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Abstract
Two orthogonal Transformation techniques; namely Householder's, 

and QR methods, are adopted together as a procedure to find a flexible 
structure natural frequencies, and their corresponding mode shapes 

from a proposed model or time responses data. The approach shows its 
quiet good ability in calculating these parameters from simulated 
systems. Moreover, the method has the capability to identify the 

natural frequencies, from experimental data that have finite frequency 
range, with good accuracy.

  

1- Introduction 
It is important to model a simple structure by lumped masses that are 

connected together, and to  provide supports by springs of known 
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stiffnesses. There are many approaches, which are developed to calculate 
the system natural frequencies and their corresponding mode shapes, 

from the proposed models [1] and [2]. Moreover, the time responses at 
the lumped masses can be determined by well-known analytical and 

numerical procedures. For more details see [3], and [4]. The validity of 
this suggested model can be checked by comparing the calculated output 

responses of the assumed model with the measured ones [5] and [6]. 
Furthermore, It can be accepted if the system parameters of the given 

model are the same as those found from measured time or frequency data 
responses [5] [7], and [8]. On the other hand, it was found that the 

structure characteristics could be identified from measured frequency 
response data using principal component analysis (PCA) [5], and [9].    

In the present study, orthogonal transformation routines are going to be 
implemented to calculate or estimate the structure parameters from a 

given model or measured time output displacement responses. A software 
program is developed to implement these transformations on theoretical 
and experimental data. The presented approach is applied on simulated 

examples to demonstrate its capability to find the system parameters. In 
addition, the approach has the ability to estimate the natural frequencies 

in the frequency range of interest, which are less than the number of 
frequencies for the assumed model, with good accuracy.    

2. Theoretical Background 
A vibrating structure may be modeled by N finite number of lumped 

masses, which are connected to each other and to supports via springs as 
shown in Figure 1. The dynamic behavior of the structure can be found 

using Newton’s second law in matrix form as,  
fKxxM =+&&                        (2.1) 

    where, 
M     is the diagonal mass matrix of dimension (N x N) 

K      is the symmetric stiffness matrix of dimension (N x N) 
xx, &&  are the displacement, and  the acceleration response vectors 

of dimension ( N x 1) 
f        is the applied force vector of dimension (N x 1) 
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Figure 1: The lumped model for any structure under consideration 

The homogeneous solution of equation (2.1) can be determined by letting 
the vector f  equal zero. Thus, 

0KxxM =+&&                   (2.2)  
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Now, let the displacement response vector x be represented by the 
harmonic form of, 

tiXex ω=                   (2.3) 

                                         ti2Xex ωω−=∴ &&     (2.4) 
where X  is the amplitude vector, and ω  is the frequency . Substitute 

equations (2.3), and (2.4) into equation (2.2) yield,                   
      0M)X-(K 2 =ω     (2.5) 

Dividing both sides of equation (2.5) by 1M−  results in, 
                                                ( ) 0.0IA =λ−    (2.6) 

where, KMA -1= , 2ω=λ , and I  is an identity matrix. The solution of 
equation (2.6) by different procedures, such as iterative and power 

methods, provides two of the most important parameters of any vibrating 
structure [3]. These are the diagonal undamped natural frequencies matrix 

Ω , and their corresponding normalized mode shapes matrix Ψ . 
However, one can reach this goal by factorizing the matrix A to three 

matrices using orthogonal transformations as follows [10], 
                                                   TUUA Σ=    (2.7) 

where, 
U   is  a matrix with an orthonormal vectors, which will represent 

the mass normalized mode shapes matrix Φ . 
Σ   is a diagonal matrix with the natural frequencies are its 

diagonal elements    
It is easy to construct from the U  matrix the normalized mode shapes 

matrix Ψ  by dividing each column by its first elements. These 
orthogonal transformations are the Householder and QR methods, which 

are going to be discussed in the next two sections. 

2.1 Householder’s Method (HM) 
The Householder’s method is used to transform a symmetric matrix A of 

dimension ( )NN× , to a symmetric tridiagonal matrix B. The procedure 
starts by building an orthogonal matrix ( )1H  which has the form of [11], 
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( ) T1 hh2IH −=       (2.8) 
where, I is an identity matrix, and h  is a vector of dimensions ( )NN× , 

and ( )1N×  respectively. The vector h  is chosen to be orthonormal 
vector, so that the matrix ( )1H  will be orthonormal, where both of them 

satisfy the property of, 
      1hh T =      (2.9) 

      IHH (1)T(1) =      (2.1.0) 

The matrix ( )1H  will be pre- and post- multiplied by the matrix A  to 
produce a new matrix ( )2A  as, 

                                       (1)(1)(2) AHHA =      (2.11) 
with the following characteristics, 

11
)2(

11 aa =       (2.12) 
( ) ( ) α== 2

12
2

21 aa     (2.13) 
( ) ( ) 0.02

j1
2
1j == aa  N3,4,.....,jfor =                   (2.14) 

where, α is a constant, while (2)
1j

(2)
j1  and, aa   are the jth  elements of the first 

column, and the first row of matrix A(2) respectively. To preserve the first 
property, the first element 1h  of the vector h should be zero. Our goal 

now is to find the elements N32 ,.....,, hhh of h so that the other properties 
of ( )2A  are fulfilled. Thus, let us construct the following sub-matrix 

equation, 
                                           ( ) ( ) ŷĤŷ 12 =                (2.15) 

where:  
( ) T)0,....,0,(ŷ 2 α=    (2.16) 

T
1-N

(1) ĥĥ2IĤ −=    (2.17) 
T

N32 ),....,,(ĥ hhh=      (2.18) 
T

N13121 ),....,(ŷ aaa=      (2.19) 
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Equation (2.15) can be written as, 
( ) ŷĥĥ2-ŷŷ T2 =     (2.20) 

As the multiplication of ŷĥ T  yields a single value, which is assumed to 
be r . Therefore, equation (2.21) becomes, 

( ) ĥ2-ŷŷ 2 r=     (2.21)                                                            

or,  

              ( ) ( )TNN1331221
T 2..,,.........2,20,.......,0, rharharha −−−=α   (2.22) 

Equating the elements on both sides of equation (2.22) will produce 
( )1-N  algebraic equations. These are, 

                                         
r

a
h

2
21

2
α−

=     (2.23) 

                                          
r
a

h
2

1j
j =  N..,3,4,......j =    (2.24) 

Then, if these ( )1-N  equations are squared, and the results are added, a 
new algebraic equation will be formulated, 

                              2
21

N

2j

2
1j

N

2j

22 24 α+α−=∑∑
==

aahr j   (2.25) 

Since, equations (2.9), and yŷT  can provide us by, 

                                      1
N

2j

2
j =∑

=

h     (2.26)  

                                       ∑
=

=α
N

2j

2
1j

2 a     (2.27) 

From equations (2.23) and (2.24), it is clear that to ensure this routine is 
working, r  should not be equal to zero. Thus, to prevent halting of this 

process, it was found that α  should be selected to have the value of  [11], 

                               ∑
=

−=α
N

2j

2
12

1j21 ))(sgin ( aa     (2.28) 
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Consequently, 

                                  2
1

21
2 )

2
1

2
1( α−α= ar        (2.29) 

As a result, the elements of the vector h  can be determined from 
equations (2.24), and (2.25). Then ( )1H   is calculated utilizing equation 

(2.8), and, finally the matrix ( )2A  is obtained from equation (2.11), which 
has the form of, 

                 




























α

α

==

)2(
NN

(2)
N2

(2)
N2

)2(
22

11

(1)(1)(2)

....0
......0
......0
......0
......0

....
00000

AHHA

aa

aa
a

 (2.30) 

Repeating the procedure for  (N-2) times to form the tridiagonal 
symmetric matrix B , i.e.,  

2)-(N3)-(N(1)(1)3)-(N2)-(N HH....AHH.....HHB =∴   (2.31) 

2.2 QR Method 
The QR  approach is based on transforming the resulting tridiagonal 
matrix B to an upper tridiagonal matrix R by multiplying it with an 

orthogonal matrix Q. This can be expressed as, 
                               BQR (1)(1) =     (2.32) 

The (1)Q  matrix is constructed from the multiplication of (N-1)  
orthogonal matrices which are denoted by the symbol P. Each one of 

these orthogonal matrices is generated to make one of the lower off 
diagonal elements of the matrix B equal zero, 

                          21-NN
(1) P.......PPQ =∴     (2.33) 

where,  the matrix 1kP +  has the form of, 
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k=1,2,…..,N 



















−−

++

++

=+

1knI00

01kc!ks-0
1ks1kc

001-kI

1kP

Row k

Column k  
(2.34) 

The constants kc , and ks  in matrix 1kP +  are determined using the 
following formulae, 

                                  
2
kk

2
k1k

k1k
1k

bb

b
s

+
=

+

+
+    (2.35) 

                                  
2
kk

2
k1k

kk
1k

bb

b
c

+
=

+

+                            (2.36) 

where, the constants b's, in equations (2.35) and (2.36), are the elements 
of the matrix B. After constructing the ( )1Q  matrix and calculating the 
( )1R  matrix, a new tridiagonal matrix (1)B  can be formed from these two 

matrices, i.e., 
( ) ( ) ( )111 QRB =                             (2.37) 

The values of the lower, and the upper off-diagonal elements of matrix 
B(1) are smaller than those of matrix B. Thus, the preceding process can 

be repeated until the values of all the off-diagonal elements are 
diminished. The final new B matrix represents the diagonal Σ  matrix, 
while the multiplication of all the Q, and H matrices will produce the 

orthonormal matrix U. It is worth mentioning that, the processing time 
can be reduced significantly, if the shifting routine is added to it [12].   
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2. 3 Principal Component Analysis (PCA) 
PCA is a statistical procedure, which was used in structural vibration 

identifications from measured frequency response data [13], [5], and [14]. 
PCA main task is to transform coupled output responses of vibrating 

structure to new de-coupled responses. The approach begins by preparing 
an equivalent covariance matrix S  from the measured responses utilizing 

the following formula [5],                                
                                              XXS T=                                  (2.38) 

where, 
X is the time responses matrix measured at N locations on the 
structure with pN sampled data each, the matrix dimension is 

NpN ×  

S   is the covariance matrix of dimension ( )NNo ×  

 
Then, orthogonal transformation techniques are adopted to factorize the S 

matrix to,  
                                                UUS TΣ=         (2.39) 

     where, 
U   is a matrix with orthonormal columns of dimension ( )NN×   

Σ  is a diagonal matrix with elements of descending order, of 
dimension ( )NN×   

Since, the measured data usually include dN  of natural frequencies 
where NN d ≤ , these natural frequencies are well separated ones in 
simple structures . It was found that the value of the elements in the 

diagonal matrixΣ  are of descending order, with only the first dN  
elements have significant values, [5], and [9]. As a result, the covariance 

matrix S can be constructed without losing valuable information using the 
following expression, 

                                           ′Σ′′≅ UUS
T

                                  (2.40) 

where, ′U is an orthonormal matrix of dimension ( )NN d × , and ′Σ is a 
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diagonal matrix of dimension ( )dd NN × . In fact, the columns of matrix 
′U  are the mass normalized mode shapes of the system which are 

included in the recorded data. Thus, they can be utilized to transform the 
N  coupled responses in the X matrix to the new dN  de-coupled 

responses, saved in the ′X matrix, as follows, 

                                         XUX
T′=′                                       (2.41) 

Finally, the new de-coupled responses represent single degrees of 
freedom systems. Consequently, it becomes easy and efficient to estimate 

the system natural frequencies from them.  

3. Simulation Results 
The approach is going to be implemented on a number of systems to 

demonstrate its capability of calculating as well as estimating the excited 
natural frequencies and their corresponding mode shapes. 

These systems are: 

3.1 Three Degrees of Freedom System  
An ideal system is constructed with a diagonal mass matrix M where its 
three elements, 332211 m and ,m,m  are equal, and have the magnitude of 

1kg. The stiffness matrix is chosen to be, 

                                         
m
N10

210
121

012
K 4×

















−
−−

−
=  

The matrix A is calculated, then the orthogonal transformation techniques 
are utilized to factorize A to three matrices as given in equation (2.7). The 

calculated Ω , and Φ matrices represent the system three natural 
frequencies and their corresponding mass normalized mode shapes 

matrices respectively. These are, 

rad/sec  
79.18400

043.1410
0053.76
















=Ω     

















−
−=Φ

50.0707.050.0
707.000.0707.0
50.0707.050.0
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The normalized mode shapes matrix can be determined by dividing each 
column in the matrix Φ  by its first element, 

                                
















−
−=Ψ∴

0.10.10.1
41.1041.1
0.10.10.1

 

Now, a force of magnitude 0.1 N is applied at mass 1 and the output 
displacements at the three masses are calculated using the mode 

superposition method, Craig [3]. A 1024 sampled data are recorded for 
each output, and the sampling time dt used here is 0.01 sec. Since the 

cutoff frequency of the FFT is 50 Hz, all the three system natural 
frequencies of the system are excited. The calculated displacement 
outputs of the system are given in Figure 2, and can be assumed as 

measured output by displacement sensors. It is clear that it is difficult to 
estimate the system natural frequencies, and their corresponding mode 

shapes from these time outputs. Thus, the orthogonal transformation 
approach is adopted to generate a new de-coupled output from the system 

original coupled outputs. To achieve this goal, the matrix S is obtained 
from the system original coupled outputs, then the orthogonal 
transformation technique is applied to factorize it, and get the 

orthonormal matrix U which was found to be, 

















−
−×−= −

5001.07069.05002.0
7073.010931.97069.0

4997.07073.050.0
U 5  

It is obvious that the U matrix is actually the Φ matrix of the system, and 
the Ψ  matrix is then calculated from U as explained previously. The de-

coupled single DOF outputs are then determined utilizing equation 
(2.41), and the results are shown in Figure 3. Now, the system natural 

frequencies can be estimated directly from either the time or frequency of 
those outputs. The values of these frequencies are, 

4.76n1 =ω  rad/sec    91.142n2 =ω  rad/sec          8.184n2 =ω  rad/sec 
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fig2: (a): The response in time and frequency domains at mass 1 
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fig2: (b): The response in time and frequency domains at mass 2 
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fig2:  (c): The response in time and frequency domains at mass 3 

Figure 2: The response of three DOF system 

It is obvious that the U matrix is actually the Φ matrix of the system, and 
the Ψ  matrix is then calculated from U as explained previously. The de-

coupled single DOF outputs are then determined utilizing equation 
(2.41), and the results are shown in Figure 3. Now, the system natural 

frequencies can be estimated directly from either the time or frequency of 
those outputs. The values of these frequencies are, 

4.76n1 =ω  rad/sec    91.142n2 =ω  rad/sec          8.184n2 =ω  rad/sec 
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Figure 3: The new de-coupled responses, which represent three single DOF 
systems 

 

This example shows the approach capability for calculating or estimating 
accurately its characteristics from theoretical or experimental data. The 

small discrepancy between the theoretical and estimated natural 
frequencies is due to the resolution of the recorded data. The estimation 

can be improved by increasing the number of the sampled data, as well as 
decreasing the sampling time dt.     

3.2 Five Degrees of Freedom System 
A five DOF system with the following mass and stiffness matrices, 

kg

0001

M


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



















=

10000
01000
00100
00010
0
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m
N
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is selected, and the orthogonal transformation techniques are 
implemented to calculate the system parameters, which are found to be, 

Hz
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0.10.10.10.10.1
74.10.10.05.074.1
0.20.00.10.00.2
74.10.10.05.074.1
0.10.10.10.10.1

29.058.058.058.029.0
43.05.00.05.043.0

58.00.058.00.058.0
43.05.00.05.043.0

29.058.058.058.029.0

 

The output displacements at the masses are generated using the same step 
input force, sampling time dt, and the number of sampled points as in the 

first system. However, only the first three natural frequencies of the 
system are included in the data as illustrated in Figure 4, for the response 
at mass 1. Again, the HM-QR methods are applied of matrix A, which is 

prepared from these coupled data, and the resulting U matrix is, 
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5058.02789.05778.04992.02886.0
6865.0169.00009.05002.04998.0

494.02989.05774.00012.0577.0
169.0687.00012.04998.05002.0
011.00.5770.577-0.50080.289

U  
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Figure 4: The response in time and frequency domains at mass 1 for five 
DOF system showing the first three natural frequencies in the recorded data 

 
There is no doubt that the first three columns in matrix U are the same as 

those of matrix Φ , while the last two represent only the effect of 
contributions of the last two frequencies on the recorded data. Thus, it is 

possible to de-couple the original outputs to three single DOF systems 
using U′  matrix for the transformation as shown in Figure 5. The natural 

frequencies of the system are estimated from these new data, and they 
were found to be, 

23.8n1 =f  Hz       05.16n2 =f  Hz       745.22n3 =f  Hz 
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The method proves its ability to identify the parameters with quite good 
accuracy, of a system with truncated measured data. 
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Figure 5: The new de-coupled responses, which represent three single DOF 

systems 

3.3 Cantilever Beam 
A beam is fixed at one end, while the other end is free selected as a 

simple real flexible structure. Its length is 0.8 m, modulus of rigidity (EI) 
is  0.100105598 Nm2, and the mass per unit length is 0.05933274 kg/m. 

The beam is modeled as 29 DOF lumped system, which will give only 
the first three natural frequencies with good accuracy. This is due to the 
fact of modeling a distributive structure of infinite DOF by a finite DOF 

model. In the present study, only the first two natural frequencies are 
considered excited under operational environments as shown in Figure 6. 

The orthogonal transformation is applied to the model matrices, i.e. M, 
and K, as well as to the calculated responses to calculate, and estimate the 

structure characteristics respectively. The de-coupled two output data 
demonstrate clearly single DOF systems as illustrated in Figure 7. The 
calculated and estimated natural frequencies, with their corresponding 

mode shapes are presented in Tables (1) and (2) respectively. These two 
tables show the success of the HM-QR method in finding the structure 

parameters under consideration efficiently. 
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Figure 6: The response in time and frequency domains at the free end of the 
cantilever beam 

Table (1): The calculated and estimated natural frequencies of the 
cantilever beam 

Natural Frequencies  rad/sec 

Calculated Estimated 
7.1321 

44.6358 
7.39 

44.352 

4. Conclusions 
The paper presents the HM-QR method as a technique that can be used to 

calculate the system natural frequencies, and their corresponding mode 
shapes from given mass, and stiffness matrices. The same approach can 

be adopted to find directly the normalized mode shapes from the 
covariance matrix, which is generated from the system coupled time 

outputs utilizing the PCA routine. De-couple single DOF data from the 
original coupled outputs can be determined so that the natural frequency 

may be estimated directly from this new set of data. The method is 
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applied to three systems with full or truncated displacement outputs, and 
it was found that the calculated or estimated system characteristics are 

accurate enough to use the approach as a successful routine for such 
identifications. 
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Figure 7: The New de-coupled responses for the first two natural 

frequencies of the cantilever beam 
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Table (2)  
The calculated and estimated mode shapes of the cantilever beam 

Normalized Mode Shapes 

Calculated Estimated 

1.0 
0.953 
0.906 
0.859 
0.812 
0.765 
0.719 
0.672 
0.626 
0.581 
0.535 
0.491 
0.447 
0.405 
0.363 
0.323 
0.284 
0.247 
0.212 
0.179 
0.147 
0.119 
0.093 
0.069 
0.049 
0.032 
0.018 

0.0008 
0.0002 

1.0 
0.828 
0.657 
0.486 
0.318 
0.155 

-0.0027 
-0.151 
-0.289 
-0.414 
-0.523 
-0.616 
-0.69 
-0.745 
-0.78 
-0.794 
-0.789 
-0.765 
-0.724 
-0.668 
-0.599 
-0.52 
-0.434 
-0.346 
-0.26 
-0.179 
-0.107 
-0.051 
-0.014 

1.0 
0.952 
0.905 
0.857 
0.81 
0.763 
0.716 
0.669 
0.622 
0.577 
0.531 
0.487 
0.443 
0.40 
0.359 
0.319 
0.28 
0.243 
0.209 
0.176 
0.145 
0.116 
0.091 
0.068 
0.048 
0.031 
0.018 

0.0008 
0.0002 

1.0 
0.826 
0.653 
0.482 
0.313 
0.159 
-0.009 
-0.157 
-0.295 
-0.418 
-0.527 
-0.619 
-0.692 
-0.746 
-0.779 
-0.793 
-0.787 
-0.763 
-0.721 
-0.665 
-0.596 
-0.517 
-0.432 
-0.344 
-0.258 
-0.177 
-0.107 
-0.05 

-0.013 
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