:

.(8) :(6) RECYCLING: :

()

-1

-2

34

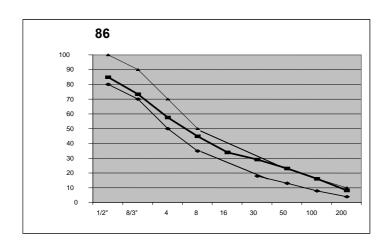
		-1
		-2
•		-3
·		-3 -4
		-
· :		
. HOT RECYCLING:		-1
.COLD RECYCLING:		-2
HOT RECYCLING:		-1-1
	(1)	(7-6)
		ı
(120)		II
(8) 3 2500		
<u>:</u>		-1-1-1
:		-1-1-1
: () ,()		,86
:		-1

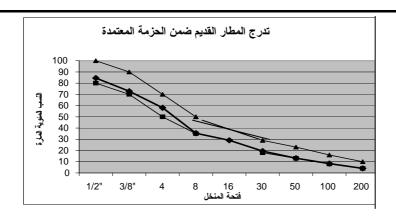
35

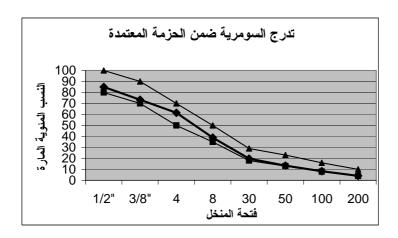
. -2

. -3

: (1-1)


(1-1)


		86	
4	5	12	
53	49	37	
60-70	60-70	60-70	


.25

(2,1)

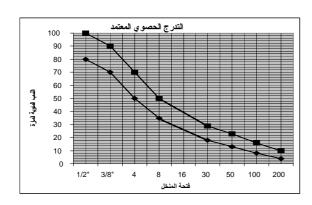
				86		
	1	1		1		
4.	.50	4.64		5.35		
g	g	g	g	g	g	
184.23		190.11	5.73	183.42		1/2
142.92	20.1	144.11	21.2	142.15	3.98	3/8
146.4	146.4	180.8	180.8	192.45	9.03	4
177.32	54.5	279.17	156.26	156.19	33.91	8
123.56	53.68	77.25	77.25	134.52	12.24	16
235.15	159.6	78.10	46.53	52.11	52.11	30
77.64	40.8	78.10	28.94	76.29	76.29	50
62.64	25.8	58.23	21.36	83.17	83.17	100
51.54	14.7	52.97	16.1	104.2	104.2	200

-2-1-1

: -1-2-1-1-1

(3-1)

:


%0.42	%20.18

(4-1)

:

%0.7	2.648	2.619	2.63

:

-1-1-1-2-2 (5-1) : 1.05 93 (5-1) <u>(2)</u> -1-1-2 (28C)50F -1 .ASTM D1559 -2 , (280+-30CST)ASTM D1559 .(6-1) 30 -3 -4 60 -5 (%0.5) -6

40

(7) **(6-1)**

CST	85-100	60-70		
(150-190)	156-150	160-166		
(250-310)	144-139	153-147		

(2): -1-1-3

: -1

.

(2) $r = \frac{Pns*100}{Psm - \frac{Psm*PSb}{100} + Pns}$

:r

. :Pns

:Psb

:Psm

: -2

P=0.035*a+0.045*b+k*c+f (2)

" :P

. (0.75) 200 (%6-10) : k=0.18

```
. ( 0.75)200
                                           (%5)
                                                            : k=0.2
 . ( 2.36) 8
                                                                : a
( 2.36) 8
                                                               : b
                              . ( 0.75)200
            . ( 0.75)200
                                                                : c
                                          (\% 0-2)
                                                                 :f
                                           (1)
                                                                -3
       Pnb = \frac{(100^2 - Psb * r) * Pb}{100(100 - Psb)} - \frac{(100 - r) * Psb}{(100 - Psb)}
                                                              :Pnb
                                                                 :r
                                                               :Pb
                                                              :Psb
                                                         -1-1-4
              ,( 12) 86 :
                                                       102
                                                      4) (
                                              , (
          ( 5) (
                           )
                                                                )
AASHTO T166
    , ASTM D 1559
             (9,1),(8,1),(7,1)
```

86 %40

. %.50

	86						
7	6	5	4	3	2	1	
5.47	4.97	4.47	2.47	2.97	3.47	3.97	%
2.364	2.386	2.364	2.25	2.29	2.316	2.35	
1.73	1.49	3.07	10.3	8.06	6.36	4.23	%
457	529	526	605	810	645	605	kg
5.32	4.62	4.22	3.12	3.76	3.59	3.69	mm
90.32	88.28	76.58	38.2	39.6	54.61	67.7	%

(7,1)

5	4	3	2	1	
4.22	3.72	2.22	2.77	3.22	%
2.393	2.383	2.328	2.3	2.315	
2.22	3.31	7.52	7.98	6.72	
1136	1155	1270	1827	1643	kg
4.39	4.22	3.59	3.58	3.34	mm
81.24	71.83	39.55	42.74	51.37	

(8,1)

5	4	3	2	1	
4.354	3.854	2.354	2.854	3.354	%
2.396	2.397	2.342	2.356	2.381	kg/cm3
1.92	2.56	6.79	5.56	3.89	%
950	1652	1335	1588	1543	kg

6.10	3.76	2.78	2.24	2.63	mm		
83.80	77.46	43.60	53.52	66.16	%		
(9,1)							

/ - /

:86

%	%	%			
85	15	15	183.42		1/2
73.37	26.62	11.625	3.98+138.17=142.15	3.98	3/8
57.63	42.36	15.73	9.03+183.42=192.45	9.03	4
44.86	55.13	12.77	33.91+122.28=156.19	33.91	8
33.86	66.14	11	12.24+122.28=134.52	12.24	16
29.6	70.40	4.26	52.11	52.11	30
23.36	76.63	6.24	76.29	76.29	50
16.50	83.43	6.8	83.17	83.17	100
8	91.96	8.52	8.52	104.2	200

:

$$\frac{60*100}{40 - \frac{40*5.35}{100} + 60} = 61.3\% \text{ r} =$$

100-61.3=38.7

 $\frac{473.23}{39.7} = 12.22$

:

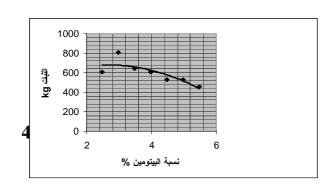
12.22*61.3=749.57

:

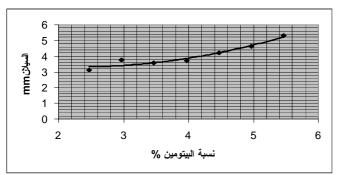
749.57+473.23=1222.8

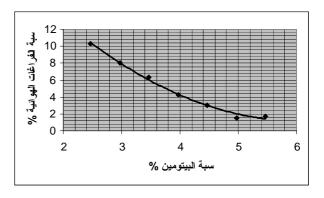
:

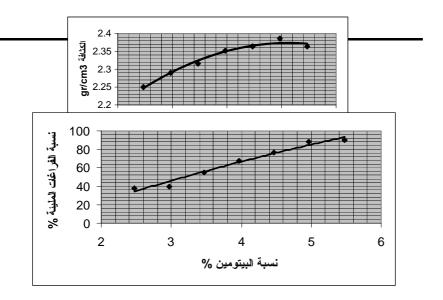
 $\begin{array}{l} p{=}0.035*a{+}0.45*b{+}k*c{+}f\\ p{=}0.0.35*55.136{+}0.045*36.82{+}0.18*8{+}1\\ p{=}6.03\% \end{array}$

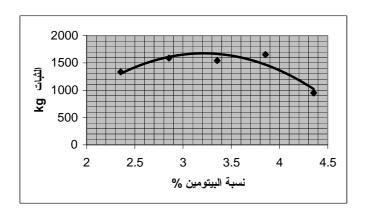

:

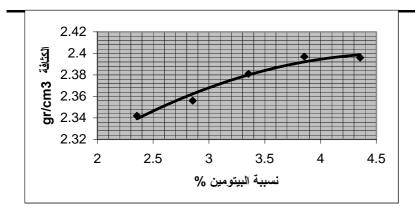
$$\frac{(100^2 - 5.35*61.3)*6.03}{100(100 - 5.35)} - \frac{(100 - 61.3)*5.35}{100 - 5.35} = 3.97\% \text{ pnb} =$$

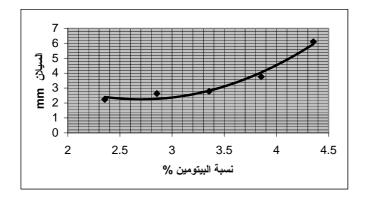

:

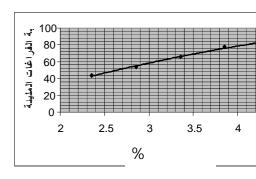

$$\frac{Pnb}{Pb} *100 = \frac{3.97}{6.03} *100 = 65.83\% \text{ R} =$$


-5-1-1

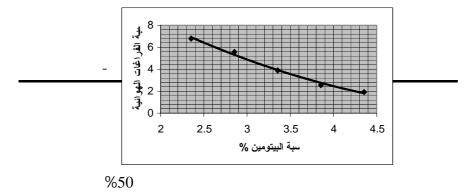

, 86

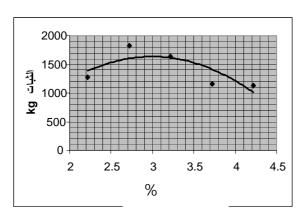


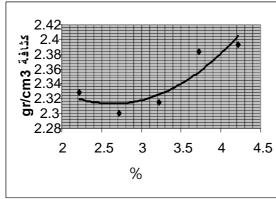


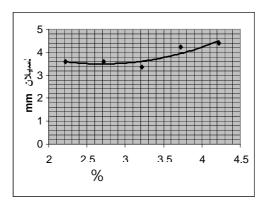


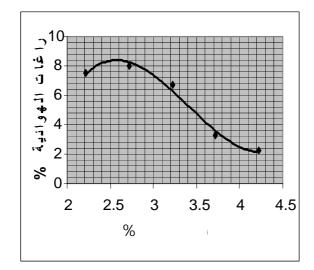
(12)

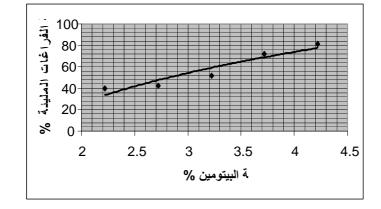



(37) %50


. %50




%50


49

%

:						-1-1-6
(6) :						(5-1)
75		50		35		,
180	0	120	0	750		lb.
800	6	533	8	3330	6	
						0.01in
8	16	8	18	8	20	0.25
3	5	3	5	3	5	
			(5-1)			

: **-1-1-7** 102 -1

,(4) ,(5)

%64 %92 (12)86

(6.1)

%	%	gr/cm3	mm	kg
66.54	4.22	2.361	4.23	1050.26

-2

-3

и ,

. -4

. (% 3.7)

.%4

-5

. (% 3.5)

" -1

ı

C150 -2

(C190-180)

(1-2)"

(3

(1-2)"

-3

(1-2)"

-4

-4

. -6

•

1-EPPS, J ,GUIDELINES FOR RECYCLING PAVEME MATERIALS ,WASHINGTON:NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT 224. 1980.

- 2-KALLAS, B , FLEXIBLE PAVEMENT MIXTURE DESIGN USING RECLAIMED ASPHALT CONCRETE, U.S.A:ASPHALT INSTITUTE REPORT 84-2,OCTOBER 1984.
- 3-WOOD, L, E, RECYCLING OF BITUMINOUS PAVEMENTS, BALTIMORE: AMERICAN SOCIETY FOR TESTING AND MATERIALS, 1987.
- 4-HIGHWAY RESEARCH PROGRAM REPORT 160,1990.
- 5-DALLAS , B.ESTAKHARI, C , HOT IN PLACE RECYCLING OF ASPHALT CONCRETE , WASHINGTON: NATIONAL ACADEMY PRESS, 1994.
- 6-MCDANIEL, R . ANDERSON , R , RECOMMENDED USE OF RECLAIMED ASPHALT PAVEMENT IN THE SUPERPAVE MIX DESIGN METHOD TECHNICIANS MANAUAL, WASHINGTON: NATIONAL AC

:

. , –7

*. 2001-2000 -8

2003 /3 /19