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The Influence Of Reduced Numerical
Integration
On The Stability of Space-Time Finite Elements

Fouad Taltello'

Abstract

Rectangular space-time finite elements (STFE) applied for axial
vibrations of bar were considered using the closed form integration and
the numerical integration of the stiffness matrix. These STFE which are
conditional stable when we use the closed form integration (or exact
numerical integration) become unconditional stable when we use reduced
numerical integration (reduced number of points relative to time axis).

For triangular STFE applied to axial vibrations, the use of
numerical integration with one point corresponds to exact integration, and
has the same conditional stable results of closed form integration.

Reduced numerical integration of rectangular STFE applied to
flexural vibrations of beams and to plane stress-strain vibrations has
shown unconditional stability.
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Introduction

It is quite known that dynamic analysis is gaining an increasing
importance. Tall (or long) and thin structures are sensitive to dynamic
effects. Aircraft impact on nuclear reactors (or other important buildings)
is now more reality than ever before.

In recent decades the space-time finite elements method introduced itself
as an alternative and attractive way of solving dynamic problems. The
idea of the method returns back to the general theory of finite elements
[V]. Then the method was developed in Poland by the works of [, Y] and
others. On the basis of scientific cooperation the method became a
research topic at Weimar University, Germany [£, °].

Space-Time Finite Element Method
In the traditional way of solving dynamic problems we use finite
elements to discrete structure in space, Fig. Y-a and the following set of
equations is obtained.

MU +CU +KU =F M
Where

M mass matrix

C damping matrix

K stiffness matrix

F force vector

U displacement vector

Time integration methods (like central difference, Newmark, Wilson,
etc.) are then applied to solve this set of equations for U.

The main characteristic of these methods is the stability.

Unstable results are characterized by the unlimited increase of the
displacements.

Conditional stable methods require that the time step must be less than
(or equal to) the critical time step in order to have stable results

(At<At,).
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The unconditional stable methods have the advantage that the,
time step is not restricted by a critical time step for stability
requirements, and only should be chosen due to accuracy requirements.

In the method of space-time finite elements the time axis is introduced to
the space dimensions. From the space element and the time step we
obtain space-time element (e), and the whole elements build the united
space-time element (E), Fig. Y-b.
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Considering the successive time steps we get the shape in Fig. -c, the
force F leads to impulses, and the equilibrium of impulses at these time
steps leads to the following system.
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Q1 [A B U,
Q| |C D+A B U,
Q,| C D+A B||U,
Where
K. =
C D

Stiffness matrix of the united space-time
Q Impulse vector

At the start we have
Q, =AU, +BU,
Solving for U, we get
U, = B_I(Qo —-AU,)
At any subsequent time step we have
Q =CU,_, +(D+AU, +BU,,

Solving for U, leads to

i+l
Ui, = B_l[Qi -CU, —(D+AU;]

Axial Vibrations of Bars

In Fig. Y-a we consider a differential space element.
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The dynamic equation of the differential space element (Fig. Y-a) can be
written as follows.

ON o’u
x a7 ¢
N, —EAZ (>-b)
X
2 2
EAZX—L; - pA% 0 (-0

Introducing the following symbols.
N, =—pA— 1
W =TS M

The equilibrium of forces (impulses) acting on the differential space-time
(Fig. Y-b) will be identical with the dynamic equation.

oN oN

X dxdt + —=dxdt =0 ™)
OX ot
For the axial vibration of bar we can write
0
N EA Ay
‘= [ 2 ux,b) *)
N tx - pA g
ot

As general terms we have
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i

[E]{EA _pA} *)

9
[¢]= %X u(x,t)

ot

After we define the differential element we can go forward to consider
the finite element, (Fig. ¥).

‘ X\(_\,_\) Y(),-Y)

t
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Fig. ¥-a S
Y(-Ve)) 1, §00))
\(\nu) Y(u\u)

Fig. ¥-b
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Introducing the shape functions N; we can calculate the stiffness matrix
according to the following formula.
oN; ON; AN, N

K. :j EA - L ldxdt 0)
X OX ot ot

Rectangular STFE
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For rectangular STFE (Fig. Y-a) we can write.
u1

ux,t)=[N, N, N, N, ())-a)

w2

u
u
u

4

Shape functions can take the following form
1
N, = (1=n)(1=s5)

N, :l(1+ r1-s)
4 (11-b)
N, :%(l— r1+s)

1
N, :Z(1+r)(l+s)
Where r,s the local coordinates

The stiffness matrix gets the following form according to performing the
integrals in closed form.

2-21 —2-1 1421 -1+4
CEAAt|-2-4 2-22 -1+2 1422

(1¥-a)

ol, |1+24 —-1+4 2-24 -2-1
-1+4 1+24 -2-4 2-24
With
|2
A=ty e?at (1¥-b)
C At Yo
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Triangular STFE
For triangular STFE we can write.

ux,t)=[N, N, N,]u, () ¥-a)

Shape functions can be written in the following form.

ler:%:alx+blt+cl (¥-b)
A
N,=s=-—2=a,x+bt+c,
A
N3:1—r—s:i:a3x+b3t+c3
Where
X t 1
detXiH ti+1 1
ﬁ: X|+2 ti+2 1 (”u_c)
A X, t 1
detix, t, 1
X; tp 1

Area coordinates, the determinants are positive according to the
shown numbering (Fig. Y-b).
Performing the integrals in closed form lead to the following stiffness
matrix.

EAA 1-4 -1 A

t

= -1 1 ¥
iy %)

) A -4

Numerical Integration
The stiffness matrix can be numerically calculated by using Gauss points.
It takes the following form.
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x ox T a

n ON. ON . i ON .
K, = IEIW[EA T B ’}det.]
('°)
Where
W  Weight of Gauss point

J  Jacob matrix

N ] [ac afaN ] [aN
or |_|or or oX | _ J OX ()
oN, | oc At an | T an,
L 0S | 0s 0S| ot ot
N[N
oX |_ 1-1| or
N TN, o
L ot | oS |
The Jacob matrix can be calculated as follows.
N. N.
%zzin ﬂ:ZLti (YA-a)
or or or or
ax_g N A_gNL
oS 05 0S 05

Numerical integration was performed using Gauss points.

For rectangular STFE the use of four Gauss points corresponds to the
exact integration, the use of two (or one) Gauss point presents a reduced
integration.

For triangular STFE the use of one integration point corresponds to the
exact integration.

Example
The example (Fig. £-a) was considered with one STFE [°], (Fig. ¢-b).
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Case Y-a: Rectangular STFE, closed form integration

Using the closed form of integration of the stiffness matrix of the STFE
with four nodes () Y-a), we get the results (Fig. ¢-c and Table Y-a) for the
axial displacements of free end with time and for different time steps.

It is proven that the results are unstable when (At > 0.8); i.e. the STFE
in this case is conditionally stable.

Table : Axial vibrations (Fig. £)

Table Y-a

r’ X
I:I Closed form integration, or
t Exact numerical integration;
=4

(¢ Gauss points)

¢ A AN (unstable)
3 ¢ A A, oAV
Y A . INEEW
Y ¢ A ALY
¢ . . LY
o A q,v1
1 A . SY,00)
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v | ¢ A 1Y,TA

Table -b:

X
l—> I:I Reduced numerical integration;
t (Y Gauss points)
) A ) Y. Yoo

3 ¥ EYAOYY [ % 1,097¢ | V,AAT. | V,494A

Y V,AFY 1 £,M7V) oA G e TAY
Y o,11v1 . L,OA S V,AEV1 V,44A0

¢ NETTYY 1 Y, vav. Y14 [ eayvry
° Y,YVYY 1 Y,¢9049 | V,0AYe | V,qd0Y

T [ 1,790 . YOOFY | ., 04A. | +,eeV0
A \ARARS 1 V,AQAY v,Y4av1 v,4431
Table Y-c:

| > x
I:I Reduced numerical integration;
t (Y Gauss points)

n’i ~,/\ \ \. \~~
£ 1,6 AT [ V,AAVY | v,4449
Y A o0,\Y Y,Av0u a0 Y Y | e, e ea0YY
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Al ¢ Yo y,YA0q Y,AAoO Y,49AA
¢ . Y,YYYA Y,4AY . Y CYA v,ee Yo
° ¢ v, GAEAT V,1Ae V,447A
A LAY | £,0AFY [ 5000 | v, eegT)
s ¢ V,4y74 IRERE! Y,YA4V v,44yyv
Table -d:
Closed form integration, or
Exact numerical integration;
() Gauss points)
¢ <011 1 (unstable)
\ ¢ A
U
Y A . -
§,000s
¥ ¢ A Y., You
¢ . . YA\ Yo
° ¢ A TA, Y
1 A . YE, Y
Y ¢ A Y.,y

Case -b.c: Rectangular STFE, numerical integration

Calculating the stiffness matrix by using four Gauss-points (exact
integration) we get the same results as in case )-a, (Table )-a).

The use of two (or one) Gauss points presents reduced integration (Table
\-b, ¢).
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As an essential remark, the reduction of Gauss points was made relative
to time axis.

As can be seen from the results, we find that the reduced integration has
made the rectangular STFE unconditional stable.

Case V-d: Triangular STFE, closed form and numerical integration
Because numerical integration with one point corresponds to the closed
form integration we get identical results that are conditional stable (Table
V-d).

Other Tests

STFE (Fig. °-a) with reduced numerical integration were tested on
flexural vibrations of beams in [°], and they had shown unconditional
stability.

X
‘ I:::I (Y or Y) Gauss points

Fig. ¢-a t

Fig. °-b I:I (Y or V) Gauss points
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Fig. °-c ¢ Gauss
points

Fig. ®

We can now extend the characteristics of these elements to the axial
vibrations of bars, (Table Y-a, b).

Table Y: Axial vibrations (Fig. £)

Table Y-a:
X
I t I:::I ¥ Gauss points
I, =4
Lt A Y.

\ Y,AYAY 1,«A%o V,aAY.
Y [ 1,verA 0,008¢ | +,.1VA
¥ o, VAT Y,YVoY | V,AfVA
< Y N0 £, EAA C,YTA4
o LYVeV 1,040\Y V,0AY .
T | £,4e1y Y,o0\1 | +,040.
v VYV Y ¥,.YYaY | v,va9)
Table Y-b:

AR
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X
I t I:::I Y Gauss points

) N Y.
) Y AE s 1,0AYA | VLAY
Y LT EA 0,411 v, VA
v 1,7VA V,YVY. | V,AEVA
¢ Y,Yev £,YYIn NEEVY
° YAV LAY | V,0AY.
1 o, YYAA Y,+l0r | 4,040,
Y 1, TAAO Y2 EAXER

We can also extend the characteristic of the STFE in Fig. ¢-b, the same
element applied for axial vibrations of bars (Case '-b, ¢ of Example V), to
the flexural vibrations of beams (Table Y-a, b).

Table Y: Flexural vibrations

E=)
F=) =
— X l v=0
Y p=0.015
L:\h
\
Table Y-a:
X
Y Gauss points
T S
I, =1
o A\ Yoo
) YIY,AA £eg,8Y 9)0,.Y
Y £VYY, .9 AVY,A¢ $A,YAAQ
Y YA4Q,¢¢ TAY, oY AY VY
¢ qYY,00 YT, TA YA, 0¥

Yy
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o Yéo,eA YYY,.V 10Y, )

1 ¢VV,.0 YYy, .4 yav,ve

Y Yy4,va ATy ,40 §EE,7Y
Table Y-b:

b
t I:I  Gauss points
° Yo Yoo

\ Y1V, YA £YY, ) Yool 0

Y £4Y,4Y 90y, ¢ oA, VY

Y AYo,Y) Ae,aY AdY,V)

¢ Yo,V VYA, LY YYo,AA

o AVA, VY YA,¥o 14Y, 1

1 0oY,AY TV E,AY £EV,aA

Y YY), VA A9.,¢V (oY, VY

The STFE (Fig. °-c), applied to stress-strain vibrations, has shown
unconditional stable results (Table ¢).

Table ¢: Plane stress-strain vibrations

X X Yo.
l—> E=YAY.
AN = o[
¢ Gauss point Yiu Y.
Yo

° e Yoo
) L Yory Ve EYVAO YT
Y G EVYYY 16040 G efada0
¥ «, ATAAY ,YYootY 1074649
¢ )0V LLYYOYE. L YoavyY
° Y. aYaL BEETEEE ., 0AY49
1 LYTYO)) EEEEY) LYY 9

Yy
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v GYEY e NNEEPY e Y Yy
A LYY, G YVIYY YTAYAY
Conclusion

The example results of the axial vibrations of bar demonstrated that the
use of reduced numerical integration (reduced number of Gauss points
relative to time axis) of the stiffness matrix of the rectangular STFE made
these STFE unconditional stable, these same STFE are conditional stable
when we use the closed form integration (or exact numerical integration);
i.e. the stability of rectangular STFE depends on the way we determine
the stiffness matrix.

For triangular STFE we get exact numerical integration with one point
and the results are conditional stable as the closed form integration.
Reduced numerical integration of rectangular STFE employed for
flexural vibrations of beams and plane stress-strain vibrations has shown
unconditional stable results.

We can also conclude that the characteristics of the rectangular STFE
with reduced integration are not dependent on the application case (for
example; axial vibration or flexural vibration); so we can expect that
STFE applied to stress-strain case will be unconditional stable when
applied to plate bending.
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