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Abstract 
A time domain formulation in a cylindrical coordinate system is developed 
for the analysis of wave propagation in a layered half-space media. The 
formulation is based on Apsel & Luco’s derivation of the problem in 
frequency domain by using Fourier synthesis. An integral equation is 
written for each layer as an independent domain, and they are assembled in 
to general equation taking into account the traction-free condition, the 
condition of continuity between the interfaces, and the radiation condition 
at infinity. The displacement and stress fields are expressed in a high 
efficiency and highly flexible way to be very convenient for applications of 
boundary-value problems. Examples of three-dimensional wave 
propagation in the layered half-space due to inner excitations are reported 
to demonstrate the accuracy of the method. 
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Introduction 
Solution of transient elastodynamic problems using the boundary element 
method (BEM) started with the work of Cruse and Rizzo (1968) who 
formulated the problem in Laplace domain. The frequency domain 
solution to equations of motion in cylindrical coordinates are written 
schematically as: 

 
In which the azimuthal dependence is represented by the Fourier series 
expansion, while the depth and radial dependence appear in the 
integrands, which correspond to solutions to the equations of motion in 
frequency domain, the arguments k, ω, z, zs, L in the function F show the 
dependence on wavenumber, frequency, receiver and source depth, and 
layer properties, respectively. The argument kr of Bessel function Jm 
reveals the dependence on radial observation distance. The function F 
may be obtained as the solution to a set of linear algebraic equations 
together with boundary conditions of layered system. The first solutions 
was presented by Thomson (1950), who formulated the problem in terms 
of so-called layer matrices which transfer the components of motion from 
interface to interface in an elastic multilayered medium. Haskell (1962) 
evaluated the F functions at the free surface using Thomson’s matrix 
formalism by finding the surface-wave poles of the function F. The 
Thomson-Haskell technique becomes unstable for short wave-length due 
to the computation of squares of large exponential terms. 
Thrower & Dunkin (1965), and Watson (1970) modified Thomson-Hskell 
formulation using determinant matrix extensions. Hudson extended the 
work of Haskell, and Herrmann (1978) shows the truncation of the terms 
with poles leads to non-causal arrivals. They use contour integration to 
study the complete SH-Love wave propagation problem in layered media; 
however, this analysis is limited to large epicentral distances.  
Fuchs and Muller (1971) introduce the attenuation into the layers in the 
form of complex velocities. This makes the medium more realistic 
(viscoelastic), and shifting all the singularities of the F integrands. 
However, Fuchs and Muller introduce several approximations, which 
limit the applicability of their method. 

( ) ( )∑ ∫∞⋅⋅⋅⋅⋅
n

dkkrJmLZsZkFnn
n

0
,,,,)sin(

)cos( ωθ
θ



Damascus Univ. Journal Vol. (21)-No. (1)2005               Tabak- Samara- Nahhas  

17

R. J. Apsel; J. E. Luco (1979) formulated and solved the problem of 
three-dimensional wave propagation in layered viscoelastic media in 
frequency domain. The integrands of these Hankel transform-type 
integral representations correspond to complete solutions of the equations 
of motion in frequency domain.  The F integrands are given in terms of 
highly efficient factorizations of the upgoing and downgoing wave 
amplitude in each layer. So as to include all the reflection, conversion, 
transmission properties of the layered medium. The calculation of the 
three-dimensional Green’s functions are conducted in the frequency 
domain by representing the complete response in terms of semi-infinite 
integral with respect to wavenumber so as to automatically include all 
types of waves. The complete displacement and stress fields at multiple 
receiver points anywhere in the layered viscoelastic medium are 
efficiently evaluated for different types of sources. Possible studies 
include the generation of nonreflecting boundary conditions for use in 
properly modeling the extended earth or structure with finite element 
method (FEM). It is also important that the method provide accurate 
solutions across the entire frequency band of interest. The final 
requirement is that the methodology remains cost-efficient and highly 
flexible. 
Work directly in time domain poses the following aspects: (1) the 
transient response can be directly dealt without needs inverse 
transformation; (2) it can be dealt with non-linear problem. This problem 
has been analyzed numerically using finite difference method (FDM) and 
(FEM). These methods are insufficient to satisfy the radiation conditions 
at infinity for infinite or semi-infinite domains. Thus, the necessity arises 
to provide the conditional boundaries, such as the transmitting boundary 
Lysmer & Wass (1972), non-reflection boundary Smith, (1974) and 
viscous boundary Lysmer & Kuhlemeyer , (1969), thereby causing a loss 
of accuracy and consuming computation time. Besides, the discretization 
has a great effect on the accuracy. The (BEM) is relatively new method 
capable of making up for the above disadvantages. Y.K. Cheung, Lie, and 
Tham (1992) have developed a time domain (BEM) in a cylindrical 
coordinate for the wave propagation in a half-space. The integral 
formulation is based dynamic reciprocal theorem and stokes fundamental 
solutions. And they (1993) have developed a time domain (BEM) in a 
cylindrical coordinate for the wave propagation in a layered half-space. 
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Formulation Of Wave Propagation In Layered Media In Time 
Domain 
The present work have developed the methodology of (R. J. Apsel; J. E. 
Luco) formulating the problem of three-dimensional wave propagation in 
layered viscoelastic media in time domain, since it is efficient and highly 
flexible. The time domain formulations are generated through Fourier 
synthesis, which applied on the solution of inhomogeneous equations of 
motion for homogeneous viscoelastic medium. The layered viscoelastic 
half-space under consideration is assumed to be formed by N parallel 
horizontal layers overlying a uniform half-space as shown in figure (1). 
Each of the N+1 viscoelastic media forming the layered half-space is 
characterized by compressional wave velocity Cp, shear wave velocity 
Cs, and density ρj. It is assumed that the buried source corresponds to a 
concentrated point load within the lth medium at the point of coordinates 
(0, 0, zs). 

 

Figure (1): Model for layered viscoelastic half-space. 
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In the jth medium, the displacement vector in cylindrical coordinates 
must satisfy the homogeneous or inhomogeneous equations of motion 
depending on whether or not the source is located within the jth 
medium. In addition, the displacement and stress fields must satisfy the 
traction-free boundary condition on the surface, the condition of 
continuity of displacement and traction across each interface, and the 
radiation condition in the underlying half-space. It is possible to express 
the displacement and stress components in the jth medium in the form: 
 

Where G correspond to a shear modulus, and superscript – refer to 
reference medium. Q0 denotes to the vertical component, while Q1 
represents the horizontal component along the θ = θ0 of the point load.
The terms Σrn, Σθn, Σzn, Trzn, Tθzn, Tθrn, Un, Vn, Wn are given by 
Hankel integrands: 
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The terms un, wn, τ21n, σ2n, σ3n, σ1n  are associated with waves 
whose particle motion is polarized in vertical planes (P, Sv, Rayleigh ) 
waves are given by: 
 

The terms vn, τ23n, τ31n are associated with waves whose particle 
motion is polarized in horizontal planes (SH, Love) waves are given by: 
 

Where [I] matrix contains geometrical and mechanical properties of Jth 
layer, the diagonal [E] matrix represents the exponential variation of the 
corresponding functions across the thickness of Jth layer, and vector {η}
represents the functions correspond respectively to downwardly and 
upwardly propagating (P, SV) waves for functions in equation (3), and 
propagating ( SH) waves in equation (4). These terms can be written in 
the form: 

In which, Ain(t’) are undetermined coefficients, δ jl is the delta function, 
and Sin (zo’,t’) are the source terms. 
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Undetermined coefficients Ain(t’) or equivalently the unknown functions 
η in (zo’,t’), (i=1,6; j=1,N+1) are determined by imposing the 
boundary, continuity, and radiation conditions. The free-boundary and 
continuity conditions can be expressed as: 

 
In which [R], [T] matrices represent modified reflection coefficients and 
modified transmission coefficients for the waves impinging on the Jth 
interface from below and above respectively. The modified reflection and 
transmission matrices are given by: 

The radiation conditions in the bottom half-space (J=N+1) can be 
expressed by: 
 

The unknown functions η in (zo’,t’) in Jth layer can be obtained by the 
following factorization including the effects of other layers: 
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In which; the superscript ^ denotes to generalized transmission and 
reflection matrices. 
The free-boundary and continuity conditions above the source, as well as 
the continuity and radiation conditions below the source are satisfied if 
the generalized transmission and reflection matrices obey respectively the 
recurrence relations: 
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The factorization given by equations (9) provides the means to determine 
the displacement and stress fields within each layer above or below the 
source once the fields in the medium containing the source is known. The 
fields in the medium containing the source (j =l) can be obtained the use 
of the following equations: 
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Figure (2): representation of generalized transmission and reflection 
coefficients. 
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Figure (3): representation of recurrence relations for the generalized 
transmission and reflection coefficients. 
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The complete description of the displacement and stress fields 
associated with propagating waves in layered half-space system has 
been obtained. The particular form of these equations makes 
possible the simultaneous evaluation of the response at a number of 
observation locations for a number of different source locations. An 
accurate and effective developed method for studying wave 
propagation in a layered viscoelastic half-space has been presented. 
The three-dimensional wave propagation problem is reformulated 
and resolved in time domain with azimuthal dependence 
represented by a Fourier series expansion. This method is based on 
the generalized reflection and transmission coefficient matrices, the 
kernel functions F are evaluated in terms of highly efficient 
factorizations for the upgoing and downgoing wave amplitudes in 
each layer. The appearance of common factors is taken advantage 
of when computing the displacement and stress components for 
multiple source-receiver depth pairs. A realistic attenuation has 
been introduced for shear and compressional waves in each layer, 
which shifts the singularities of the F integrands. A numerical 
integration method is implemented for the F integrands, which are 
sampled at discrete t’ points in each time interval ∆t’ satisfying the 
requirement that quartic polynomials accurately interpolate the 
amplitudes of the F integrands over each 5-point integration 
interval. Thereby, the numerical integration with Bessel functions 
is performed analytically over each integration interval, thus 
avoiding the oscillation hazards of the Bessel functions. Since the 
radial dependence appears only the Bessel functions, it is expedient 
to calculate the integrals for multiple epicentral distances 
simultaneously. 
 

The Motion Due To A Buried Dislocation 
The displacement field as a function of time at a point resulting 
from the action of a buried dislocation is derived in terms of the 
stress tensor solution in time domain evaluated at the depth of the 
dislocation resulting from the action of an impulse force at that 
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point. As shown in figure (3), the idealized dislocation occurs at a 
point Y on surface S in volume V. 
The receiver is located at point x on the free surface of volume V.
Volume V may represents the layered vescoelastic half-space 
consistent with present work. The slip vector is constrained to have 
a rake of  γ degrees in the plane defining surface S :
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Figure (4): Source-receiver geometry for buried point dislocation 

In equation (12), δ is the dip of the fault plane, ê1, ê2, ê3 are the 
unit vectors in the Cartesian coordinate system, and s∞(y) is the 
amplitude of the dislocation. Assuming that the displacement and 
stress components have harmonic time dependence, it is convenient 
to apply the representation theorem to volume V of figure (3). In 
the absence of sources in V and assuming continuity of traction on 
S, the representation theorem is written in time domain to represent 
Dα (x, t) α-component of displacement at receiver point x as: 
 

In which; Hij(x,t;y,t’) denotes Green functions corresponding i-
component of the traction vector at point y Є S at proceeding time 
interval t’  due to unit impulse point load in the j-component at x
point on free surface of the volume V at time interval t, and [A(x)], 
[A(y)] represent transform matrices between Cartesian and 
cylindrical coordinates. Dα (y, t’) represents the α-component 
which it is equivalent to the slip vector component.  
The displacements for an extended source can be obtained by 
spatially integrating over surface S . Green functions Hij (x,t;y,t’)
consistent with formulation of present work. 
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Validation Of The Present Work 
Comparison studies of present work are performed to demonstrate 
the utilizable of the developed method directly in time domain for 
seismological applications, which represent the determination of 
exciting force vector as it is considered the first step of soil-
structure interaction problem. The particular studies in the 
validation include comparisons the exact Cagniard-dehoop 
approach for uniform half-space (Johnson, 1974); complete finite 
element approach for a layered half-space (Day, 1977). Dash curve 
refers to present work and continuos curve refers to reference 
study. 

• Comparison With Cagniard- Dehoop Approach: 
The representation theorem in time domain is used in conjunction 
with the present developed method to reciprocally generate the 
surface motion due to a buried dislocation. The source time 
dependence is represented by eight second ramp function and 
Poisson’s ratio is taken to be 0.25. The depth of the point 
dislocation is 5.0 km and the epicentral distance is 20 km. The 
surface displacements are evaluated at an observation azimuth of 
22.5 degrees from strike of the fault, and are normalized by suitable 
factor. 
 

Strike-slip dislocation  

Strike=22.5  =ββββ
Dip   = 90    =δδδδ
Rake = 0      =γγγγ
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Figure (5c): comparison for buried strike-slip 
dislocation with 90 dip

Dip-slip dislocation 
 

Strike=22.5  =β
Dip   = 45    =δ
Rake = 90    =γ
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• Comparison With Finite Element Apraoch: 
The model consists of two layers overlying a semi-infinite half-space as 
shown in figure (7), where the individual parameters characterizing the 
layers are defined. Source depth of 5.0 km and 1.0 km are considered and 
the source time-dependence is represented by a ramp of one-second 
duration in both cases. The source is equivalent to the vertical strike slip 
dislocation with receivers located at epicentral distances of 5, 15, 25, and 
35 km at an azimuth of 22.5 degrees from the strike of the fault. The 
ground motion is normalized by suitable factor. 
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Figure (7): Source-receiver geometry model of two layers 
overlying half-space. 
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Conclusions 
An accurate and effective developed method for studying wave 
propagation in layered viscoelastic half-space has been presented. The 
three-dimensional wave propagation problem reformulated in time 
domain with the azimuthal dependence represented by a Fourier series 
expansion. The complete response of quantities field include all type of 
waves. Based on the generalized reflection and transmission coefficient 
matrices, the kernel functions are evaluated in terms of highly efficient 
factorizations for the upgoing and downgoing wave amplitudes in each 
layer. The integrals are evaluated by direct integration, basically, the 
kernel functions are sequentially sampled fine enough to allow piecewise 
polynomials to interpolate the amplitudes of the kernels between the 
integration points. Thereby, the numerical integration over each time 
interval is performed analytically, thus avoiding the oscillation hazard of 
the Bessel functions. The comparison studies found in the validation 
section include comparisons to particular methods. The results of these 
studies demonstrate the validation and accuracy of the developed method. 
In addition, it shows utilizable flexibility of the method for determination 
of the exciting vector in the soil-structure problem due to various far field 
excitations. 
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