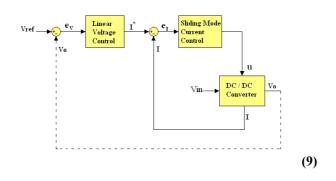


(4)


$$\begin{cases}
\frac{di_L}{dt} = \frac{1}{L}(V_{in}) \\
\frac{dv_o}{dt} = \frac{1}{C}(-\frac{v_o}{R})
\end{cases}, \quad 0 < t < D, \quad Q : ON \tag{6}$$

```
, \quad D < t < T \quad , \quad Q : OFF
                                                                (7)
 SIMULINK^{TM}
                                (6,7)
                                                               (5)
                     I_L(t)\&V_C(t)
(5)
                                           SIMULINK^{TM} \\
                                              [10,11] Subsystem
     )
                                    SMC
          (5)
                                                      V_{O} \hspace{1cm} V_{IN}
                                                             I_L \!\!=\!\! I_{IN} \; \& \; V_C \!\!=\!\! V_O
                                         .(6)
                                                                      Switch
                      (6)
                                                 Subsystem
             /D/
                                        Fun
             Switch
                                     (7)
                                                          .D \times T_S
                                                                                    T_S
                                                                          40V
(
           )
                                                                            .1
                              0.43%
                                                       .(8-a,8-b)
```

. . - . .


Converter

0.43% (P-P) -b

```
DC-DC
                       SMC
                                                              4-2
                                                  (9)
                  .[1,6,12] SMC
                                            (9)
) e<sub>V</sub>
               .I^*
                                     (V_{ref}
                                                              V_{\rm O}
              (I*
                                    I_{L}
                                                              ) e<sub>I</sub>
                  / u /
                                                            SMC
                                 (2)
                           )
```

```
(9) \hspace{3.1cm} (2) \hspace{3.1cm} (2) \hspace{3.1cm} . \hspace{3.1cm} . \hspace{3.1cm} (10) \hspace{3.1cm} SIMULINK^{TM} \\ \tau \hspace{3.1cm} ) \hspace{3.1cm} Integrated \hspace{3.1cm} Regulator \\ e_{V} \hspace{3.1cm} (k_{1} \hspace{3.1cm} \\ \hspace{3.1cm} (1\&0) \hspace{3.1cm} (k_{2}) \hspace{3.1cm} \\ \hspace{3.1cm} (Switch \hspace{1mm} Point) \hspace{3.1cm} SP_{1} \hspace{3.1cm} ) \hspace{3.1cm} (SP_{2} \hspace{3.1cm} )
```


SMC SIMULINKTM (10)

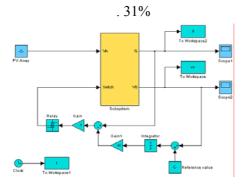
.SMC

) (10) SMC ($(SP_2, SP_1, k_2, k_1, \tau)$.(5)

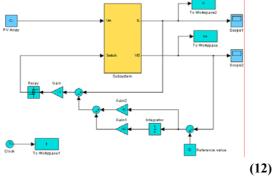
(9) (10)

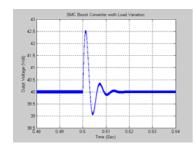
(11) (5)

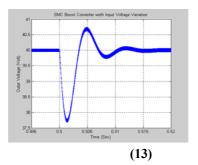
.18V 40V SMC (13) 39V 42.5 40V 40V .88% 15Ω 8Ω (13) 16V 31% .21V 15mSec PV's) overshooting) (Inverter DC-AC I-V PV's MPPT overshooting [6,13,14] I P SMC I ΡI 2008-

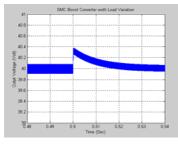

P (12)

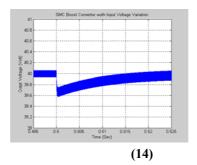
.SMC


SMC) overshooting


(14)


.88%


(11)



SMC

SMC

0.5V

I-V (14) .

(12) 35mSec .(11)

)

. (

overshooting

. response speed

35mSec

MATLAB

- - .2.5GHz

4MHz

1.5Sec

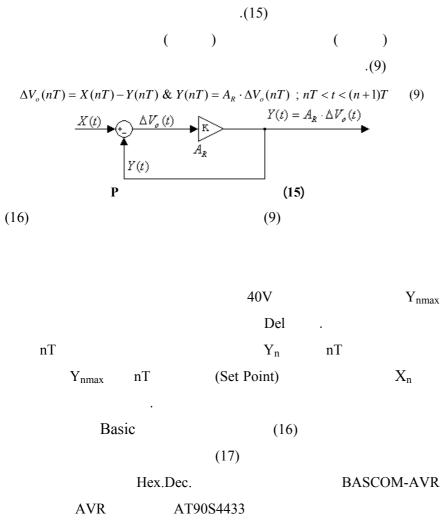
.

6-2 SMC

Proportional Controller 1-6-2

()

SMC . ΔV_{0}

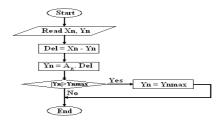

(8) (12)

X(t) Y(t) ΔV_{O} A_{R}

.Set Point

.500 1 011

 $\Delta V_o(t) = X(t) - Y(t) \qquad \& \qquad Y(t) = A_R \cdot \Delta V_o(t) \tag{8}$



μç

_

Proteus

.SMC

P

(16)

\$regfile = "4433def.dat"

\$crystal = 4MHz

\$sim

Sub Reg_P

Del = Sz - S

If Val(Del) > 40 Then Del = 40

If Val(Del) < -40 Then Del = -40

Wzf=KctP*Del

If Val(Wzf) > Wmax Then Wzf =

Wmax

If Val(Wzf) < -Wmax Then Wzf =

-Wmax

End Sub

P

(17)

Proportional - Integral Controller

2-6-2

PΙ

BASCOM-AVR

(12)

SMC

. 0.45V 3.5V Overshooting (10) PI

T Y(t)
$$\Delta V_0(t)$$
 A_R
. (Set Point) $X(t)$

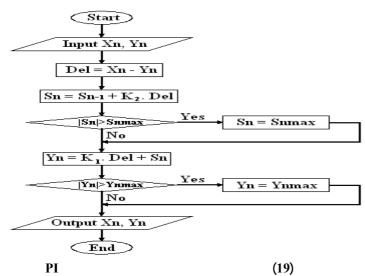
$$\Delta V_o(t) = X(t) - Y(t) \quad \because \quad Y(t) = A_R \cdot [\Delta V_o(t) + \frac{1}{T} \int_0^t \Delta V_o \, dt] \qquad (10)$$

.(11) $X(t) \longrightarrow \begin{array}{c} \Delta V_o(t) \longrightarrow \begin{array}{c} Cain = \frac{1}{T} & Integrator = \frac{1}{T} \int \Delta V_o \, dt \\ \hline Y(t) \longrightarrow \begin{array}{c} V(t) \longrightarrow \begin{array}{c} A_K \cdot [\Delta V_o(t) + \frac{1}{T} \int \Delta V_o \, dt \\ \hline Y(t) = A_K \cdot [\Delta V_o(t) + \frac{1}{T} \int \Delta V_o \, dt \\ \hline \end{array}$ $K_1 = A_R \quad , \quad K_2 = \frac{K_1}{T} . T$ $\Delta V_o(nT) = X(nT) - Y(nT)$ $Y(nT) = K_1 . \Delta V_o(nT) + K_2 . \sum_{i=1}^n \Delta V_o(iT) \quad ; \quad nT < t < (n+1)T$ $S_n = K_2 . \sum_{i=1}^n \Delta V_o(iT) \quad \& \quad S_{n-1} = K_2 . \sum_{i=1}^{n-1} \Delta V_o(iT)$ $S_n = K_2 . \sum_{i=1}^n \Delta V_o(iT) + K_2 . \Delta V_o(nT) \quad \Rightarrow \quad S_n = S_{n-1} + K_2 . \Delta V_o(nT)$ $\Rightarrow \quad Y(nT) = K_1 . \Delta V_o(nT) + S_{n-1} + K_2 . \Delta V_o(nT) \quad (11)$

 Y_{nmax}

 S_n

 $.\\ S_{nmax}$


(19)

(20) Basic

Hex.Dec. BASCOM-AVR

AT90S4433

.PI Proteus 6.5

\$regfile = "4433def.dat"	Del(i) = Val Sz(i)-Val S(i)
\$crystal = 4MHz	If $Del(i) > 40$ Then $Del(i) = 40$
\$sim	If $Del(i) < -40$ Then $Del(i) = -40$
Sub Reg_PI	Sint(i) = Sint(i) + Del(i) * K2
Do	If Sin(i) > Sintmax Then Sint(i) =
Set Portd.5	Sintmax
Waitus 3.11	Is $Sint(i) < -Sintmax$ Then $Sint(i) = -$
Reset Portd.5	Sintmax
Waitus 6.89	Wzf(i) = K1 * Del(i) + Sint(i)
Loop	If $Wzf(i) > Wmax$ Then $Wzf(i) =$
For $i = 1$ to n	Wmax
	If $Wzf(i) < -Wmax$ Then $Wzf(i) = -$
	Wmax
	Next
	End Sub

BASCOM-AVR PI (20)

7-2

: (21)
: 1-7-2
CMOS AT90S4433 Microcontroller
.8-Bit AVR
SMC (16,19)
.
AT90S4433
[16] 1MHz 1MIPS

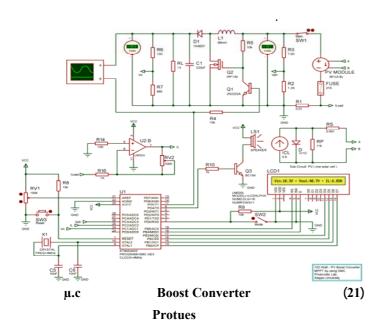
Optimize

 $\mu \varsigma \qquad \qquad .PV \lq s$

. . -

3.4mA 25C° 5V 4MHz

AVR-AT90S4433 .17mW


Debug Assembler [16]

: Emulator Simulator

MATLAB 7.1/SIMULINKTM, OrCAD 9.1/Pspice, AVR-BASCOM,

Proteus 6.5

Hardware Software

<u>: 2-7-2</u>

.

Power MOSFET

[13] 50 () BJT (100KHz) 100KHz (1) IRF130 $r_d=0.22\Omega$ $I_D=12A$ $t_{rr}=80nS$ $V_{DS}=65V$ ferrite .[14] L_1 SIMULINKTM 5.67A L_1 =69mH 102W 18V (8-a)^[14] 1.2 $I_L = 6.8A$

2008-

6.35mm×12.7mm×20.3mm

$$A_e$$
=257.81 mm² B_{max} =2430mT N * (13) A_L (12)

[8]

$$A_{L} = \frac{L}{N^{2}}$$
 (12) $B_{\text{max}} = \frac{N \cdot I_{P} \cdot A_{L}}{A_{e}}$ (13)
 (13)
 . 750

$$B_{\text{max}} = \frac{I_P \cdot L}{N \cdot A_e} \Rightarrow N = \frac{I_P \cdot L}{B_{\text{max}} \cdot A_e}$$

$$\Rightarrow N = \frac{6.8 \times 69 \times 10^{-3}}{2430 \times 10^{-3} \times 257.81 \times 10^{-6}} = 748.94 \text{ Turns} \approx 750 \text{ Turns}$$

4-7-2

Fast Recovery Diodes

[13,14]

.85V 15A MBR1045

Equivalent Series) ESR

Tantalum (Resistance [13,14]

. . . .

(1)
$$C_1=220uF$$
 .50V

.(14)

$$V_{rms,ripple} = \frac{\Delta V}{2\sqrt{2}} = \frac{D \times (V_{o,avg} - V_{in})}{(16 \times \sqrt{2}) f^2 LC}$$
(14)

(14) .(8-b) SIMULINKTM

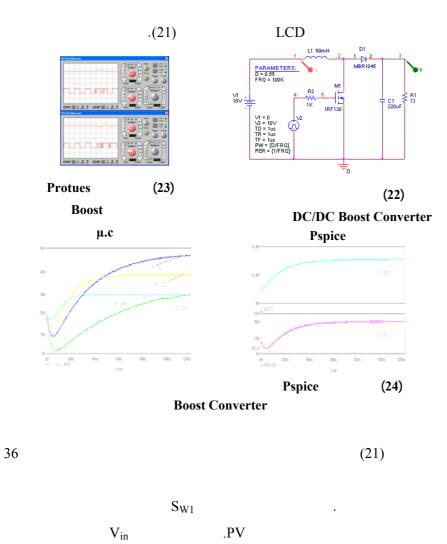
$$V_{rms,ripple} = \frac{0.55 \times (40 - 18)}{(16 \times \sqrt{2})(100 \times 10^{3})^{2} \times 69 \times 10^{-3} \times 220 \times 10^{-6}} = 3.52 \times 10^{-6} V$$
:LCD 6-7-2

LM020L، 16

CMOS (189) ASCII

Pixel (7×5)

_


5V 8 4 8-2 Pspice $SIMULINK^{TM} \\$) MATLAB-J (22) الـPSpice (24)) (.(22) (24) () 40V $I_L = 6.8A$ D(24) DTransent Step Parameter 0.6 0.1 0.3 .(4) (23)

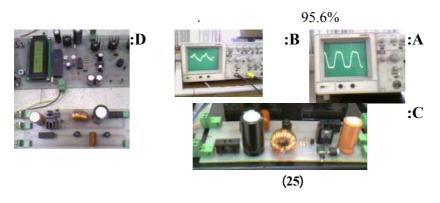
(23) Proteus 6.5

AT90S4433 /11/

(23) 21%

SMC

2008-


 $R_2\&R_3$ AD_3 .AT90S4433 R_6 & R_7 AD_1 AD_2 (21) $0.01\Omega \qquad R_1$ (21) LM324 $. AD_2 \\$ 0.057V R_1 $(V_{ref}$) 2.5V $R_{V2} \\$ LCD .(21) 6.8A Start/Stop $S_{W2} \\$ LCD

(Mode S_{W3} $.\\ S_{W2}$

 R_{V1} Reset

2.5V V_{ref}

[18] (25) (A) MPPT (C) (B) (D) Boost **Boost Converter** Board Boost Inverter Excel (26) .(27,26) 20.9V 17.8V (27) 40V

Power & Efficiency Characteristic

110.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
10

PV's MPPT

40V .(8-13)Ω (16-21)V *

0.5V overshooting
) () .(

*

53% 21% 1.5Sec 95.6% (

.

References

- [1] Ahmed, M., Kuisma, M., Silventoinen, P., "Sliding Mode Control for Half-Wave Zero Current Switching Quasi-Resonant Buck Converter". 4th Nordic Workshop on Power and Industrial Electronics, NORPIE'04, Norway 2004.
- [2] T. Esram, J.W. Kimball, T. Krein, L. P. Chapman; "Dynamic Maximum Power Pint Tracking of Photovoltaic Array Using Ripple Correlation Control", IEEE Transactions on Power Electronics, Vol. 21, No. 5, Sept. 2006
- [3] M. Jantsch1, M. Real, H. Häberlin, C. Whitaker, K. Kurokawa, G. Blässer, P. Kremer, C.W.G. Verhoeve, "Measurement of PV Maximum Power Point Tracking Performance", Netherlands Energy Research Foundation ECN,2001.
- [4] T. Esram, L. P. Chapman; "Comparison of Photovoltaic Array Maximum Power Pint Tracking Techiques", University of Illinois, Urbana, 2004.
- [5] V. F. Pires, J. A. Silva, "Teaching Nonlinear Modeling, Simulation, and Control of Electronic Power Converters Using MATLAB/SIMULINKTM", IEEE Transactions on Education, vol. 45, no. 3, August 2002.
- [6] Faruk Bilalovic, Osman Music, and Asif Sabanovic, "Buck Converter Regulator Operating in the Sliding Mode Control", "Proc. Seventh International PCI83" Conference, 2004, PP. 331-340.
- [7] J.Mahdavi, A.Emadi, H.A.Toliyat, "Application of State Space Averaging Method to Sliding Mode Control of PWM DC/DC Converters", IEEE Industry Applications Society October 1997.
- [8] MOHAN N., UNDELAND T. M., ROBBINS W. P.; "Power Electronics, Converter & Inverter, Applications and Design"; John Wiley and Sons, INC., 2nd ed, New York, 802 pages, 1995
- [9] Mohammed Firas Shraif, "Optimization and Measure of Photovoltaic Conversion", Report LAAS 02569, France, December 2002.
- [10] Juing-Huei Su, Jiann-Jong Chen, Dong-Shiuh Wu, "Learning Feedback Controller Design of Switching Converters Via MATLAB/SIMULINKTM", IEEE Transactions on Education, vol. 45, November 2002.

- [11] Daniel Logue, Philip. T. Krein, "Simulation of Electric Machinery and Power Electronics Interfacing Using MATLAB/SIMULINKTM", in 7th Workshop Computer in Power Electronics, 2000,pp. 34-39.
- [12] Ahmed, M., Kuisma, M., Silventoinen, P., Pyrhönen, O., "Sliding Mode Control For Buck-Boost Converter Using Control Desk dSPACE". The Fifth International Conference on Power Electronics and Drive Systems, PEDS 2003. Singapore. 17 20 November 2003.
- [13] R.D Middlebrook and S.C'UK, "A New Optimum Topology Switching DC-DC Converter", IEEE Power Electronic Specialists Conference (PESE) Record, 1997.
- [14] R.D Middlebrook and S.C'UK, "Advances in Switched-Mode Power Conversion", Vols. I and II, TESLA co, 490 S. Rosemead BIvd., Suite 6, Pasadena, CA91107,2001.
- [15] Ahmed, M., Kuisma, M., Silventoinen, P., "Comparison between PID Control and Sliding Mode Control for Buck Converter. Symposium on Power Electronics", Electrical Drives, Automation and Motion, SPEEDAM 2004, Capri, Italy 2004.
- [16] AVR Microcontroller type AT90S4433/ AT-Mega 8 datasheet.
- [17] Y. Ishihara, T. Kawamure, K. Harada, "Analysis of MPPT Characteristics in Photovoltaic System", Solar Energy Materials and Solar Cell 47 (1997).
- [18] J.D. Van Wyk, J.H. Enslin, "A study of a solar power converter with microcomputer based maximal power control utilizing an electronic cascade", IEEE, International Power Electronic Conference IPEC-83, 1983.

.2007/10/17: