
Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ٧

Transparent
Object Persistence

Ammar Joukhadar١

Abstract

Object persistence is a major problem concerning enterprise applications,
since Object Oriented Databases are not mature enough, and Relational
Databases can’t store objects. Therefore, a solution has to be provided to
solve this issue.
A lot of solutions have been introduced, some are very heavy and require a
huge infrastructure, and others are still in early stages.
This article makes an overview of the different techniques used to persist
objects and propose a novel solution based on some advanced meta data in
order to implement a transparent objects persistence service for distributed
applications. This solution support storage, querying, and retrieval of
objects from data stores. In addition, it fully supports OO (Object Oriented)
features; including: aggregation and composition relations, both uni- and
bi-directional, inheritance, and polymorphism.
Our solution is implemented for J٢EE platform and it uses standards to be
vendor-independent regarding the underlying data store, so applications
can be transparently ported from one data store to another.

١ Informatics Faculty, Damascus University.

Transparent Object Persistence

 ٨

١. Current Persistence Issues
١٫١ Understanding Object Persistence
For years, the supposedly straightforward task of loading and storing data
has unnecessarily complicated the developments of applications.
However, a lot of techniques have been introduced to assist developers
solving this problem.
In Java (and other object oriented programming languages) an object is
an instance of a class. As such it has state (its attribute values) and
behavior (its methods). The collection of all class definitions that
comprise an application is known as the application’s object model.
These classes perform a variety of functions: some render user interfaces;
some manage system resources; some represent application events.
However, within each object model there is usually a distinct set of
objects that are direct abstractions of business concepts – typically with
names to which non-technical people would ascribe meaning. In an order
processing application these may be “Customer,” “Order,” and “Product.”
For a financial application they might be “Client,” “Account,” “Credit
Entry,” and “Debit Entry.” In each case these objects are modeling the
business domain in which the specific application will operate, and thus
they are collectively referred to as the domain object model.
The domain object model is of particular importance to application
designers. It is these objects that represent the primary state and the
behavior available to the application. They will be the focus of many
design workshops, since they represent the concepts which the
application’s target user community understand, and in which they have
specific expertise. Perhaps most importantly, it is these objects that
typically need to be stored (somewhere and somehow) between
invocations of the application and shared between multiple simultaneous
users.
The storage of these objects, beyond the lifetime of the Java Virtual
Machine (JVM) in which they were instantiated is called Object
Persistence.
There are, of course, other classes beyond those which fit naturally into
the domain object model, which may require persistence services (e.g. log
messages). Object persistence is by no means restricted to the domain
object model, but it is here that we find the majority of classes for which
persistence must be provided.

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ٩

١٫٢ Current Techniques for Persistence
Persistence requires the storage of object state for future retrieval.
Various underlying mechanisms are in use in the industry, but by far the
most common approach is to use a relational database management
system (RDBMS) accessed through a combination of JDBC and SQL.
Alternative mechanisms include file system-based storage and object
database management systems (ODBMS). A persistence infrastructure is
often layered on top of the data store, examples being Entity Beans and
Enterprise Application Integration (EAI) frameworks.
١٫٢٫١ Relational Databases
RDBMS technology has been widely adopted in the last ١٥ years because
of its freeform definition of data (rows and columns), flexibility of ad hoc
queries, and transactional reliability (begin, rollback, commit). Due to
extensive standardization efforts in the RDBMS market, all such
databases can be invoked using the SQL. Although variations exist in the
SQL dialects used by various databases, support for the SQL-٩٢ standard
is relatively widespread.
Java applications using relational databases for persistence typically
invoke the database by passing SQL commands to the database server
through an API called Java Database Connectivity (JDBC). SQL
statements are constructed as string objects, which are then passed to the
database server for compilation and execution.
Use of JDBC for the persistence of objects, although widespread,
presents a number of difficulties. Firstly, the developer must know SQL
and use it to implement every manipulation of persistent data. Secondly,
the developer must map object attributes to the columns of one or more
tables. This mapping is often non-intuitive, and is required because of the
so-called “impedance mismatch” between the notions of an object and a
database row. Thirdly, once implemented, the relative lack of portability
offered by SQL may restrict the persistence code from working unaltered
against an alternative RDBMS implementation, thereby locking the
application into one vendor’s technology. Finally, the weak type-
checking and deferred compilation of SQL statements means that many
errors cannot be detected at compilation time, although this can be
mitigated when tools such as SQL/J are used.
١٫٢٫٢ File System
File systems are usually considered to be lightweight storage solutions. A
file system is capable of storing data in files of a user-defined format, but

Transparent Object Persistence

 ١٠

does not inherently support transactions or automatic data integrity
functions.
The one advantage that file system do provide is that they require little by
way of supporting services beyond the operating system itself. As such
they are commonly used for persistence within embedded applications
where system resources are constrained (e.g. the contact list on your
mobile phone). However, they are generally not considered appropriate
for business-critical transactional information.
١٫٢٫٣ Object Oriented Databases
OODBMS are storage environments for objects. The internal
representation in which each object is held is hidden from the application
developer, who instead uses an API for persisting and retrieving objects.
Although they can be extremely efficient at such activity, OODBMS have
historically suffered from a lack of ad hoc query capabilities, or
inefficiencies where such capabilities do exist. The lack of well-
implemented standards for the invocation of persistence services, and the
inevitable lock-in of an application to a proprietary vendor's product,
have also constrained the adoption of this technology. The ODBMG did
put together a standard API for accessing object databases, but this has
done relatively little to improve the industry's uptake of object database
technology.
١٫٣ Object, Object-Relational, or Relational?
Object Oriented database integrate database technology with the object-
oriented paradigm. Object orientation was originally introduced within
the field of programming languages and has become very popular as a
paradigm for the organization and design of software systems. Object
databases were originally developed in the mid eighties [PAO-٩٩], in
response to application demands for which the relational model was
found to be inadequate.
In object oriented databases, each entity of the real world is represented
by an object. Classical examples are:

 Electronic components, designed using a Computer Aided
Design (CAD) system;

 Spatial or geographic data, such as geometric figures or
maps, managed by Geographic Information System (GIS).

These kinds of objects differ greatly from each other and are managed by
specialized applications and systems. A common requirement of all of
these applications is that of organizing of the data as complex and unitary

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ١١

objects. This demand is not satisfied by the relational model, in which
each 'real world object' is distributed among a number of tables. To view
an object in its entirety requires the execution of complex queries that
reconstruct the various components of an object from tables in the
database, by using joins. Object Oriented databases represent real world
objects by means of data objects with complex structure and with rich
semantic relationships [PAO-٩٩].
The most relevant features introduced by object oriented databases are:

 The use of inheritance, overloading, and late binding, as
defined in the context of object-oriented programming
languages.

 The integration of data with the operations (or 'methods') that
are used for accessing and modifying objects [IDC-٩٧].

There are two approaches for the introduction of objects into databases.
Object-Oriented Database Systems (OODBMSs) have taken the
revolutionary approach, extending the DBMSs based on the
characteristics of object-oriented programming languages. Object-
Relational Database Systems (ORDBMSs) have on the other hand
assumed the evolutionary approach, by integrating the object concept into
the relational model. It should be noted that the two approaches, which
are appeared to be in sharp conflict the beginning of nineties [IDC-٩٧],
have recently turned out to be convergent [PAO-٩٩].
On the other hand, relational database products have been under
development and used much longer than object oriented database
products. The RDBMSs are more mature products. The more mature
products have been fine-tuned for optimized performance (albeit on a
very limited set of data types) and provide a very rich set of functionality,
including support of advanced features like parallel processing,
replication, high availability, security, and distribution.
There are a wide variety of tools and applications that support the
RDBMSs and work with SQL. Ostensibly, the OORDBMSs should be
able to take advantage of this support because they are extensions of the
RDBMSs their vendors have been marketing for years.
OODBMS products are now also maturing, some with nearly a decade of
experience in production applications and often with more advanced
functionality than their RDBMS competitors. In addition, it will be
difficult for OORDMSs to be both extensible and retain their legacy
advantages.

Transparent Object Persistence

 ١٢

Ultimately, as ORDBMSs evolve to support more of the OODBMS-like
capabilities, they will do so based on new extensions to the products,
thereby becoming the new, untried products compared with the
OODBMS that are already mature in those areas, with DBMS engines
natively designed for objects. Furthermore, although the ORDBMSs
struggle with and try to extend inherited architectures and product
implementations that assume only the tabular relational model,
OODBMSs benefit from foundations built directly to support objects.
The other advantage that RDBMSs and the SQL-based ORDBMSs have
is the availability of experienced developers and the plethora of SQL-
based developer tools, books, and consultants. OODBMSs won't be in a
similar position in the next few years [PAO-٩٩]. SQL is the most
universal database language. As a result of the investments made by
organizations during the last ١٥ years, most developers are familiar with
SQL and have tools with which to develop. Accommodating SQL or
related access mechanisms like ODBC or JDBC minimizes the cost of
adoption of proposed extensions or new database capabilities.
١٫٣٫١ The Dilemma
The previously mentioned comparison shows that albeit the big effort
done in the field of ORBMS and OODBMS; those products are not
mature enough to be used in real-life critical applications, e.g., banking
systems, financial tracking, …etc. thus, most world leaders in the market
of enterprise systems prefer using RDBMS [STF-٩٧].

Figure ١ Mixing Different Paradigms

However, there is a huge and largely unnecessary productivity and
quality decrease as a result of developing in different paradigms
simultaneously like mixing object-oriented development and relational
databases – see the figure. The work-around is to introduce a dedicated

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ١٣

object-relational mapping layer that transparently maps objects to
relational data. Developers using this approach experience a tremendous
increase in productivity, escape database vendor lock-in, and simplify
maintenance.
On the down side, it requires substantial effort to create an object
persistence layer manually [SEB-٩٩].
١٫٤ The Solution- Object/Relational Mapping
Object/Relational mapping is the process of transforming between object
and relational modeling approaches and between the systems that support
these approaches. Doing a good job at object/relational mapping requires
a solid understanding of object modeling and relational modeling, how
they are similar, an how they are different.

Objec1

Object

Inheritance

Object

Object-Relational Mapping Layer

Table
Table

Table

Table

Objects

Tables

Application

Object Persistence
Layer, O-R Mapping

Relational Database

Figure ٢ Object Relational Mapping Layer

Transparent Object Persistence

 ١٤

١٫٤٫١ Design Goals of a transparent O/R mapping layer
There are three important goals to be achieved when implementing an
object relational mapping layer, these goals are: decreased coupling,
increased cohesion, and increased abstraction.
By routing all data access through an encapsulating layer you decrease
the coupling between the application and the storage solution. In other
words, your application becomes independent of the underlying data
store, usually a relational database, but it can be other storages like file
system.
Low coupling is achieved by delivering transparent persistence
services[SEB-٩٩]. This allows your application to become agnostic to the
"physical" mechanisms of the storage solution, which can be changed in
the future without affecting the functionality of the application.
Typically the object persistence layer exposes a full set of access methods
and properties that are mapped to the particular underlying storage
solution. If you need to change the storage solution, just update the
mapping code.
Even seemingly small changes, such as database upgrades, can be a big
problem with storage solution specific code scattered all over the
application. With the specifics confined to the dedicated object
persistence layer, upgrades become a much smoother operation. And if
the object persistence layer commits to use standard SQL statements,
there will be no changes at all when upgrading or even replacing the
underlying relational database system.
Cohesion is about doing one thing great rather than several things poorly.
By focusing the persistence code to one separate layer, bugs and
performance bottlenecks are easier to isolate and address. Also, the
consequences of changes can be predicted with greater certainty.
The object persistence layer should only CRUD (Create, Read, Update,
Delete) data - and that is it! You really want to avoid business rules,
communication interfaces, or GUI-elements originating from or
performing in this part of the application. The reasons are the same that
have been driving structured programming for the past two decades:
reuse and maintainability.
An object persistence layer that only CRUDs data, but does it great, is
more versatile than one that has integrated business rules and other
"great" features.

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ١٥

Finally, but most important, the object persistence layer increases the
level of abstraction by hiding the complexity of the underlying data
model. You can use advanced object-oriented concepts such as
inheritance, polymorphism, and complex relationships without having to
worry about how it is implemented.
Abstraction is one of the most important factors driving software quality
and developer productivity. High-level programming languages and
development environments have really empowered developers to create
fantastic applications without explicit knowledge about the internals. This
is really important because software developers create value by solving
business problems, not by patching inefficiencies in the underlying
technology.
There is a little bit performance penality with abstraction, but the benefits
of increased productivity and quality far outweigh the drawbacks.
In addition to the above mentioned goals there are some necessary
features to be achieved when implementing an object persistence layer,
these are:

 Object Identity: An object identifier (OID) is a mean of
uniquely identifying a particular object. OIDs are
automatically generated. The OID of an object never
changes, even across application executions. The concept
of OIDs makes it easier to control the storage of objects
(e.g., not based on value) and to build links between
objects (e.g., they are based on the never changing OID).
Complex objects often include references to other objects,
directly or indirectly stored as OIDs. When an object is
deleted, its OID may or may not be reused. Reuse of OIDs
reduces the chance of running out of unique OIDs but
introduces the potential for invalid object access due to
dangling references. A dangling reference occurs if an
object is deleted, and some other object retains the deleted
object's OID, typically as an inter-object reference. This
second object may later use the OID of the deleted object
with unpredictable results. The OID may be marked as
invalid or may have been re-assigned [DOD-٩٧].

 Type: a type is the specification of an interface that objects
will support. An object implements a type if it provides the
interface described by the type. All objects of the same

Transparent Object Persistence

 ١٦

Bank Client

1..n

Account

1..n

AccountActivity

1..n

+clients

1..n

+accounts 1..n

+activ ities 1..n

type can be interacted with through the same interface. An
object can implement multiple types at the same time. Thus
a single object may be handled in different ways, and the
mapping layer should preserve this capability.

 Relations and Object Closure: types can be related with
other types, which specifies that the objects of one type can
by linked to objects of the other type. Having a relation
provides the ability to traverse from one object to the other
objects involved in the relation. Object closure is very

important, to show its importance let’s take a look to the
following example, imagine a simple banking object model
where a Client has references to many Account objects, and
each Account has references to many AcountActivity
objects. Given a particular client, the closure of instances
include all the Account instances referenced by the Client,
plus all of the AccountActivitys referenced by each
Account. A group of objects that reference each other is
caked an object graph. Object graphs can be fairly large,
particularly when considering the graph of objects

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ١٧

reachable from the Bank object, which presumably holds
references to every Client.

 Concurrency Management: Databases provide
concurrency control mechanisms to ensure that concurrent
access to data does not yield inconsistencies in the database
or in applications due to invalid assumptions made by
seeing partially updated data. The problems of lost updates
and uncommitted dependencies are well documented in the
database literature. Relational databases solve this problem
by providing a transaction mechanism that ensures
atomicity and serializability. Atomicity ensures that within
a given logical update to the database, either all physical
updates are made or none are made. This ensures the
database is always in a logically consistent state, with the
DB being moved from one consistent state to the next via a
transaction. Serializability ensures that running transactions
concurrently yields the same result as if they had been run
in some serial (i.e., sequential) order. Relational databases
typically provide a pessimistic concurrency control
mechanism. The pessimistic strategy allows multiple
processes to read data as long as none update it. Updates
must be made in isolation, with no other processes reading
or updating the data. This concurrency model is sufficient
for applications that have short transactions, so that
applications are not delayed for long periods due to access
conflicts. For applications being targeted by OODBMS
(e.g., multi-person design applications), the assumption of
short transactions is no longer valid. Optimistic
concurrency control mechanisms are based on the
assumptions that access conflicts will rarely occur. Under
this scenario, all accesses are allowed to proceed and, at
transaction commit time, conflicts are resolved. [DOD-٩٧]

 Transaction: Transactions are the mechanism used to
implement concurrency and recovery. Within a transaction,
data from anywhere in the (distributed) database must be
accessible.

١٫٤٫٢ Java's Other Solutions

Transparent Object Persistence

 ١٨

١٫٤٫٢٫١ Enterprise Java Beans EJB– Entity Beans
EJB is a part of the J٢EE platform. J٢EE is a specification for application
server technology supporting the middle tiers of an application
architecture. J٢EE specifically addresses two tiers: the web tier and the
EJB tier. The EJB tier contains components that are transactional,
scalable, secure and which facilitate the encapsulation of and access to
data entities.
The EJB specification enables server-side application component
developers to focus on the application logic their components will
provide. The developers are abstracted from issues such as transactions
and security, and code does not normally have to be written to interface
with these services.
Entity beans, a part of the J٢EE EJB specification, were designed to
present a remote interface to data entities. This allows remote clients to
have direct access to the entity bean and thence the data store. Entity
beans usually obtain their data from a relational database.
The class of an entity bean identify the type of data it can provide to the
client, so a product entity bean would provide product data. Each
particular instance of an entity bean is used by a client is associated with
a primary key identifying the particular data (e.g. the particular product)
that the bean encapsulates.
Entity beans must have their transactions managed by the container
(CMT). However, they may choose whether to implement persistence
management programmatically with bean-managed persistence (BMP) or
declaratively with container-managed persistence (CMP). All entity
beans must implement methods for the creation, loading, storing, and
removal of data from the data store. If the bean uses BMP, these methods
will contain the code required to perform the corresponding operations on
the data store. If the bean uses CMP, these methods are merely callback
methods that, although present, are usually empty. Instead the
deployment descriptor is complemented with sufficient information for
the container to undertake the persistence of data on behalf of the
component.
Although other parts of EJB specification, like session bean and
message-driven bean, are widely successful, a variety of design flaws
in the entity bean model hinder its suitability for the representation
of persistent data [ROB-٠٣].

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ١٩

Some of these flaws have been addressed in the EJB ٢٫٠ specification
(e.g. new local interfaces providing an alternative to the slower
remote interface preciously available). However, the semantic
differences between local (pass by reference) and remote (pass by
value) invocation introduce further issues. Other concerning aspects
of the entity beans remain (e.g. the lack of meaningful support for
inheritance). Additionally, the persistence and query functions of
entity beans must usually be coded by hand (in SQL with JDBC) or
described by hand (in Enterprise JavaBean Query Language
(EJBQL), which stems from SQL). Finally, the concurrency issues
endemic in EJB's threading model [ROB-٠٣], combined with the
capability for gross inefficiency when manipulating large data sets,
mean that entity beans have regularly failed to meet applications'
requirements for object persistence [ROB-٠٣].

Here is a list of some Entity Bean disadvantages [GEN-٠٢]:
• Forces the use of a heavy component mechanism for fine

grained business objects.
• More complex, hence, limiting developer productivity.
• More difficult to achieve good performance.
• Inheritance not supported.
• Cannot be used for persistence in non-application server

environments.
• There is no dynamic query mechanism to lookup entity beans

(finders are specified at compile time).
• It is not easy to write unit tests for beans as it is not possible to

use them outside of the application server.
• No support for automatic primary key generation.
• Only relational databases are supported.

١٫٤٫٢٫٢ Java Data Object (JDO)
The Java Data Objects (JDO) specification was developed under the Java
Community Process (JCP) as JSR-٠٠٠٠١٢ with Craig Russell from Sun
Microsystems as the specification lead. Work started in ١٩٩٩ and version
١٫٠ was released in May ٢٠٠٢. JDO provides for transparent persistence
for Java objects with an API that is independent of the underlying data
store. There are no special interfaces to implement and it is easy to persist
plain old Java classes. The query language (JDOQL) uses a Java like

Transparent Object Persistence

 ٢٠

syntax so developers only have to know Java. These features provide
improved developer productivity and portability across data stores and
JDO implementations. The JDO specification supports different
deployment environments with a common API. An implementation may
support managed (i.e. application server) deployment and unmanaged
(i.e. ٢ tier) deployment or both. Another implementation might be
designed for a small footprint environments such as a cellular phone or
PDA. The developer API remains the same in all cases.
Application programmers can use JDO to directly store their Java domain
model instances into the data store, without having to use database-
specific code.

Here is a list of some benefits that JDO provides:

 Transparent Persistence: JDO’s greatest advantage is that
is allows us to concentrate on developing a good class
Model, other than developing a relational class model.

 Database Independence: Different type of data sources or
JDO implementation can be swapped out in a deployed
system. e.g, relational database to a OODBMS or XML
file.

 Ease of use: it uses only java classes, no other knowledge
is needed.

 High performance: JDO offers a lightweight solution, if
you don’t want to take on the weight of EJB.

 Integration with EJB: Venders can use JDO to implement
Bean Managed Persistence functionality of the EJB
container.

On the other hand, JDO does not have a wide industry acceptance till
now for the following reasons:
١. JDO is immature, the ١٫٠ spec just came out.

(٧٫١٢٫٢٠٠٢)
٢. Class enhancement: JDO tools enhance class

bytecode by adding to it the PersistenceCapable
interface and any code specific to a particular JDO
implementation.

٥ .١ Summary
Three different types of databases are in use to store objects, each has its
benefits and drawbacks, but the most popular are relational databases,

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ٢١

since they are the most mature, and well studied and tested. But OO is the
norm in programming these days, this leads to a mismatch between the
application and the data store in terms of data modeling and
representation. The solution is to introduce the so-called
Object/Relational Mapping layer between the application and the
database. This layer works like an adapter that transforms information
between the two heterogeneous systems. Current tools allows to map
objects basing on some poor information such as field mapping or Java
introspection. Other information are also very important and allow full
transparency for the user.
In the following sections we introduce a solution for fully transparent
object persistence.
٢. Our Solution
٢٫١ Main Requirements
Persistence is one of the most critical issues concerning the development
of distributed applications such as Web applications. The mais goals of
our requirements is to enhance productivity, performance, and to be
vendor independent. Our requirements include – but not limited to:

 Object persistency must be transparent: we have to
transparently handle the mapping of our object instances to
the underlying data store. That includes mapping of
inheritance, multiple multiplicity aggregation and
composition, both uni- and bi-directional relations between
objects. This needs information that are not available in
standard JAVA introspection mechanism. This is why we
need a special user defined meta data.

 Underlying data store transparency: we have to be able to
use a number of different data storage paradigms, including
(but not limited to) relational databases, file systems and
XML documents. The access to these storages must be
independent of the storage type and vendor so applications
can be ported to any supported data store.

 Separating business logic form object persistence. A
transaction is open only for synchronization but not during
the execution of business logic.

 Lazy loading: some times we are not sure which part of a
retrieved object we need in order to achieve the business
logic. In such a case it is better not to load the entire object

Transparent Object Persistence

 ٢٢

but to load its parts progressively when the user access
them. This is known as lazy loading and it is very useful to
decrease the size of the fetched data and to enhance the
overall system performance.

 Business domain Object Query Language: we have to
supply a Query Language based on business attributes not
on storage ones such as primary and foreign keys. The
association between objects in DB must be transparent for
user in order to decrease the size of request.

 We have to handle concurrent access on application level
not on storage level.

 OOP support: we have to support all OOP features and
especially inheritance and polymorphisme.

 Should work in non-managed environment, i.e. no
application server is required

٢٫٢ System Description
The main components of the system are object query language, meta data,
persistence layer, data service layers and finally the storage. When the
system receives a request from the user using our object query language,
it passes this request to the persistence layer. The persistence layer uses
Meta data in order to check integrity and business rules and to decompose
the composite object into a set of simple ones and to generate a simple
request for each simple object. The generated request has no semantics
and do not contain any object notion. Then the persistence layer send the
set of simple requests to the corresponding data service (xml, DB, file
system, ..). the data service layer takes in charge the transformation of
these simple requests into a storage related requests. If the initial request
needs a response, the data service transform this response into an
intermediate format that the persistence layer understand. The persistence
layer transforms this intermediate format to a business object and returns
this object to the system. The following figure illustrate the process.

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ٢٣

data servicepersistence meta data storage

Figure 3

systemuser

update storage7:

verify integrity3:

verify rules4:

decompose value5:

synchronized composants6:

synchronize(value)2:
synchronize(value)1:

٢٫٣ Components details
Here is a detailed description of the role of each component in our
system.
٢٫٣٫١ Meta Data
Mapping is usually based on some meta information given by the user
such as the correspondence between business domain attributes/their
types and fields/types in a given storage. These information may be
supplied manually by the user in the case of normal data base or
generated basing on JAVA introspection mechanism which the case of
JDO. In all cases no semantic is added to the storage and it still the
responsibility of the user to specify how to join tables and how to
interpret results.
This is why we introduced a more advanced meta data that contains a
more precise information that Java introspection does not offer such as:

 relation multiplicity: relation between objects may have
different multiplicities such as ٦..٤ ,٤ ,١..٠ ,١, n, etc.

 relation style: composition relation denotes a physical
relationship between two or more objects (they form actually
one object). Aggregation relation denotes a logical
relationship between a set of objects such as club, forest, etc.
Association relation denotes a logical relationship between
two objects such as ownership, friendship, etc.

Transparent Object Persistence

 ٢٤

 syntax criteria: such as mandatory / optional, value domain,
size, etc.

 semantic criteria: code/ normal field, some conditions on a
set of attributes such as sum(a,b) < ١٠٠, etc.

 Collection element types: Java introspection does not specify
the real element type of a collection. This is the responsibility
of user to manage the type during processing.

 Collection type: ١..n relations may have one of three types:
list, set or map.

Our meta data supports also classical information such as:
 field types
 inheritance
 role of each attributes

Basing on some kind of enriched UML diagram (see figure ٣), our meta
data can be automatically generated.

Engine

-mark : String

Person

-name : String
-age : int

Employee

Appartement

-id : int

Car

-mark : String

Peugot Renault

-owner

0..1
-car
0..*

-car 0..1

-engine 1

0..*

-boss
0..1

-owner 0..1

-appart0..1

Figure ٤ Simple Domain Object Model

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ٢٥

These meta data are used by the persistence service in order to map java
composite objects into storage structure (tables for example) and the
inverse. The storage structure still transparent for the end user.

٢٫٣٫٢ Persistence Service,
This component play the role of interpreter between business domain
objects and the different storages. It verifies the integrity and business
rules of a Java business objects during synchronization operation
(create/update), divides it into simpler structure such as tables and fields
basing on meta data and then passes it to the data service that corresponds
to the final storage. During reading operation, this service reconstructs
the JAVA object basing on a retrieved structure.
This decomposition takes into account relation between object and maps
these relation to the storage. So user does not need to take these relations
into accounts. The most complicated part of the mapping is to support
inheritance.

There are three approaches that allow us to support inheritance:

١. mapping the inheritance tree into one table: in this case the

above inheritance tree is mapped into one table contains ٦
attributes which are x١, x٢, y١, y٢, z١, z٢. The disadvantage of

Transparent Object Persistence

 ٢٦

this approach is that any modification of a business model
affects the data base structure.

٢. mapping an inheritance branche from a tree into one table. In
this case the above inheritance tree will be mapped into three
tables one for class X that contains x١, x٢, one for class Y that
contains x١, x٢, y١, y٢, and one for class Z that contains x١, x٢,
z١, z٢. this method has the same disadvantages of the first one
and it does not support polymorphism.

٣. mapping each class into one table so mapping one object into
several tables. In this case the above inheritance tree will be
mapped into three tables one for class X that contains z١, z٢.
This method allows us to support inheritance and to enhance
scalability.

This service takes as input a request written in our simple query language
(see next section).

٢٫٣٫٣ Data Service,
This service takes as input the primitive meaningless structure
constructed by the persistence service and generates basing on this
structure and in a straightforward manner the query relative to the related
storage.
The following diagram shows the structure built to achieve the
requirements mentioned earlier.

File System Data Service LDAP Data Service XML Data ServiceDB Data Service

Data Service

Figure ٣ Data Service Structure

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ٢٧

٢٫٣٫٤ Object Query Mechanism

We have developed a proprietary query language that is independent of
the storage and that depends only on the business domain objects and
vocabulary. We replaced the conjunction by the full role name. Let us
take the figure ٤ as exemple. The following queries are possible on the
object car:

Get mark, engine.mark from Car where owner.age<٢٠

Get owner.name from Car where owner.boss.name=omar &
owner.appart.id=١٢٠

Such requests correspond to a very long and complicated SQL requests
because the conjunction between objects is made automatically at
persistence level. The user indicates the conjunction by using the '.' but he
does not specify how the conjunction must be realized.

Here is the formal BNF description of our object query language:

<Criterion> ::= <Criterion> & <Criterion>|

 <Criterion> '|' <Criterion> |

 (<Criterion>) |

 <Atomic Criterion>

<Atomic Criterion>::= <role> |

 <UnaryOp> <role> |

 <role> <Op> <Val>

<role> ::= <String >| <role> '.' <String>

<Op> ::= '='|'~'|'<>'|'>'|'<'|'<='|'>='|'#'

<UnaryOp> ::= '!'

<Val> ::= <Constant> | <role>

Transparent Object Persistence

 ٢٨

٥ .٣ .٢ Sequencer
It is important when dealing with several storages to handle
sequences our self and not to leave this task to the storage itself. This
has two advantages: we still independent from the storage itself, and
we can deal with two storages at the same times without any conflict
between objects ids.

provides auto-incremented counter to be used when serial numbers
are required. Our system can manage several sequencers at the same
time, for example, there is always a default sequencer that is used to
create Object Identifier for our objects, Yet, users can request to
create their own business-related sequencers.

٢ .٣ .٢Distibuted Transaction Service

Our system should be able to solve the problem of transactions. A
transaction is a set of related operations. The system should execute all
these operation or non of theme. In such a case we talk about ACID
properties which are Atomicity, Coherence, Integrity, and Durability. We
use optimistic strategy to solve the concurrent access problem and we are
basing on J٢EE API in order to support distributed transactions.

٢٫٤ Summary

In this article we exposed the problem of object persistence. We
presented different solutions to solve this problem such as OODB, JDO,
entity beans, and ORDB. We showed that actually a good solution is to
map objects into relational data bases.

We designed a transparent persistence system that solves this problem
and enhance user productivity by using some kind of rich meta data.
These meta data can be deduced from a UML class diagram.

Damascus Univ. Journal Vol. (٢٠)-No. (٢)٢٠٠٤ Joukhadar

 ٢٩

References

[RSE-٠٠] , Database Programming with JDBC and Java , ٢nd Edition ,
O’REILLY , ٢٠٠٠, ISBN: ١-٦١٦-٥٦٥٩٢-١

[PAO-٩٩] , Database Systems; concepts, languages and architectures,
Paolo Atzeni, McGraw-Hill, ١٩٩٩, ISBN: ٦-٧٠٩٥٠٠-٠٠٧

[IDC-٩٧] , Object Database vs. Object-Relational Databases, Steve
McClure, IDC Bulletin #١٤٨٢١E - August ١٩٩٧.

[SEB-٩٩] , O/R Mapped Object Persistence Is the Boon, By Sebastian
Ware and Mats Helander, Web Site:
http://www.١٥seconds.com/issue/٠٢٠٨٠٥.htm.

[STF-٩٧], Database Applications with Objects and Rules, Addison
Wesley Longman ١٩٩٧, ISBN: ٢-٤٠٣٦٩-٢٠١-٠

[ROB-٠٣], Java Data Object JDO, Robin M. Roos, Addison-Wesley,
٢٠٠٣,
ISBN: ٨-١٢٣٨٠-٣٢١-٠.

[GEN-٠٢] , JDO Genie Manual , Copyright © ٢٠٠٣ by Hemisphere
Technologies (http://www.hemtech.co.za)

[FUS-٩٧], Foundations of Object Relational Mapping, Mark L. Fussel,
v٠٫٢, mlg-٩٧٠٧٠٣, www.chimu.com

[DOD-٩٧], Object-Oriented Database Management Systems, Gregory
McFarland, Andres Rudmik, and David Lange. Air Force Research
Laboratory, Department of Defense, ١٩٩٧.

 ـــ

Received, ٤ November,٢٠٠٤.

