1

3 2

4

-

_

³ المدرسة العليا للمناجم- جامعة نانسي- فرنسا.

. - 4

		-1
		-2
		-3
		-4
		-5
		-6
		-1-6
		-2-6
		-3-6
UDEC		-4-6
		-7
		-1-7
		-2-7
		-3-7
		-8
		-1-8
	-1-1-8	
	-1-1-1-8	
	-2-1-1-8	
	-3-1-1-8	
		-2-8
		-9
		-10

:Introduction

.[1]

.

•

Research Methodology: -1

[12]

Tunnels in Syria: -2

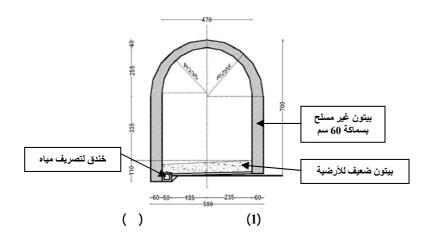
13 5 . - 8 7.5

.[7] 15 20

1962- . –

1971 1965

(1)	.[4]	
()		
1101.5		1
625.8		2
1862.9		3
296		4
291.5		5
206		6
495		7
1600		8


- (1)

.[5]

22.5

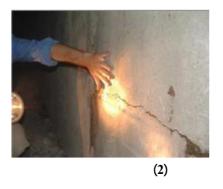
0.6 . / 80

.[4] (1) . 181.3

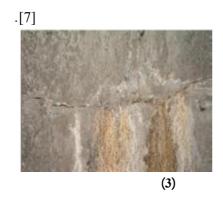
0.6 4.65 7 . 0.4 . 4.7

Degradation of : - - -3
Tunnels on Aleppo- Lattakia Axis

7/2006


:

•


3 1 .

.(2) . 45°

.(3)

.(3)

.(4) [5]

•

(5)

-)

.(

[13]

Retrofit Works on Studied -4
Tunnels

1988 .

.[[5]				
	(:	2002-2004	3-4-5-6-7	•
	5-6-	7		16	•
Reasons of	· :			Degradation on Studied Tuni	-5 nels
				:	•

.[9]

.[14] .[11] .[10] Numerical Modeling of Deteriorated -6 **Tunnels** -1-6 .[18,19] (...) .[16]

(1971) Cundall

: -2-6

:[16]

.

•

.

UDEC (Universal Distinct Element Code), :

3DEC (3 Dimension Distinct Element Code) , PFC (Particul Flow Code)

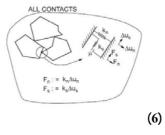
Distinct Element Method: -3-6

1971

Cundall

:

•


 \mathbf{F} \mathbf{M} γ :

·

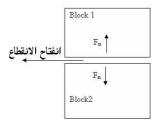
: F = K . U(2) U F K :

Fn=Kn.Un Fs=Ks.Us

. $\mathbf{K}_{\mathbf{n}},\,\mathbf{K}_{\mathbf{s}}$:

. فـــــي

:[2] -


$$\tau = \sigma \operatorname{tg} \varphi + C....(3)$$

:

-1

-2

. (7)

(7)

-3

.(8)

Block 1

Fs

Fs

Block2

(8)

:(Universal Distinct Element Code) UDEC -4-6

.[1]

•

Numerical Model: -7

: -1-7

23 .(9)

. 5-10

.

.[1]

-:

: E= 100 MPa, v = 0.25, $\Phi = 45^{\circ}$, C= 0.5 MPa

:υ :E

:С :Ф

[17]

Ε .

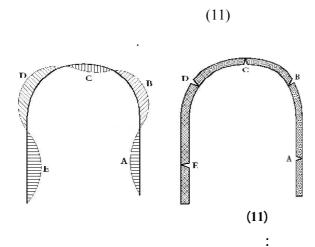
υ

: -2-7

:(10)

(1)

(2)

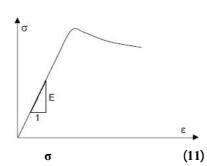

(3)

.(2)

. (2)

Jcoh(MPa)	Jfri	JKs(MPa)	JKn (MPa)	رقم الانقطاع
1000	45°	1000	1000	1
10	45°	1	10	2
1000	35°	1	10	3
			(2)	

-3-7



 $\sigma = E \cdot \epsilon \dots (4)$

E (11)

.

3

 $\sigma = \frac{N}{A} \pm \frac{M}{I} \cdot Y \dots (5)$

: .

:M :N :A

:Y :I

: -1-8

,G K

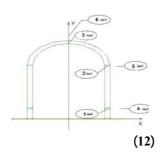
 $K = \frac{E}{3(1-2\nu)}$ (6) $G = \frac{E}{2(1+\nu)}$

10 GPa : E .[8] GPa 50 E E Е GK, Е (3)

(7) (6) .υ=0.25

E (GPa) K (GPa) 50 40 30 20 10 13.33 33.33 26.67 20 6.67 G (GPa) 12 20 4 16

E, K, G (3)


UDEC

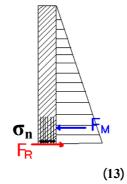
 $\sigma_{\text{max},}$

 σ_{min} $.\sigma_{xx},\ \sigma_{yy}$

 $Y_{dis}, X_{dis},$,

:(12)

-1-1-8 -1-1-1-8 K, (1) K, G G .%10 K=66.67,G=4 K=13.33,G=8 K=20,G=12 K=26.67,G=16 K=33.33,G=20 -2.5 -2.55 النقطة 1 — -2.6 -2.65 K,G (GPa) (1) 1 K, G (2) 1 1 2, 3 3

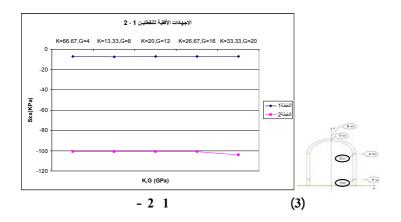

13.5 K.G (GPa)

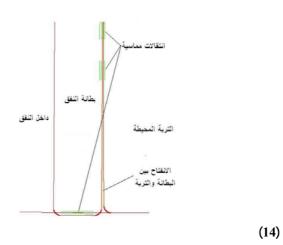
.(13)

 $F_R = \sigma_n \cdot t \cdot tg \ \phi \cdot \cdot \cdot \cdot \cdot (8)$

 σ_n :

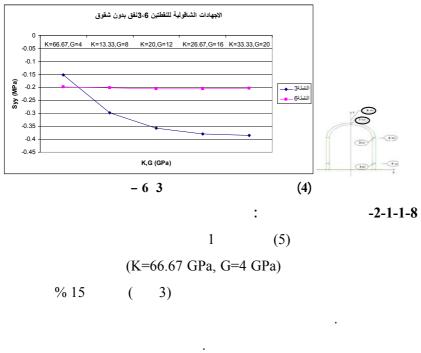
: t :φ




) 1, 2

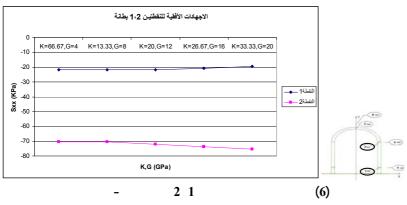
(3 K, G 1

.(14)


.3 2

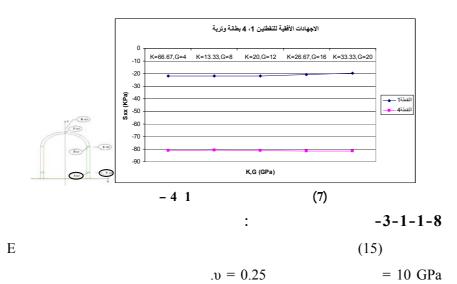
3 (4) (K, G) 6

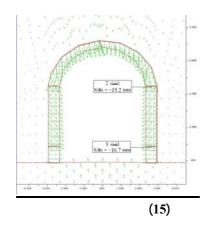
.


1 .K, G

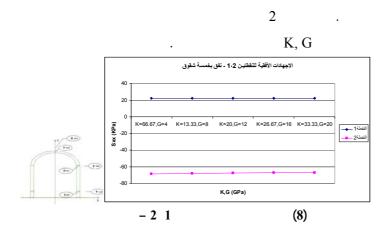
الإنتقالات الأفقية تنقط البطائة شاق واحد المناقالات الأفقية تنقط البطائة شاق واحد المناقالات الأفقية تنقط البطائة شاق واحد المناقالات المناقال

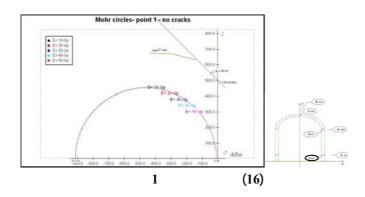
. K, G 1 (6)

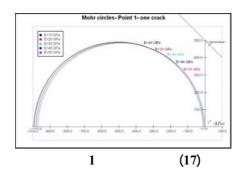

2

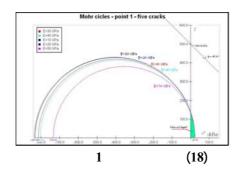

.

) 4 1 (7 1 4


.




1 (8) 2 4


K, G

1 (16-17-18)

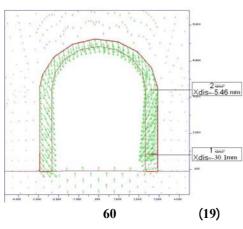
K, G

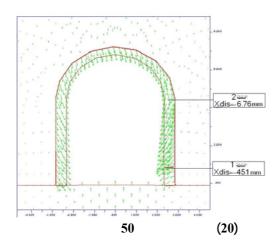
1.6 1.2 [15] (3)

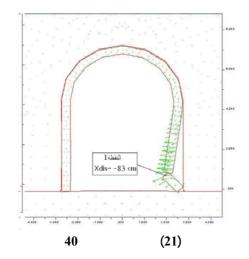
: -2-8

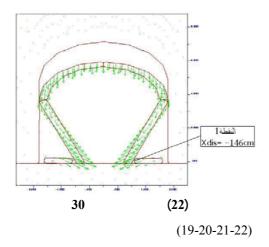
.

 $I = bh^3/12$


(h)


. 30 40 50 60:


E = 10 GPa


.v = 0.25

. 60 40

(19, 20) (21, 22) (60)

-9

•

.

.

•

•

•

		:References	-10
	.1995		.1
			.2
		2002	
.2003			.3
	RVP KOEHNI	3	.4
	.2004	-	
	-		.5
			.6
	.2002		
			.7
		.2006	
			.8
		.1988	

- 9. Bickel, J.; E. King, and T. Kuesel, Tunnel Engineering Handbook, Second Edition, Chapman & Hall, New York, 1996.
- 10. UIC Code 779-10R, Maintenance of Existing Railway Tunnels, International Union of Railways, 1990.
- 11. Szechy, Karoly. 'The art of tunneling', the university of technical science, Budapest, 1973.
- 12. American Concrete Institute Committee, Finite Element Analysis of Fracture in Concrete Structures, 446.3R, 1998.
- 13. M. Maslehuddin, Reinforcement Corrosion Due to Chloride-Sulfate Contamination and Carbonation, Arabian Journal for Science and Engineering, Volume 23, Saudi Arabia, 1998.

- 14. Romer, Michael 'Detachment of Shotcrete Linings due to Long Term Interaction with Ground Water' Swiss Federal Laboratories for Materials Testing and Research, 2004.
- 15. U.S. Department of Transportation, Highway and Rail Transit Tunnel Maintenance Manual, Federal Highway Administration and Federal Transit Administration, 2003.
- 16. Itasca Consulting Group, Inc, Universal Distinct Element Code User's Guide, 2000, USA.
- 17. Matsuoka, S. Masuda. A study on simulation of tunnel lining which involves cracks. Proceedings of Japan society civil engineers No. 554/III-37. Tokyo, 1996
- 18. Idris T. Al Heib M. Numerical modelling and mechanical behaviour analysis of ancient tunnel masonry structures Tunnelling and Underground Space Technology. TUST-D-06-00083R1 Accepté Impact factor of this journal 2006: 0.278 Journal Citation Reports® 2007, published by Thomson Scientific
- 19. Al Heib M., Laouini H., Piguet J.P, Le choix de la position d'un ouvrage souterrain par rapport à l'orientation des contraintes principales naturelles ; Revue Française de Géotechnique, n°68, 3e trimestre 1994, pp 33-39 Studia Geotechnica et Mechanica, Vol. XVI, N° 1-4, 1993, pp 3-15

.2007/10/8: