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Abstract

The dynamics of annulus pipe conveying fluid is described by means of
transfer matrix method. This paper provides a numerical technique for
solving two dimensional incompressible equation of forced and free
vibration of annulus pipe conveying fluid. The dynamics behavior for any
point located a long the annular pipe which is divided into nodes and
elements, are computed, taking into account the type of support and heat
flux ranging from (6.2-12.5kW/m?) for flow rate level ranging from (50-
200L/hr).

A computer program written in FORTRAN 90 Languages has been
developed to embrace the theoretical work. The results show that the
thermal forces have predominance effect on the natural frequencies of the
vibrated system as well as the effect of heat flux is greater than the fluid
velocity effect on the natural frequencies of the system . Also results show
that the mode shapes of vibration are greatly affected by heat flux
increasing.
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Nomenclature.

>

’ Cross-sectional area of the fluid (m?).

Cross-sectional area of the outer pipe ( m? ).

>

A Cross-sectional area of the inner pipe ( m? ).

D Diameter of pipe(m)

E.E; Modulus of elasticity for outer and inner pipe( N /m?* ).
F Excitation force (N ).

Fi Field matrix.

f Fraction factor.

Go,Gi  Modulus of rigidity for outer and inner pipe (N /m?).
L,L; Moment of inertia for outer and inner pipe ( m*).

L Length of the pipe (M ).

Le Element length (m ).

| Mean element length (M ).

M,,M; Bending moment per unit length for outer and inner
pipe(N.m/m)

mpy, Mass of outer pipe per unit length (Kg/m)

m, Mass of inner pipe per unit length (Kg/m)

m; Mass of fluid per unit length (Kg/m)

N,,N, Thermal forces (N ).

n Number of stations

K,,K, Stiffness for outer and inner pipe

K,,K, Stiffness of outer and inner support

P Fluid pressure

P; Point matrix

V,,V,  Shear force for outer and inner pipe (N ).

t Time (s).

U Dimensionless fluid velocity

U, Fluid velocity (m/S) .
W Compressive + Coriolis forces (N ).
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® Circular frequency (rad /s)

X Longitudinal coordinate

Y,.Y; Deflection in Y-direction for outer and inner pipe (M)
Z; State vector

p Fluid density (Kg/m”)

T Dimensionless time.

R Radius of pipe (M).

r Inner radius of pipe (M ).

AT Temperature change

ot Thermal elongation (M ).

00,0 Coefficient of linear expansion for outer and inner pipe
(C°/m).

0,,6; Slope in Y-direction for outer and inner pipe (degree)
B,y Dimensionless fluid parameter

Notation

- Dimensionless notation

a Annulus gap.

LR Left and right .

00 Outer diameter of the outer pipe

oi Inner diameter of the outer pipe

i0 Outer diameter of the inner pipe

il Inner diameter of the inner pipe
/ 0/ox & (. =0/ot )

1-Introduction.

Annulus pipe conveying fluids have many practical applications, such as,
their use in heat exchangers, hydraulic control lines and aircraft fuel lines.
In some applications, as in jet engine fuel line, these tubes are exposed to
high temperatures. Normally this leads to thermal stresses which may be
of a catastrophic nature when coincide with vibration.

A fluid flowing through a pipe can impose pressures on the pipe walls
causing it to deflect. The deflections of a pipe produced by an
accelerating fluid flow are called water hammer [1] .A steadiness of fluid
flow through a pipe can also influence the deflection of the pipe .A steady
high velocity flow through a thin walled pipe can either buckle the pipe
or cause it to flail about. These deflections are called instabilities of fluid
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conveying pipes. The stability of fluid conveying pipes is of practical
importance because the natural frequency of a pipe generally decreases
with increasing velocity of the fluid flow [1].Initial work on the
transverse vibration and the dynamics of pipe conveying fluid has
received considerable attention in the transport of oil in pipes [2] during
the early of 1950. Housner [3] derived the differential equation of motion
of pipe line containing the flowing fluid using Hamilton's
principle.Niordson [4] arrived at the same equation using" shell theory".
Long [5] considered the tube as a beam and calculated the frequencies by
a power series method. Amabili [6] studied and investigated the non-
linear dynamics and stability of simply supported, circular cylindrical
shells containing inviscid incompressible fluid flow, two different
boundary conditions are applied to the fluid flow beyond the shell
corresponding(i)infinite baffles (rigid extensions of the shell),and
(ii)connection with a flexible wall of infinite extent in longitudinal
direction.

Transfer matrix method is a suitable technique to compute the dynamic
behavior, the natural frequencies of the vibrating system and system
mode shapes.

Hence, this paper presents a numerical technique for solving two-
dimensional incompressible equation of forced and free vibration of pipe
conveying fluid by adopting the cited transfer matrix method. A heat flux
on the outer pipe was accounted for.

2-Equation of motion:

The equation of motion for forced vibration of an annulus pipe conveying
fluid is given by [7],

(E, 1, +E 1)Y +(N,+N, )Y"+(P A+m UDY +2.m UY'+
(m;+m, +m )Y =F(X,t) (N
Where: F(X,t), is the external force applied normal to the pipe axis in

the y-direction

and (1) is the moment of inertia pipe .

This equation is different from the usual beam equation by additional
three terms. The first and last terms of the left hand side of the equation
are the usual stiffness and mass terms which would be presented
regardless of flow. The second term represented the thermal forces, third



Damascus University Journal Vol. (25) - No. (1) 2009 K.A .Ismael- M.A. Tawfik-
Z K. Kadhim

term represented the centrifugal force required to change the direction of
fluid to conform to the curvature of the pipe material normally this force
is considered equivalent to compressive force. The fourth term from the
left represents the Coriolis force which is a result of the rotation of the
fluid element due to the system lateral motion as each point in the span
rotates with angular velocity. Equation (1) can be written in
dimensionless form by introducing the following quantities [1, 8].

1/2 1/2 N

m ¢ _(my _ L“/
A} ugL, .B= %nﬁrmp) y—{ mEI}'P‘AP
TE1L /7Tt C(E,l,

RNV ARRCTRACTA

After substitution Eq (1) becomes,

X
T

<l

X - v-Y
L

A+ + (N AN)Y +(U )Y 42

Ul L v
vE .Y+12:F(x,r) 2
T T

Where,E(;(, z‘) is the non-dimensional external force applied normal to

the pipe axis in the y-direction .
The pressure drop due to flow in annular pipe of any uniform cross-
section is given by [9].

2
AP - fa.L'pa.Ua 3)

" D, 2

Where, ( f ) is the friction factor for laminar flow in annular pipe which
R 2
is given by; 1 _Tea|l+k +1+k
f 64| 1-k Ink

Where: k = DJ, Re, = Ua»'De&’ U=_"a ,D,=D,+D,

oi Va Pa- Aa

3 —Solutions.
The selected solution is written as follows [1].
Y (x,t) = a,.'FP(X).sin ot + a,.(X).cos wt ))
Where a; and a, are interdependent. The pinned-pinned boundary
conditions of the pipe span shown may be written as:

Y(O,0) =Y(L,t)=0 Q)
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@Y/ D00 =Y/ )LH=0 ©

These boundary conditions can be satisfied by the set of sinusoidal mode
shapes.

w,(X) =sin(nz x/I) (7)
Let the third and fourth terms from the left of equation of motion (1)
which represent the compressive force plus the coriolis force equal to
[W(x.1].

. ®)

W (x,0) = (pA U+ PA p].( ;)+(2pAf.U )(m)
O X

So, the expression obtained from the solution for these specified two fluid
forces terms is given by [7].

W_[HaI(PA + pA,U {T”j sm[ )}

{2al(PAp0+pAU( j (”’”‘jszUa2 [nl_ﬂ-j.cos(nij}+
fa2pm 00" oo (L)H Hamu(ijm (nmz
{ZaZpAU[ j [ J PAO+pAu)[ jzsin[nij}

+ {az.(PApo +p.AU 2)[”%) .sin(nij} n ©)

4- Theory of State Vector and Transfer Matrix Method:
At any station on the annular pipe there are two state vectors, one to the
right, and the other to the left of the station. (Z)R Is the state vector to the

right of station (n), similarly, (f)tis the state vector to the left of the

station (n). The state vector (7 ) for outer and inner pipe of the annular is
defined by.
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(Z)=[Y0,00,M Vo, Y;,6,M VU Py 1| (10)

The flexural properties of the segment are described by the field transfer
matrix of the span, and the internal effect of the segment is described by
the point transfer matrix of the mass. Hence, the transfer matrix of
segment consists of two parts:

1. The field transfer matrix of the elastic member, due to (K;) and (K,),
and the effect of fluid physical properties (w.).

2. The point transfer matrix is due to the inertia of the internal and
external masses (m;) and (m,) of the annular pipe and the flexibility of the
supports.

The steady—state condition caused by a harmonic excitation is more
readily solved with the aid of a particular integral of the nonhomogenous
differential equation. Using this approach if the forcing term has a
circular frequency (), the system will vibrate

in its steady state with the same circular frequency, but with an
amplitude and phase dependent on the value of (w). This fact enables us
to extend the application of the transfer matrix method to steady-state
forced vibration.

The simply supported pipe conveying fluid is subdivided into a number
of elements and stations as shown in fig(1) which enable transfer-matrix
to relate any adjacent state vector. The fluid flow forces (Compressive
and Coriolies) will be concentrated at each field element, The state
vectors for each field element and point station consist of the following
state variables for outer and inner pipe; deflection (Y;) and (Y,), slope
(61) and (6,), moment (M;) and (M,), shear force (V;) and (V,), the fluid
velocity (U), and the fluid pressure (P). The harmonic force is assumed to
be imposed at mid length of the annulus pipe. .

5- Field Matrix (Element Matrix).

In order to determine the transfer matrix of any beam elements arbitrary
oriented in space, a portion of pipe must be considered in (x) and (y)
plane. Consider now the outer and inner pipe portion only between the
points (n) and (n-1) in the (x-y) plane.

The forces and deflections are illustrated as shown in fig (2). The
equilibrium of the massless pipe element length (L) requires that the sum
of the vertical forces be zero also the sum of the moments about point (n-
1) be zero, as shown in appendix (1).
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6- Point Matrix:

In order to determine the transfer matrix of any beam elements arbitrary
oriented in space, we need three types for point matrix

1-The point matrix for a particular node with concentrated mass for the
outer and the inner pipe may be written as shown in appendix (2).

2-The point matrix for the supported node with concentrated mass shown
in fig (4) may be written as shown in appendix (3).

3-Field and Point Matrix with thermal forces:

The thermal forces effect on the element and mass is shown in fig (5)
&fig (6), the displacement and thermal force in the x-direction may be
written as shown in appendix (4).

Using the point and field matrices due to the thermal effects for all the
nodes and eliminating the intermediate nodes , then applying the
boundary conditions (X,) & (Xj;) equal to zero at the supports , thermal
forces at all nodes may be evaluated.

The common boundary conditions for the annular pipe problem with
flexible support are:

.,6,,M_.V..Y,,6.M,,V,,U,P }={Y,.6,,0,0.Y,,6,0,0,U,P }

02Y0? 0%~0°

Since the shear force and moment at boundaries of a flexible support
must be zero while the slope and the deflection are unknown and
nonzero, the fluid velocity and pressure are assumed to be known and
nonzero.

Then applying the boundary conditions to the adjacent state vectors of the
last obtained equations yields the results to find the state variables at all
points in the system domain.

7-Results and discussion

A suitable FORTRAN language program has been developed to embrace
the theoretical work. The pipe span was discrtized into ten elements and
eleven point stations and the forced vibration at different excitation
frequencies is imposed at station (6) which represented the mid length of
the annular pipe. Fig (7) and Fig (8) show that the fluid force generally
increases as the excitation frequency increases for different values of heat
flux and fluid velocity, due to the local dynamic effect of the fluctuated
force of the fluid which interacts with the Coriolis and compressive force
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for the zone of natural frequencies. It can be seen from fig (9) that in
general the excitation force increases as the frequency increases, this
behavior is reflected directly on the behavior of the Coriolis force. Fig
(10) and fig (11) show the variation of bending moment for simply
supported annular pipe conveying fluid with various excitation
frequencies at mid length with various heat flux and fluid velocity. This
figure shows the bending moment values of the outer pipe are higher than
that of the inner pipe at the same range of excitation frequencies. This is
due to the higher values of the thermal forces in the outer pipe in
comparison with the inner pipe. Also, it may be observed from the figure,
the positions of the natural frequencies at the peak values as well as it is
obvious that the fluctuated values of the bending moment increase as the
flow velocities decrease due to the increasing values of the thermal
forces. It can be noticed from fig (12) the following:

* The deflection in general increases as the fluid velocity increases for
the same heat and range of excitation angular frequencies. This may be
due to the increasing values of the Coriolis forces.

* As the heat flux increases (6.2-12.5 kW/m?) the response increases for
the same values of fluid velocities and excitation frequencies. This may
be due to the increasing values of the thermal forces.

Fig (13) and fig (14) show the effect of heat flux on the response of the
outer and inner pipe for flexible and rigid support in annular pipe
conveying fluid. It is obvious from these figures the following:-

*The values of the natural frequencies in the rigid support are higher than
that of flexible support since the overall stiffness of the system with
flexible support will be decreased for the same value of heat flux.

* As the heat flux increases, the flexibility of the pipe and the support
increases, (overall stiffness increasing), causing the value of the natural
frequencies to decrease for the same support and fluid velocity, however
this decreasing differs in the order of the natural frequency. It is also clear
from table (1) to table (3) the first three natural frequencies calculated by
transfer matrix method for a simply supported annular pipe conveying
fluid with the variation of heat flux, fluid velocity and type of support.
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Table (1) three lowest natural frequencies of the system with different
support configurations and different fluid velocity

Heat flux (kW/m?®) [Flexible support (rad/s) IRigid support (rad/s)
q = 12‘5 Oy (O] On3 On1 n2 n3

U= 0.0158 (m/s) 119.3 [163.0 364.4 257.6 314 [383.2
U= 0.0635 (m/s) 125.6 [169.6 364.4 263.9 364.4 |-

Table (2) three lowest natural frequencies of the system with different
support configurations and different fluid velocity.
Heat flux (kW/m?) [Flexible support (rad/s) [Rigid support (rad/s)

q= 6.2 @n1 n2 @n3 @n1 On2 n3
U=0.0158 (m/s)  |[125.6  |175.9 351.9 263.9 307.8 |----
U=0.0635 (m/s) [128.2 (1759 351.9 270 [326.7 364.4

Table (3) three lowest natural frequencies of the system with different
support configurations and different fluid velocity.
Heat flux (kW/m’) [Flexible support (rad/s) |Rigid support (rad/s)
q = zero ®n1 n2 @n3 ®n1 On2 @n3
U=0.0158 (m/s)  [129.8 [209.2 |330.7 153.9 [293.4 345.2
U=0.0635 (m/s)  |131.9 221.2 400.7 266.2 [400.7 |-----

Fig (15) to fig (17) show first, second and third bending mode shape for
fluid velocity of range (0.0158 — 0.0635 m/s) with various heat fluxes. In
general it can be observed from these figures as heat flux increases the
annular pipe vibrates in natural frequencies less than its values without
heat for high fluid velocity (0.0635 m/s), while at low fluid velocity of
(0.0158 m/s) at the third mode shape the increasing effect of thermal
forces is clearly observed such that the system vibrates by a higher next
natural frequency and hence by its associated mode shape. i.e. the outer
and inner

pipe vibrates in the next mode . This may be due to the effect of the
thermal forces which decreases the natural frequency. Fig(18) and
fig(19), show the first and the second bending mode of outer and inner
annulus pipe conveying fluid with various heat flux and fluid velocity (U
= 0.0635 m/s) and the first three lower values of natural frequencies
under no heat condition. It can be seen from these figures that the effect
of heat flux increasing on bending moment is very small on the second
and third natural frequencies, but this effect is highly increased at the first
mode shape.



Damascus University Journal Vol. (25) - No. (1) 2009 K.A .Ismael- M.A. Tawfik-
Z K. Kadhim

Fig (20) and fig (21) show the slope of outer and inner annulus pipe
conveying fluid with various heat flux and fluid velocity range (0.0158-
0.0635 m/s), it can be seen that the slope increases as the heat flux and
fluid velocity increase and the natural frequencies decrease due to
temperature rises, however these figures show a linear vibration system
since the highest value of the slope doesn’t exceed 5 degree [12].
8-Conclusions:

The following can be concluded from the present work:

1- The fluid forces (Coriolis&Compressive) greatly affect the response of
the undamped annular pipe under vibration.

2- The outer and the inner pipes of the annular may vibrate individually
in different mode shapes.

3- The value of the fundamental natural frequency for flexible support is
less than that obtained for rigid support with a maximum difference of
(50%) for low frequency and (4%) for a high frequency for the adopted
stiffness values.

4- The effect of heat flux of the system is greater than it's the fluid
velocity effect on the natural frequency.

5- In general, the values of the bending moments in outer pipe are higher
than those for the inner pipe at the same excitation frequency.

6- Increasing the heat flux may result in increasing the thermal forces
which may lead the system to vibrate at a higher natural frequency (i.e. if
it is vibrating in the third mode it may vibrate in the fourth mode under
the same frequency).
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conveying fluid due to forced vibration at mid length with various velocities
and heat flux
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Fig (14) Inner pipe deflection of a simply supported annular pipe conveying
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Fig (16) First bending mode of outer and inner from annulus pipe conveying
fluid with various heat flux and fluid velocity (U= 0.0158 m/s)



Damascus University Journal Vol. (25) - No. (1) 2009 K.A .Ismael- M.A. Tawfik-
Z K. Kadhim

. N
AN mmm, | SHERL,, I AN /
s AN == il . T\ S -
z F \ N i / Z / g\ —.—
E ok NN E Y ; E i \ /
14 \ -~ / ?/ 5 3 /
{2 \ /4 \ 7 B\ /
- S I 2 " TN
ik g AT nf ™, e
-, T o oo v T = T g T o T
Lenght of the annular pipe [m | Lenght of the annular pipe (m ) Lenght of the annulsr pipe {m |

Fig (17) First bending mode of outer and inner from annulus pipe conveying
fluid with various heat flux and fluid velocity (U= 0.0635 m/s) with first
natural frequency (®,;=131.9 rad/s)
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Fig (18) First bending mode of outer and inner from annulus pipe conveying
fluid with various heat flux and fluid velocity (U= 0.0635 m/s) with first
natural frequency (®,,=221.2 rad/s)
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Fig (19) First bending mode of outer and inner from annulus pipe conveying
fluid with various heat flux and fluid velocity (U= 0.0635 m/s) with first
natural frequency (®,;=400.7 rad/s)
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Fig (21) the slope outer and inner from annulus pipe conveying fluid with
various heat flux and fluid velocity (U = 0.0635 m/s) with first natural

APPENDIX (1)
The forces and deflection are illustrated as shown in fig (2). The
equilibrium of the massless pipe element length (L.) requires that the sum
of the vertical forces be zero also the sum of the moment about point (n-
1) be zero, Hence:

L R

IVln = M(n—l)

+V

L +N

(n-1) *-e

frequencies

R R

R R
(n=1)

On ) -Le —

R

L L L
(Vn+ N, .sinQJ +W,/2 —(an-l- N, ,.sinf,

W,.L

e

):O (1-1)

(1-2)
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For simple beam theory, the deflection and slope of a cantilever of
flexural stiffness (EI) subjected to a bending moment and shear force
applied at its free end as shown in fig (3) are given by [10].

ML Vv.C G—M'L V.

t—,
2.El  3El El 2El

Hence, it may be written in the form,:

< < g(n—l)o = Loxk || ¥ Lez-(Eolo)m]
Yo =Y @10 N0 —— || -Mnp -
(n-1y Lm |J-ff (n-1) [6E0|0 G[]Am]‘| (n-1) [ZLmz(EUIU)

C(nl>0‘(Eolg)m|: L xL } +V\é{ L XoLe} (1-3)
L’ |6El, GA,| 2.|4€l, GA,
Ono = 0(nl)0|:1 +Nno. LE 0}+M(nl)0'lzn.(_l(zé(:(|]3;+

\%(n—l)o. Lez.(EnIn )m L’ (=4

_ e
L, 2(El,)  “16E,l,

ﬁno = ;(n1)0|:|sl(n1)0 . Lel_m} + |\F;|(n—1)o+\;(n1)0.(LeJ —W{Le.l_mj ( 1 _5)

(Elo ), L, 4 (El,),
L
L R ern R L Lg L | R LeL, Nno
Vn=0m-1 —2—INm-1) |1-Nno. ~Nno |-M@n-1o|{-&M —
n (n=1), (Eolo)m n-=1), no 2E, no (n-1o (Eolo) +
R L2 | w( 2 L2
Vn-1)o|1-Npg.—2—|-—2% M__ 1-Npo.—E 1-6

Where, (V.xL,/G.A,), is the deflection caused by the action of the shearing
forces, is given by [11], for the annular cross section pipe as :

4V. R.¥

L {1+——;
3GA R +r

X, is the numerical factor by which the average shear stress must be

multiplied in order to allow for its distribution over the transverse section.

Referring to fig (2), the dimensionless forms for the deflection, slope,
moment and shear force of the inner pipe may be written as follows:
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vy ,% ool L _ xk 71 L' (EN), _
Yai =Y (i L |:Le + N(ﬂl>l[6E| GA ]:| M“‘”'l: 2.Lszi|i :l

v (E.l.)m{

Voo BB & XL, } . we[ L xiLe} 1-7
L, |6El, G.A,| 2L,[48El, G.A,

R

L (E 1)
e i'i/m
M (n=D)i

Ly Eili

R |_e2
I+N (n-1)ji ——|+

L R
Oni=0
n 2E, 1

(n=Dyi
2
Le
16 El,

L.2(E;!
£ E Dy .

L22E]

L R R R R
M ni = @n-ni| N - Lebw + M (n-ni+V (n-1yi. L -W, Lo.Ly
(L), Ln 4(E1),

R
Vn-nji- e

(1-9)

L
—N ni

L
R L.L_.Nni
+

-M (n-yi| =

R
0
Eili

Lm'

Eilihy

R L |_e2
N (n—1)i /1-Nni.
(n-Dyi e

L
Vn=0(n-1i

L2
1-Npj —=2

2
LITI

il

R
V(n-Dji

L L2
1-Npj ==
Mg

We

2

(1-20)

For dimensionless fluid velocity and pressure, let:

% (1-21)

m

Un =
n E | +E.I.
0 0 I 1

Pv=[P /P, ] (1-22)

The field matrix [F] for a pipe element may be written in matrix notation
as follows in dimensionless form as,
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L __ r
=Y M F, Fy F, 0 0 0 0 0 0 F, ]|~ Ye
B0 0 F, Fy Fpy 0.0 0 0 00 Fy || 90
Mo 0 F, Fy F,, 0.0 0 0 00 F,||Mo
Vo 0 F, Fy Fu 0 0 0 0 0 0 F,|[Vo
v 00 0 0 1 Fy Fy Fy 00 Fyp |-V
6 00 0 0 0F, Fy, Fgu 00 Fg, || 6
MI - 00 0 0 0 F76 F77 F73 00 F711 M'
Vi 00 0 0 0 Fy Fy Fy 00 Fy, ||V
m 00 0 0 00 0 0 1 0 0|y
5 00 0 0 00 0 0 0 I 0||p
. 00 0 0 00 0 0 1 0 1]
L dn - - - —n-l
OR (@) =Rz ) (1-23)

Hence ( Fn ) is the field transfer matrix which relates the state vectors
(Zm )R and (Zn )L at the beginning and the end of the span (Le).
APPENDIX(2)

The displacement, slope, and moment at the mass (m,, and m,;) can be
written in dimensionless forms as :

&
0 &
(2-1)

L L _R_
M no = M nO& M ni = M ni
L

L _R
U n — U n & P n = P n

The force equation of the mass is,

> Forces= Mass *Acceleration

R L .
Vni _Vni :(mpi)n Yi
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R . L
Vno Z(m po+m f)n‘Y o+V no—FO*SiH wt
R 3 L
R oo L (2-2)
Vni :—a)2 (mpi)n. m Y ni +V ni
(ED)
R . , L (2-3)
Vo = (Mot ) @20 Yo F) 4V

"TUED, T O (ED,

Where, (mpo+mf )n.a)z.Yno is the inertia force introduced due to

vibrating mass for harmonic motion at the excitation frequency (®).
U,=U, & P.=P, (2-4)

Hence, combining Eqs (2-2), (2-3), (2-4) in matrix notation gives the
following point transfer matrix.
5]

—\?0 1 000900000 0 —?oL
go 0 100 ¢goo0o0 OO0 0 50
ﬁo 023 01 0 900000 0 MO
Vo | |TMprmpe’lm/Ellm 0 0 1 0 0 0 0 0 0 ~Folm/Elm| |y,
0000 1 000 00 0

=il _ 0000 0 1 oo 000 i
i | 0000 0 010 00 0 i
Mi 000 0 My’ Lm/Eljm 0 0 1 000 Mi
Vi Vi
U 0000 0000 100 U
P 0000 0000 010 P
1 0000 0000 00 1 1

n n

ok () - ) e

L
(i.e.) the point transfer matrix at station (n) relates the vectors (Z n ) and
= \R
(Z n ) at the left and the right side of the mass (m) .

APPENDIX (3)
Considering Newtons second law for the mass supported at the station

(n), gives,
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. L R
mYi+ Kz(Yi_Yo)+Vi=Vi (3-1)
- L R

(mf +mpo)Yo+ KZ(Yo =Y, )+ K.Y, +Vo =V,

Considering the harmonic vibration then:

(3-2)

Y =Y. sinwt ,\.(' =—@?Y sinot

Also
V =V sin ot ,M:Msina)t

Eqgs (3-1) and (3-2) may be written in dimensionless form as follows,

Viedm =K, YK Yo, (3-3)
et B, e,
R 5 3 L
Vo= [(mf+mpoJ a Kl Kz} (E|)m Yo K2 (EI )m Yi+Vo

(3-4)
ﬁo Zﬁo ﬁl :ﬁi U£n :ﬁn (3-5)
I

The point matrix for a node with a flexible support may be written as:
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_ R - L
o 1 00 0 0 000 000y,
i 0 100 0 000 0007
6o 0o
e 0 010 0 000 000y
Mo —m; -m wz{k K, ICPm/Ellm 0 01—k, 2m/Elm 0 0 0 Mo
Vo | Mg mpo @k ks m /El —kyL'm /Ellm 00 0f|y,
Yi 0 000 1 000 000
o | 0 000 0 1oo 000 ||
Mil 0 000 03 010 000 || 6
v 5 Y
Vi ,k2|_3m/(E|)m 00 0 —{a) mpi—kz].L m/Em 0 0 1 00 0 Mi
Vi
u 0000 0000 100 u
P 0000 0000 010 P
| 0000 0000 001 1
n n

OR (Zn )R = (En )(Zn )L (3_6)
APPENDIX (4)
The displacement equations for the outer and inner pipes are:

L R L
X (myo = X (n-1)0 + ot - N (n)o .(l_e / EOAO) (4-1)

L R L
X (mi = X (n-1)i + ot - N (ni .(LE / EiAi)
From fig (5):
ot =a.L, AT

R L R
N (n)o = N (n-1)0 & N (n)i = N (n-1)i

Substituting the above relations in Eq (4-1) gives:

L R R
X mi = X t-no— N (n-1)0 .(Le / EOA0)+ a,.L,.AT, (4_2)
R
Xt = X Moo = N (noi .(Le / EiAi)+ a; L, AT,
The above equation can be written in dimensionless forms as:
L R R L E |
Xmo = Xm-no—=N@-1o [ L,“EZAo}( Io_z:;)m +(a, AT L, /L) (4-3)
L R R E.l
Xmi = X @-ni—N@-ni ( L. ].('f')m(ai.ATiLe/Lm)
L.EA J U

Hence, combining Eqs (4-3) in matrix notation gives the following field
transfer matrix.
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“ [ (e )]
i 0 0 a,AT,

_ LaEoA, L*n m _

No 0 1 0 0 0 Ny

0 I P [ L, H(Eono)m] arf) |
L.E;A L*m [

N 00 0 1 0 N,

000 0 1

U w LT Jooy

= L e R
OR (Z n) = (F, )(Z (n—l)) (4-4)

As well as, from fig (6) the point matrix for thermal force and
displacement may be written as follows:

e 1" 1 0 0 0 ol xe |
N 01 0 0 0N,
Xi | [0 0 1 0 0fx
N.| |0 0 0 1 0N,
1 00 0 0 11
L d) - -L d(n)
OR (Zn )R = (Pn ).(Z(n—l))l_ (4-5)
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