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Abstract 
The dynamics of annulus pipe conveying fluid is described by means of 
transfer matrix method. This paper provides a numerical technique for 
solving two dimensional incompressible equation of forced and free 
vibration of annulus pipe conveying fluid. The dynamics behavior for any 
point located a long the annular pipe which is divided into nodes and 
elements, are computed, taking into account the type of support and heat 
flux ranging from (6.2-12.5kW/m2) for flow rate level ranging from (50-
200L/hr). 
A computer program written in FORTRAN 90 Languages has been 
developed to embrace the theoretical work. The results show that the 
thermal forces have predominance effect on the natural frequencies of the 
vibrated system as well as the effect of heat flux is greater than the fluid 
velocity effect on the natural frequencies of the system . Also results show 
that the mode shapes of vibration are greatly affected by heat flux 
increasing. 
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Nomenclature. 

fA           Cross-sectional area of the fluid ( 2m ).                                                                                    

oA          Cross-sectional area of the outer pipe ( 2m ). 

iA           Cross-sectional area of the inner pipe ( 2m ). 
D          Diameter of pipe(m) 
Eo,E i      Modulus of elasticity for outer and inner pipe( 2/ mN  ). 
F           Excitation force (N ). 
Fi          Field matrix. 
f            Fraction factor. 
Go,Gi     Modulus of rigidity for outer and inner pipe ( 2/ mN ). 
Io,Ii        Moment of inertia for outer and inner pipe  ( 4m ). 
L            Length of the pipe ( m ). 
Le           Element length ( m ). 
Lm           Mean element length ( m ). 
Mo,Mi     Bending moment per unit length for outer and inner 
pipe( mmN /. ) 

pom           Mass of outer pipe per unit length ( mKg / ) 

pim            Mass of inner pipe per unit length ( mKg / ) 

fm            Mass of fluid per unit length ( mKg / ) 

io NN ,     Thermal forces ( N ). 
n              Number of stations 

io KK ,     Stiffness for outer and inner pipe  

21 , KK     Stiffness of outer and inner support 
P             Fluid pressure 
Pi             Point matrix 

io VV ,      Shear force for outer and inner pipe ( N ). 
t              Time (s). 
U            Dimensionless fluid velocity 

fU          Fluid velocity ( )/ sm . 
W            Compressive + Coriolis forces ( N ). 
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ω             Circular frequency ( srad / ) 
X             Longitudinal coordinate 

io YY ,        Deflection in Y-direction for outer and inner pipe ( m ) 
Zi            State vector 
 ρ            Fluid density ( 3/ mKg ) 
 τ             Dimensionless time. 
R             Radius of pipe ( m ). 
r              Inner radius of pipe ( m ). 
∆T          Temperature change 
δt            Thermal elongation ( m ). 
αo,αi      Coefficient of linear expansion for outer and inner pipe 
( mCo / ). 
θo,θi         Slope in Y-direction for outer and inner pipe (degree) 
β,γ           Dimensionless fluid parameter 
Notation 
-              Dimensionless notation 
a              Annulus gap.  
L,R         Left and right . 
oo           Outer diameter of the outer pipe 
oi             Inner diameter of the outer pipe 
io             Outer diameter of the inner pipe 
ii              Inner diameter of the inner pipe  
/              ∂/∂x & (.  = ∂/∂τ  )  
1-Introduction. 
Annulus pipe conveying fluids have many practical applications, such as, 
their use in heat exchangers, hydraulic control lines and aircraft fuel lines. 
In some applications, as in jet engine fuel line, these tubes are exposed to 
high temperatures. Normally this leads to thermal stresses which may be 
of a catastrophic nature when coincide with vibration. 
A fluid flowing through a pipe can impose pressures on the pipe walls 
causing it to deflect. The deflections of a pipe produced by an 
accelerating fluid flow are called water hammer [1] .A steadiness of fluid 
flow through a pipe can also influence the deflection of the pipe .A steady 
high velocity flow through a thin walled pipe can either buckle the pipe 
or cause it to flail about. These deflections are called instabilities of fluid 
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conveying pipes. The stability of fluid conveying pipes is of practical 
importance because the natural frequency of a pipe generally decreases 
with increasing velocity of the fluid flow [1].Initial work on the 
transverse vibration and the dynamics of pipe conveying fluid has 
received considerable attention in the transport of oil in pipes [2] during 
the early of 1950. Housner [3] derived the differential equation of motion 
of pipe line containing the flowing fluid using Hamilton's 
principle.Niordson [4] arrived at the same equation using" shell theory". 
Long [5] considered the tube as a beam and calculated the frequencies by 
a power series method. Amabili [6] studied and investigated the non-
linear dynamics and stability of simply supported, circular cylindrical 
shells containing inviscid incompressible fluid flow, two different 
boundary conditions are applied to the fluid flow beyond the shell 
corresponding(i)infinite baffles (rigid extensions of the shell),and 
(ii)connection with a flexible wall of infinite extent in longitudinal 
direction. 
Transfer matrix method is a suitable technique to compute the dynamic 
behavior, the natural frequencies of the vibrating system and system 
mode shapes. 
Hence, this paper presents a numerical technique for solving two-
dimensional incompressible equation of forced and free vibration of pipe 
conveying fluid by adopting the cited transfer matrix method. A heat flux 
on the outer pipe was accounted for. 
2-Equation of motion: 
The equation of motion for forced vibration of an annulus pipe conveying 
fluid is given by [7], 

)1(),()(
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Where: ),( tXF , is the external force applied normal to the pipe axis in 
the y-direction 
and )( I  is the moment of inertia  pipe .  
This equation is different from the usual beam equation by additional 
three terms. The first and last terms of the left hand side of the equation 
are the usual stiffness and mass terms which would be presented 
regardless of flow. The second term represented the thermal forces, third 
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term represented the centrifugal force required to change the direction of 
fluid to conform to the curvature of the pipe material normally this force 
is considered equivalent to compressive force. The fourth term from the 
left represents the Coriolis force which is a result of the rotation of the 
fluid element due to the system lateral motion as each point in the span 
rotates with angular velocity. Equation (1) can be written in 
dimensionless form by introducing the following quantities [1, 8].  
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After substitution Eq (1) becomes, 
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Where, ),( τxF  is the non-dimensional external force applied normal to 
the pipe axis in the y-direction . 
      The pressure drop due to flow in annular pipe of any uniform cross-
section is given by [9]. 
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Where, ( )f  is the friction factor for laminar flow in annular pipe which 

is given by;              
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3 –Solutions. 
The selected solution is written as follows [1]. 

txatxatxY ωψω cos).(.sin).(.),( 21 +Ψ=             (4) 
Where a1 and a2 are interdependent. The pinned-pinned boundary 
conditions of the pipe span shown may be written as: 

0),(),0( == tLYtY                                                    (5) 
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These boundary conditions can be satisfied by the set of sinusoidal mode 
shapes. 

)/sin()( lxnxn πψ =                                                         (7) 
Let the third and fourth terms from the left of equation of motion (1) 
which represent the compressive force plus the coriolis force equal to 
[W(x,t)]. 
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So, the expression obtained from the solution for these specified two fluid 
forces terms is given by [7].  
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4- Theory of State Vector and Transfer Matrix Method: 
At any station on the annular pipe there are two state vectors, one to the 
right, and the other to the left of the station. R

nZ )(  Is the state vector to the 
right of station (n), similarly, L

nZ )( is the state vector to the left of the 
station (n). The state vector )( nZ  for outer and inner pipe of the annular is 
defined by. 

 



Damascus University Journal Vol. (25) - No. (1) 2009  K.A .Ismael- M.A. Tawfik- 
Z.K. Kadhim                                         

  

⎥⎦
⎤

⎢⎣
⎡= 1:,,,,,,,,,)( ffiiiioooon PUVMYVMYZ θθ             (10) 

The flexural properties of the segment are described by the field transfer 
matrix of the span, and the internal effect of the segment is described by 
the point transfer matrix of the mass. Hence, the transfer matrix of 
segment consists of two parts: 
1. The field transfer matrix of the elastic member, due to (Ki) and (Ko), 
and the effect of fluid physical properties (we). 
2. The point transfer matrix is due to the inertia of the internal and 
external masses (mi) and (mo) of the annular pipe and the flexibility of the 
supports. 
The steady–state condition caused by a harmonic excitation is more 
readily solved with the aid of a particular integral of the nonhomogenous 
differential equation. Using this approach if the forcing term has a 
circular frequency (ω), the system will vibrate 
 in its steady state with the same circular frequency, but with an 
amplitude and phase dependent on the value of (ω). This fact enables us 
to extend the application of the transfer matrix method to steady-state 
forced vibration. 
The simply supported pipe conveying fluid is subdivided into a number 
of elements and stations as shown in fig(1) which enable transfer-matrix 
to relate any adjacent state vector. The fluid flow forces (Compressive 
and Coriolies) will be concentrated at each field element, The state 
vectors for each field element and point station consist of the following 
state variables for outer and inner pipe; deflection (Yi) and (Yo), slope 
(θi) and (θo), moment (Mi) and (Mo), shear force (Vi) and (Vo), the fluid 
velocity (U), and the fluid pressure (P). The harmonic force is assumed to 
be imposed at mid length of the annulus pipe. . 
5- Field Matrix (Element Matrix). 
In order to determine the transfer matrix of any beam elements arbitrary 
oriented in space, a portion of pipe must be considered in (x) and (y) 
plane. Consider now the outer and inner pipe portion only between the 
points (n) and (n-1) in the (x-y) plane. 
The forces and deflections are illustrated as shown in fig (2). The 
equilibrium of the massless pipe element length (Le) requires that the sum 
of the vertical forces be zero also the sum of the moments about point (n-
1) be zero, as shown in appendix (1). 
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6- Point Matrix: 
In order to determine the transfer matrix of any beam elements arbitrary 
oriented in space, we need three types for point matrix  
1-The point matrix for a particular node with concentrated mass for the 
outer and the inner pipe may be written as shown in appendix (2). 
2-The point matrix for the supported node with concentrated mass shown 
in fig (4) may be written as shown in appendix (3). 
3-Field and Point Matrix with thermal forces: 
The thermal forces effect on the element and mass is shown in fig (5) 
&fig (6), the displacement and thermal force in the x-direction may be 
written as shown in appendix (4). 
Using the point and field matrices due to the thermal effects for all the 
nodes and eliminating the intermediate nodes , then applying the 
boundary conditions (Xo) & (Xi) equal to zero at the supports , thermal 
forces at all nodes may be evaluated. 
The common boundary conditions for the annular pipe problem with 
flexible support are: 
 

} }{{ PUYYPUVMYVMY iiooiiiioooo ,,0,0,,,0,0,,,,,,,,,,, θθθθ =               
 

Since the shear force and moment at boundaries of a flexible support 
must be zero while the slope and the deflection are unknown and 
nonzero, the fluid velocity and pressure are assumed to be known and 
nonzero. 
Then applying the boundary conditions to the adjacent state vectors of the 
last obtained equations yields the results to find the state variables at all 
points in the system domain. 
7-Results and discussion 
A suitable FORTRAN language program has been developed to embrace 
the theoretical work. The pipe span was discrtized into ten elements and 
eleven point stations and the forced vibration at different excitation 
frequencies is imposed at station (6) which represented the mid length of 
the annular pipe. Fig (7) and Fig (8) show that the fluid force generally 
increases as the excitation frequency increases for different values of heat 
flux and fluid velocity, due to the local dynamic effect of the fluctuated 
force of the fluid which interacts with the Coriolis and compressive force 
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for the zone of natural frequencies. It can be seen from fig (9) that in 
general the excitation force increases as the frequency increases, this 
behavior is reflected directly on the behavior of the Coriolis force. Fig 
(10) and fig (11) show the variation of bending moment for simply 
supported annular pipe conveying fluid with various excitation 
frequencies at mid length with various heat flux and fluid velocity.  This 
figure shows the bending moment values of the outer pipe are higher than 
that of the inner pipe at the same range of excitation frequencies. This is 
due to the higher values of the thermal forces in the outer pipe in 
comparison with the inner pipe. Also, it may be observed from the figure, 
the positions of the natural frequencies at the peak values  as well as it is 
obvious that the fluctuated values of the  bending moment increase as the 
flow velocities decrease due to the  increasing values of the thermal 
forces. It can be noticed from fig (12) the following: 
* The deflection in general increases as the fluid velocity increases for 
the same heat and range of excitation angular frequencies. This may be 
due to the increasing values of the Coriolis forces. 
* As the heat flux increases (6.2-12.5 kW/m2) the response increases for 
the same values of fluid velocities and excitation frequencies. This may 
be due to the increasing values of the thermal forces. 
Fig (13) and fig (14) show the effect of heat flux on the response of the 
outer and inner pipe for flexible and rigid support in annular pipe 
conveying fluid. It is obvious from these figures the following:- 
*The values of the natural frequencies in the rigid support are higher than 
that of flexible support since the overall stiffness of the system with 
flexible support will be decreased for the same value of heat flux. 
* As the heat flux increases, the flexibility of the pipe and the support 
increases, (overall stiffness increasing), causing the value of the natural 
frequencies to decrease for the same support and fluid velocity, however 
this decreasing differs in the order of the natural frequency. It is also clear 
from table (1) to table (3) the first three natural frequencies calculated by 
transfer matrix method for a simply supported annular pipe conveying 
fluid with the variation of heat flux, fluid velocity and type of support. 
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Table (1) three lowest natural frequencies of the system with different 
support configurations and different fluid velocity 

Heat flux (kW/m2) Flexible support (rad/s) Rigid support (rad/s)
q = 12.5   ωn1    ωn2     ωn3 ωn1 ωn2 ωn3 
U= 0.0158 (m/s) 119.3 163.0 364.4 257.6 314 383.2 
U= 0.0635 (m/s) 125.6 169.6 364.4 263.9 364.4 - 

 
Table (2) three lowest natural frequencies of the system with different 

support configurations and different fluid velocity. 
Heat flux (kW/m2) Flexible support (rad/s) Rigid support (rad/s)
q = 6.2 ωn1 ωn2 ωn3 ωn1 ωn2 ωn3 
U= 0.0158 (m/s) 125.6 175.9 351.9 263.9 307.8 ---- 
U= 0.0635 (m/s) 128.2 175.9 351.9 270 326.7 364.4 

 
Table (3) three lowest natural frequencies of the system with different 

support configurations and different fluid velocity. 
Heat flux (kW/m2) Flexible support (rad/s) Rigid support  (rad/s) 
q = zero ωn1 ωn2 ωn3 ωn1 ωn2 ωn3 
U= 0.0158 (m/s) 129.8 209.2 330.7 153.9 293.4 345.2 
U= 0.0635 (m/s) 131.9 221.2 400.7 266.2 400.7 ----- 

 
Fig (15) to fig (17) show first, second and third bending mode shape for 
fluid velocity of range (0.0158 – 0.0635 m/s) with various heat fluxes.  In 
general it can be observed from these figures as heat flux increases the 
annular pipe vibrates in natural frequencies less than its values without 
heat for high fluid velocity (0.0635 m/s), while at low fluid velocity of 
(0.0158 m/s) at the third mode shape the increasing effect of thermal 
forces is clearly observed such that the system vibrates by a higher next 
natural frequency and hence by its associated mode shape. i.e. the outer 
and inner 
pipe vibrates in the next mode . This may be due to the effect of the 
thermal forces which decreases the natural frequency. Fig(18) and 
fig(19), show the first and the second bending mode of outer and inner 
annulus pipe conveying fluid with various heat flux and fluid velocity (U 
= 0.0635 m/s) and the first three lower values of natural frequencies 
under no heat condition. It can be seen from these figures that the effect 
of heat flux increasing on bending moment is very small on the second 
and third natural frequencies, but this effect is highly increased at the first 
mode shape.  
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Fig (20) and fig (21) show the slope of outer and inner annulus pipe 
conveying fluid with various heat flux and fluid velocity range (0.0158-
0.0635 m/s), it can be seen that the slope increases as the heat flux and 
fluid velocity increase and the natural frequencies decrease due to 
temperature rises, however these figures show a linear vibration system 
since the highest value of the slope doesn’t exceed 5 degree [12].  
8-Conclusions: 
The following can be concluded from the present work: 
1- The fluid forces (Coriolis&Compressive) greatly affect the response of 
the undamped annular pipe under vibration. 
2- The outer and the inner pipes of the annular may vibrate individually 
in different mode shapes. 
3- The value of the fundamental natural frequency for flexible support is 
less than that obtained for rigid support with a maximum difference of 
(50%) for low frequency and (4%) for a high frequency for the adopted 
stiffness values. 
4- The effect of heat flux of the system is greater than it's the fluid 
velocity effect on the natural frequency. 
5- In general, the values of the bending moments in outer pipe are higher 
than those for the inner pipe at the same excitation frequency.  
6- Increasing the heat flux may result in increasing the thermal forces 
which may lead the system to vibrate at a higher natural frequency (i.e. if 
it is vibrating in the third mode it may vibrate in the fourth mode under 
the same frequency). 
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Fig (1) annular pipe with lumped elements and masses 

 

 
 
 

Fig (2) End forces, moments, thermal forces and deflections for massless 
outer and inner beam (free body sketch of span) 
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Fig (3) cantilever subjected to end moment and shear 

 

 
Fig (4) a: Flexible support; b: free-body diagram for the flexible support. 
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Fig (6) free-body diagram of mass (mi & mo) under thermal forces 

 
 

 
 

Fig (7) Coriolis and Compressive force of a simply support annulus pipe 
conveying fluid due to forced vibration at mid length with various velocities 

and heat flux 
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Fig (8) Coriolis force of simply supported annulus pipe conveying 

fluid due to forced vibration at mid length with various heat 
flux and various velocities 

 

 
Fig (9) Excitation force for a simply support annular pipe conveying 

fluid with various excitation frequencies at mid length with 
various heat flux and velocities 

 

 
Fig (10) Theoretical bending moment for a simply supported annular pipe     

conveying fluid with various excitations frequencies (Angular velocity / 2π ) 
at mid length with various heat flux and (u = 0.0635 m/s) for flexible 

support. 
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Fig (11) Theoretical bending moment for a simply supported annular pipe     

conveying fluid with various excitations frequencies (Angular velocity / 2π ) 
at mid length with various heat flux and (u = 0.0158 m/s) for flexible 

support. 
 

 
Fig(12)Deflection for simply support annular pipe conveying fluid with 

various excitation frequencies at mid length outer pipe for various velocities. 
 

 
Fig (13) Outer pipe deflection of a simply supported annular pipe conveying 
fluid due to forced vibration at mid  length for different type of support and 

heat flux with flow rate (u =0.0158 m/s) 
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Fig (14) Inner pipe deflection of a simply supported annular pipe conveying 
fluid due to forced vibration at mid length for different type of support and 

heat flux with flow rate (u = 0.0158 m/s) 
 

 
Fig (15) First bending mode of outer and inner from annulus pipe conveying 

fluid with various heat flux and fluid velocity (U= 0.0635 m/s) 
 

 
Fig (16) First bending mode of outer and inner from annulus pipe conveying 

fluid with various heat flux and fluid velocity (U= 0.0158 m/s) 
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Fig (17) First bending mode of outer and inner from annulus pipe conveying 

fluid with various heat flux and fluid velocity (U= 0.0635 m/s) with first 
natural frequency (ωn1=131.9 rad/s) 

 

 
Fig (18) First bending mode of outer and inner from annulus pipe conveying 

fluid with various heat flux and fluid velocity (U= 0.0635 m/s) with first 
natural frequency (ωn2=221.2 rad/s) 

 

 
Fig (19) First bending mode of outer and inner from annulus pipe conveying 

fluid with various heat flux and fluid velocity (U= 0.0635 m/s) with first 
natural frequency (ωn3=400.7 rad/s) 

 
 
 
 



A Theoretical Study of the Effect of Vibration on Heated Annulus Pipe 
 

 

 
Fig (20) the slope outer and inner from annulus pipe conveying fluid with 

various heat flux and fluid velocity (U = 0.0158 m/s) with first natural 
frequencies 

 

 
Fig (21) the slope outer and inner from annulus pipe conveying fluid with 

various heat flux and fluid velocity (U = 0.0635 m/s) with first natural 
frequencies 

 
APPENDIX (1) 
The forces and deflection are illustrated as shown in fig (2). The 
equilibrium of the massless pipe element length (Le) requires that the sum 
of the vertical forces be zero also the sum of the moment about point (n-
1) be zero, Hence: 
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      For simple beam theory, the deflection and slope of a cantilever of 
flexural stiffness (EI) subjected to a bending moment and shear force 
applied at its free end as shown  in fig (3) are given by [10]. 
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Where, ( )Pe AGLxV ./.. , is the deflection caused by the action of the shearing 
forces, is given by [11], for the annular cross section pipe as : 
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x , is the numerical factor by which the average shear stress must be 
multiplied in order to allow for its distribution over the transverse section. 
Referring to fig (2), the dimensionless forms for the deflection, slope, 
moment and shear force of the inner pipe may be written as follows: 
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For dimensionless fluid velocity and pressure, let: 
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[ ])(/ inletnn PPP =                                                  (1-22) 

The field matrix [F] for a pipe element may be written in matrix notation 
as follows in dimensionless form as, 
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Hence )( nF is the field transfer matrix which relates the state vectors 

( )RnZ 1−  and ( )LnZ  at the beginning and the end of the span (Le). 
 
APPENDIX(2) 
The displacement, slope, and moment at the mass (mno and mni) can be 
written in dimensionless forms as : 
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The force equation of the mass is,  
 ∑Forces= Mass *Acceleration 
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Where, ( ) nonfpo Ymm .. 2ω+   is the inertia force introduced due to 

vibrating mass for harmonic motion at the excitation frequency (ω). 
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Hence, combining Eqs (2-2), (2-3), (2-4) in matrix notation gives the 
following point transfer matrix. 
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(i.e.) the point transfer matrix at station (n) relates the vectors ( )LnZ  and 

( )RnZ  at the left and the right side of the mass (m) n. 
 
APPENDIX (3) 
Considering Newtonsُ second law for the mass supported at the station 
(n), gives, 
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Eqs (3-1) and (3-2) may be written in dimensionless form as follows, 
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The point matrix for a node with a flexible support may be written as: 
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APPENDIX (4) 
The displacement equations for the outer and inner pipes are: 
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From fig (5): 
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Substituting the above relations in Eq (4-1) gives: 
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The above equation can be written in dimensionless forms as:  
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Hence, combining Eqs (4-3) in matrix notation gives the following field 
transfer matrix. 
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As well as, from fig (6) the point matrix for thermal force and 
displacement may be written as follows: 
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