. - . - -

ARX		:	
ARMAX			
-	OE	:	
			BJ
•			

Introduction	:	
Gosiewski (2003) .		
Objective Research:		. 1
		•
Off-Line Identification Approaches -:		٠,
Estimation Methods		
:		
The Least Square approach		٠,
The Maximum Likelihood approach		٠.
Error Prediction Approach		٠,

- - -

:

$$e_t = y_t - \hat{y}(t \mid t - 1)$$
 ... (1)

:

$$y_t = G(q) u_t + v_t$$
 ... (2)

Linear Filter : G(q):

: White Noise : v_t

$$v_{t} = H(q) e_{t} = \sum_{k=0}^{\infty} h(k) e(t-k)$$
 ... (3)

Impulse : h(k) : H(q)

$$H(q)$$
 $\sum_{k=0}^{\infty} |h(k)| < \infty$ Response

Stable

$$v_{t} = e_{t} + \sum_{k=1}^{\infty} h(k) e(t-k)$$
 ... (4)

 $: v_t$

$$\hat{v}(t \mid t-1) = \sum_{k=1}^{\infty} h(k) e(t-k) \qquad ... (5)$$

: Backshift Operator

$$\hat{v}(t \mid t-1) = \left[\sum_{k=1}^{\infty} h(k) \ q^{-k}\right] e_{t} = (H(q) - 1) e_{t} \qquad \dots (6)$$

: (3) e_t

$$\hat{v}(t \mid t-1) = [1 - H^{-1}(q)]v_t \qquad ... (7)$$

: (٢)

 $y_{t} = G(q)u_{t}$ Deterministic part

Input Transfer Function

$$G(q)$$
 (10)

 $\stackrel{\sim}{B}(q)$ $\stackrel{\sim}{A}(q)$ Linear Combinations

 u_t

... (10)

G(q)

nb,na

 $y_{t} = \frac{\stackrel{\sim}{B}(q)}{\stackrel{\sim}{A}(q)}u_{t}$... (11)

 $\stackrel{\sim}{A}(q) = 1 + a_1 q^{-1} + a_2 q^{-2} + \dots + a_{na} q^{-na}$... (12)

 $\stackrel{\sim}{B}(q) = b_1 q^{-1} + b_2 q^{-2} + \dots + b_{nb} q^{-nb}$... (13) - - -

Stochastic part

$$H(q)$$
 Filtering White Noise v_t

: $\eta_{\scriptscriptstyle t}$

$$\eta_t = H(q)v_t \qquad \qquad \dots \tag{14}$$

Noise Transfer Function : H(q)

 V_t

nd ,nc
$$D(q)$$
 $C(q)$

.

$$C(q) = 1 + c_1 q^{-1} + c_2 q^{-2} + \dots + c_{nc} q^{-nc}$$
 ... (15)

$$D(q) = 1 + d_1 q^{-1} + d_2 q^{-2} + \dots + d_{nd} q^{-nd}$$
 ... (16)

-:

$$\eta_{t} = \frac{\widetilde{C}(q)}{\widetilde{D}(q)} v_{t} \qquad \dots \tag{17}$$

:

$$y_t = G(q)u_t + H(q)v_t \qquad ... (18)$$

Split H(q) G(q)

Polynomials

$$A(q)$$
 $B(q)$

$$F(q)$$
 $\stackrel{\sim}{A(q)} = F(q)A(q)$ $F(q)$

:

$$F(q) = 1 + f_1 q^{-1} + f_2 q^{-2} + \dots + f_{nf} q^{-nf} \qquad \dots$$
 (19)

$$C(q)$$

$$D(q) = A(q)D(q): \qquad A(q) \quad D(q)$$

$$\vdots$$

$$y_{t} = \frac{B(q)}{F(q)A(q)}u_{t} + \frac{C(q)}{D(q)A(q)}v_{t} \qquad \dots (20)$$

$$(1)$$

$$(Nelles, 2001): \qquad H(q) \quad G(q) \quad A(q)$$

$$v_{t}$$

$$C(q)$$

$$D(q)$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$The Equation Error Models$$

A(q) ARMAX عARX

.(Ljung & Söderström,1983) 1/A(q)

٠١

_ _ _

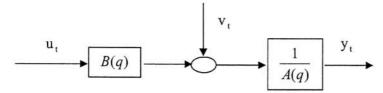
(

Autoregressive with exogenous input model (ARX)

ARX

.

$$y_{t} = \frac{B(q)}{A(q)} \mathbf{u}_{t} + \frac{1}{A(q)} v_{t}$$
 ... (21)


:

$$A(q)y_t = B(q)u_t + v_t$$
 ... (22)

 $\mathbf{u}_{\mathbf{t}}$:

 y_t v_t

: (2)

الشكل (2): نموذج الانحدار الذاتي مع مدخلات إضافية

Forecasting

Optimal Predictor

(Nelles ,2001):

$$\hat{y}(t \mid t-1) = s_0 u_t + s_1 u_{t-1} + \dots + s_{ns} u_{t-ns} + t_1 y_{t-1} + \dots + t_{nt} y_{t-nt}
= S(q) u_t + T(q) y_t$$
... (23)

$$S(q) = s_0 + s_1 q^{-1} + \dots + s_{ns} q^{-ns}$$
 ... (24)

$$T(q) = 1 + t_1 q^{-1} + \dots + t_{nl} q^{-nl}$$
 ... (25)

$$\hat{y}(t \mid t - 1) = \frac{G(q)}{H(q)} u_t + \left(1 - \frac{1}{H(q)}\right) y_t \qquad ... (26)$$

$$G(q)$$

G(q)

$$G(q) = B(q)/A(q)$$

ARX
$$H(q) = 1/A(q)$$

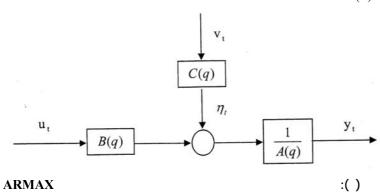
$$\hat{y}(t \mid t-1) = \frac{B(q) \mid A(q)}{1 \mid A(q)} u_{t} + [1 - A(q)] y_{t}$$

$$= B(q) u_{t} + (1 - A(q)) y_{t}$$
ARX
$$ARX$$

A(q)

Feedback

$$e_t = y_t - \hat{y}(t \mid t - 1) = y_t - [B(q)u_t + (1 - A(q)y_t)] = A(q)y_t - B(q)u_t$$
 ...(28)


Autoregressive Moving Average with Exogenous input model

ARX ARMAX

> V_{t} ARX

$$y_{t} = \frac{B(q)}{A(q)}u_{t} + \frac{C(q)}{A(q)}v_{t}$$
 ... (29)

(٣)

$$\hat{y}(t \mid t - 1) = \frac{B(q)}{C(q)} u_t + \left(1 - \frac{A(q)}{C(q)}\right) y_t \qquad \dots (30)$$

$$e_{t} = \frac{A(q)}{C(q)} y_{t} - \frac{B(q)}{C(q)} u_{t} \qquad \dots (31)$$

ARX

ARMAX

ARMAX

$$C(q) = 1$$
 $C(q)$

ARX A(q)

The Output Error Models

OE Output Error

BJ Box-Jenkins -

()

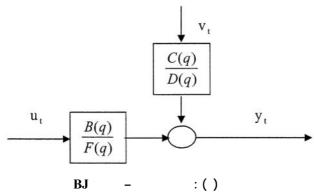
(Ljung & Söderström, 1983) (Nelles, 2001):

The Output Error model(OE) (

1/A(q)

:

$$y_t = \frac{B(q)}{F(q)}u_t + v_t \qquad \dots (32)$$


: (٤)

:

$$\hat{y}(t \mid t - 1) = \frac{B(q)}{F(q)} u_t \qquad (33)$$

. - . - .

(Nelles, 2001) -:

$$\hat{y}(t \mid t - 1) = \frac{B(q)D(q)}{F(q)C(q)}u_t + \frac{C(q) - D(q)}{C(q)}y_t \qquad ...(36)$$

-:

$$e_{t} = y_{t} - \hat{y}_{t} = \frac{D(q)}{C(q)} y_{t} - \frac{B(q)D(q)}{F(q)C(q)} u_{t}$$
 ... (37)

- - BJ

BJ
Band Criteria to Choose Best Model:
.

Loss Function .

Loss Function

.(Nelles, 2001) (Chiras, 2002)

: $V = \frac{1}{2} \sum_{i=1}^{N} e_i^2$... (38) : N . : V :

Akaik's Final Prediction Error Criteria

FPE 1979 Akaike (Ljung, 1999):

(Ljung,2004)

$$FPE = \frac{1 + \frac{m}{N}}{1 - \frac{m}{N}}V \qquad \dots (39)$$

 $V \quad N \qquad \qquad : \; m \qquad \qquad : \; FPE \; : \;$

Akaike's Information Criteria

(-) Akaike

AIC

AIC ARIMA

(Wei,1990):

(Nelles, 2001,)

$$AIC = \log\left(V\left(1 + 2\frac{m}{N}\right)\right) \tag{40}$$

Fitting Criteria .

(Ljung, 2004)

Estimation Data

Validation Data

(Ljung, 2002):

Fit = 100 *
$$\left(1 - \sqrt{\sum_{t=1}^{N} \left(y_{t} - \hat{y}_{t}\right)^{2}} \mid \sqrt{\sum_{t=1}^{N} \left(y_{t} - \hat{y}\right)^{2}}\right)$$
 ... (41)
: \hat{y}_{t} . : y_{t} . : Fit : \hat{y}_{t} : \hat{y}_{t} .

A suggest Instrument to Identify a Linear Stochastic Dynamic System with Time Invariant (Backward Instrument)

Söderström,T.

Off-Line

:
:
-۲
. Crosscorrelation Function

-Y. -1 -

_٣ .Unit Circle -: ١. random Gaussian (rgs) (n=500) المولد idinput signals u_t ٠.٠٤ n=500 randn \mathbf{e}_{t} y_t (ARX) . MATLAB .Z ٠٢. ۳. Ze Estimation Object Validation Object .Zv٤. nk ٥.

FPE AIC .Loss Function Poles الأصفار Zeros Unit Circle $\overset{\wedge}{y_i}$.(٤١) (٢) (Y) (A-1) ٩. . BJ, OE, ARMAX

- - -

Simulation Data Experiments:

:

ARX

BJ - OE ARMAX

(۲۰۰٦) ARX

ARX (2,2,2) .

 $y_t = u_{t-2} + 0.3 u_{t-3} + 0.2 y_{t-1} - 0.4 y_{t-2} + e_t$... (42)

: ARX

(na,nb,nk) ARX (')

(1.-1)

(na=2,nb=8,nk=2) ARX

ARX :(1)

na	nb	nk	Aic	Loss	Fpe	resid	cross	fitting	Unit Circle
1	1	2	-1.1882	0.3017	0.3047	غير عشوانية	مرتبطة	49.71	مستقر
1	2	2	-1.4978	0.1993	0.2023	غير عشوانية	مرتبطة	63.2	مستقر
1	3	2	-2.2796	0.1002	0.1023	غير عشوانية	مرتبطة	72.28	مستقر
1	4	2	-2.6548	0.0685	0.0703	غير عشوانية	مرتبطة	77.74	مستقر
1	5	2	-2.8368	0.0568	0.0586	غير عشوانية	مرتبطة	78.24	مستقر
1	6	2	-2.9856	0.0487	0.0505	غير عشوانية	مرتبطة	80.23	مستقر
1	7	2	-2.9979	0.0479	0.0498	غير عشوانية	مرتبطة	80.4	مستقر
1	8	2	-3.0384	0.0458	0.0479	غير عشوانية	غير مرتبطة	80.97	مستقر
1	9	2	-3.0622	0.0445	0.0467	غير عشوائية	غير مرتبطة	81.36	مستقر
1	10	2	-3.0624	0.0442	0.0467	غير عشوانية	غير مرتبطة	81.6	مستقر
2	8	2 -	-3.1848	0.0393	0.0413	عشوائية	غير مرتبطة	81.19	مستقر
3	8	2	-3.1822	0.0392	0.0414	عشوانية	غير مرتبطة	81.28	مستقر
4	8	2	-3.1796	0.0391	0.0416	عشوانية	غير مرتبطة	81.29	مستقر
5	8	2	-3.1795	0.0389	0.0416	عشوانية	غير مرتبطة	81.44	مستقر
6	8	2	-3.1754	0.0389	0.0417	عشوانية	غير مرتبطة	81.4	مستقر
7	8	2	-3.1756	0.0387	0.0417	عشوانية	غير مرتبطة	81.46	مستقر
8	8	2	-3.1713	0.0387	0.0419	عشوانية	غير مرتبطة	81.47	مستقر
9	8	2	-3.1665	0.0387	0.0421	عشوانية	غير مرتبطة	81.44	مستقر
10	8	2	-3.1785	0.0380	0.0416	عشوانية	غير مرتبطة	81.86	مستقر

(na,nb,nc,nk) ARMAX
.ARMAX (Y)

:(2)

81.41

81.37

81.21

81.03

80.24

غير مستقر

غير مرتبطة

غير مرتبطة

غير مرتبطة

غير مرتبطة

غير مرتبطة

na	nb	nc	nk	Aic	Loss	Fpe	resid	cross	fitting	Unit Circle
1	1	1	2	-1.2410	0.2847	0.2890	غير عشوانية	مرتبطة	47.5	مستقر
1	1	2	2	-1.4959	0.2195	0.2240	عشوانية	مرتبطة	47.35	مستقر
1	1	3	2	-1.5168	0.2139	0.2194	عشوانية	مرتبطة	46.41	مستقر
1	1	4	2	-1.5417	0.2075	0.2140	عشوانية	مرتبطة	47.55	. مستقر
1	1	5	2	-1.5383	0.2071	0.2147	عشوانية	مرتبطة	47.32	مستقر
1	1	6	2	-1.5312	0.2075	0.2162	عشوانية	مرتبطة	48.57	مستقر
1	1	7	2	-1.5246	0.2077	0.2177	عشوانية	مرتبطة	48.79	مستقر
1	1	8	2	-1.5173	0.2081	0.2193	عشوانية	مرتبطة	48.83	مستقر
1	1	9	2	-1.5116	0.2082	0.2205	عشوانية	مرتبطة	49.99	مستقر
1	1	10	2	-1.5037	0.2086	0.2223	عشوانية	مرتبطة	50.36	مستقر
1	2	2	2	-2.0277	0.1283	0.1316	غير عشواتية	مرتبطة	63.8	مستقر
1	3	2	2	-2.5057	0.0791	0.0816	غير عشوانية	مرتبطة	70.93	مستقر
1	4	2	2	-2.8544	0.0555	0.0575	غير عشوانية	مرتبطة	77.66	مستقر
1	5	2	2	-2.9841	0.0485	0.0505	غير عشوانية	مرتبطة	78.42	مستقر
1	6	2	2	-3.0820	0.0437	0.0458	غير عشوانية	مرتبطة	80.36	مستقر
1	7	2	2	-3.0864	0.0433	0.0456	غير عشوانية	مرتبطة	80.4	مستقر
1	8	2	2	-3.0989	0.0425	0.0451	عشوانية	غير مرتبطة	81.05	مستقر
1	9	2	2	-3.0961	0.0424	0.0452	عثوانية	غيرمرتبطة	81.33	مستقر

0.0474

0.0434

0.0437

0.0434

0.0414

10 2

8 2

2

-3.0491

-3.1355

2 | -3.1297

2 -3.1353

2 -3.1824

0.0442

0.0408

0.0408

0.0403

0.0383

ARMAX (Y) (na=2,nb=8,nc=2,nk=2)

غير عشوانية

عشوانية

عشوانية

عشوانية

OE :(3)

nb	nf	nk	Aic	Loss	Fpe	resid	cross	fitting	Unit Circle
1	1	2	-1.2146	0.2938	0.2968	غير عشوانية	مرتبطة	49.1	مستقر
1	2	2	-2.6921	0.0667	0.0677	غير عشوانية	مرتبطة	76.16	مستقر
1	3	2	-2.9636	0.0505	0.0516	غير عشوائية	غير مرتبطة	80.32	مستقر
1	4	2	-2.9752	0.0497	0.0510	غير عشوانية	غير مرتبطة	80.94	مستقر
1	5	2	-2.9678	0.0498	0.0514	غير عشوائية	غير مرتبطة	80.91	مستقر
1	6	2	-2.9667	0.0496	0.0514	غير عشوائية	غير مرتبطة	80.81	مستقر
1	7	2	-2.9603	0.0497	0.0518	غير عشوانية	غير مرتبطة	80.94	مستقر
1	8	2	-2.9532	0.0497	0.0521	غير عشوانية	غير مرتبطة	81.07	مستقر
1	9	2	-2.9462	0.0498	0.0525	غير عشوانية	غير مرتبطة	81.7	مستقر
1	10	2	-2.9455	0.0496	0.0525	غير عشوانية	غير مرتبطة	82.02	مستقر
2	3	2	-2.9768	0.0496	0.0509	غير عشوانية	غير مرتبطة	80.72	مستقر
3	3	2	-2.9737	0.0495	0.0511	غير عشوانية	غير مرتبطة	80.82	مستقر
4	3	2	-2.9670	0.0496	0.0514	غير عشوانية	غير مرتبطة	80.77	مستقر
5	3	2	-2.9629	0.0495	0.0516	غير عشوالية	غير مرتبطة	80.8	مستقر
6	3	2	-2.9573	0.0495	0.0519	غير عشوانية	غير مرتبطة	80.9	مستقر
7	3	2	-2.9542	0.0494	0.0521	غير عشوانية	غير مرتبطة	81.2	مستقر
8	3	2	-2.9457	0.0496	0.0525	غير عشوانية	غير مرتبطة	81.4	مستقر
9	3	2	-2.9406	0.0496	0.0528	غير عشوانية	غير مرتبطة	81.22	مستقر
10	3	2	-2.9328	0.0497	0.0532	غير عشوانية	غير مرتبطة	81.35	مستقر

(£) - (nb,nc,nd,nf,nk)

BJ :()

nb	ne	nd	nf	nk	Aic	Loss	Fpe	resid	cross	fitting	Unit Circle
1	1	1	1	2	-1.3071	0.2651	0.2706	غير عشوانية	مرتبطة	48.84	مستقر
1	1	1	2	2	-2.7620	0.0615	0.0631	غير عشوتية	مرتبطة	76.17	مستقر
1	1	1	3	2	-3.0745	0.0448	0.0462	غير عشواتية	غير مرتبطة	80.43	مستقر
1	1	1	4	2	-3.0895	0.0439	0.0455	غير عشواتية	غير مرتبطة	80.92	مستقر
1	1	1	5	2	-3.0815	0.0440	0.0458	غير عشوانية	غير مرتبطة	80.9	مستقر
1	1	1	6	2	-3.0783	0.0439	0.0460	غير عشواتية	غير مرتبطة	80.84	مستقر
1	1	1	7	2	-3.0722	0.0439	0.0463	غير عشواتية	غير مرتبطة	81.04	مستقر
1	1	1	8	2	-3.0631	0.0441	0.0467	غير عشوانية	غير مرتبطة	81.43	مستقر
1	1	1	9	2	-3.0588	0.0440	0.0469	غير عشوانية	غير مرتبطة	81.9	مستقر
1	1	1	10	2	-3.0551	0.0439	0.0471	غير عشوانية	غير مرتبطة	82.15	مستقر
1	1	2	3	2	-3.1515	0.0412	0.0427	عثوانية	غير مرتبطة	80.5	مستفر
1	1	2	3	2	-3.1478	0.0412	0.0429	عثوانية	غير مرتبطة	80.53	مستقر
1	1	2	3	2	-3.1421	0.0412	0.0431	عشواتية	غير مرتبطة	80.63	مستقر
1	1	2	3.	2	-3.1352	0.0412	0.0434	عثنوتنية	غور مرتبطة	80.62	مستقر
1	2	2	3	2	-3.1476	0.0412	0.0429	عشوانية	غير مرتبطة	80.61	مستقر
1	3	2	3	2	-3.1396	0.0413	0.0433	عثوانية	غير مرتبطة	80.6	مستقر
1	4	2	3	2	-3.1317	0.0414	0.0436	عشوانية	غير مرتبطة	80.65	مستقر
1	5	2	3	2	-3.1244	0.0415	0.0439	عثوانية	غير مرتبطة	80.63	مستقر
2	2	2	3	2	-3.1594	0.0405	0.0424	عشوانية	غير مرتبطة	80.93	مستفر
3	2	2	3	2	-3.1553	0.0407	0.0426	عشوانية	غير مرتبطة	80.93	مستقر
4	2	2	3	2	-3.1490	0.0405	0.0428	عشوانية	غير مرتبطة	80.88	مستقر
5	2	2	3	2	-3.1438	0.0404	0.0431	عثوانية	غير مرتبطة	80.98	يرمستقر

BJ

(°) ARX

ARX

: (2,8,2)

:()

	Aic	Loss	Fpe	resid	cross	fitting	Unit Circle		
ARX(2,8,2)	-3.1848	0.0393	0.0413	عشوائية	غير مرتبطة	81.19	مستقر		
ARMAX(2,8,2,2)	-3.1355	0.0408	0.0434	عشوانية	غير مرتبطة	81.37	مستقر		
OE		لا يوجد نموذج مناسب إحصائياً							
BJ(1,1,2,3,2)	-3.1352	0.0412	0.0434	عشوانية	غير مرتبطة	80.62	مستقر		

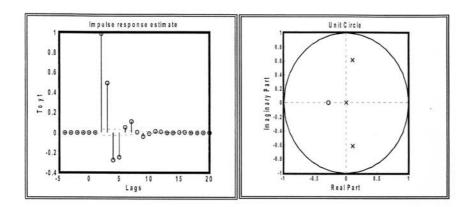
(0)

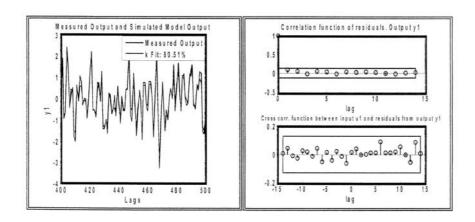
ARX

(0)

(7)

.ARX


ARX(2,8,2) :()


na	nb	nk	Aic	Loss	Fpe	resid	cross	fitting	Unit Circle
2	8	2	-3.1848	0.0393	0.0413	عشوانية	غير مرتبطة	81.19	مستقر
2	7	2	-3.1759	0.0399	0.0417	عشوانية	غير مرتبطة	80.78	مستقر
2	6	2	-3.1773	0.0400	0.0416	عشوانية	غير مرتبطة	80.59	مستقر
2	5	2	-3.1796	0.0401	0.0416	عشوانية	غير مرتبطة	80.57	مستقر
2	4	2	-3.1712	0.0407	0.0419	عشوانية	غير مرتبطة	80.7	مستقر
2	3	2	-3.1750	0.0407	0.0417	عشوانية	غير مرتبطة	80.74	مستقر
2	2	2	-3.1790	0.0708	0.0416	عشواتية	غير مرتبطة	80.51	مستفر
2	1	2	-2.7969	0.0660	0.0609	غير عشوانية	مرتبطة	75.94	مستقر

(٦) ARX(2,2,2)

(

 $ARX(2,2,2) \tag{7}$

ARX(2,2,2) :()
ARX

ARMAX $\label{eq:BJ} \text{BJ} \quad \textbf{-} \qquad \qquad \text{OE}$

(... ۲).

The Discussion and Results: .^

۲.

. ()

_٣

: .··٦) " : (٢٠٠٦): "

2. Chiras, N., (2002):"Linear and Nonlinear Modeling of Gas Turbine Engines", Ph.D.Thesis University of Glamorgan Limassol Gyprus.

- 3. Gosiewski, Z., & Paszowski, M., (2003):"Identification of Physical Param-eters of Unstable Systems: Theoreical Back-ground ", System Analysis Modeling Simulation Vol.43 No.3.PP.(301-311).
- 4. Ljung, L., & Söderström, T., (1983):"Theory and Practice of Recursive Identification", IT Press Cambridge Massachusetts London England.
- 5. Ljung, L., (1999):"System Identification Theory for user", 2nd ed. Prentice Hall Upper Saddle River N.J. London UK.
- 6. Ljung, L., (2002):"System Identification Toolbox for use with MATLAB", 5.0 Mathworks Inc.
- 7. Ljung, L., (2004):"System Identification Toolbox for use with MATLAB", 6.0 Mathworks Inc.
- 8. Nelles, O., (2001):"Nonlinear System Identification from Classical Appr-oach to Neural Network and Fuzzy Models", Springer Verlag Belin Heidelberg Germany.
- 9. Wei, W.W.S., (1990):"Time Series Analysis Univariate and Multivariate Methods", Addison Wesley Publishing Company Inc.The advanced Book Program California U.S.A.

.2007/2/25: