المدة: ساعتان	سلم تصحيح مقرر اللغة الأجنبية العلمية	جامعة دمشق
13.30 - 11.30	السنة الرابعة فيزياء	كلية العلوم
الدرجة:/100/ ملة	الفصل الثَّاتي، العام الدراسي /2024 - 2025/	فسم الفيزياء

Part I (50 Marks)

Q1. Read carefully and choose the right answer of the following:

(10 Marks) 1 Mark

1. steel (D)	2. energy transferred by a temperature difference (A)	
3. radiation will provide quick warmth (B)	4. 3.0 (D)	
5. of same frequencies (B)	6. heat of sublimation (C)	
7. the temperature remains the same (C)	8. 60 dB (E)	
9. 20 to 20,000 HZ (ℂ)	10. convection (B)	

Q2.

Solution:

(23 Marks)

The sound waves from the two speakers undergo interference. Whether the interference is constructive or destructive depends on the path length difference.

(a) One speaker is 3.75 m from the listener and the other is:

$$= \sqrt{[(2)^2 + (3.75)^2]} = 4.25 \text{ m}$$

so the path difference is:

Destructive interference occurs when the path difference is:

$$\Delta x = (2n+1) \, \lambda/2, \, n = 0, \, 1, \, 2, \, 3, \dots \text{ Or:}$$

$$\Delta x = \lambda/2, \, 3\lambda/2, \, 5\lambda/2 \dots \text{ or } \Delta x = \sqrt{2}f, \, 3\sqrt{2}f, \, 5\sqrt{2}f \dots = n\sqrt{f}.$$

$$f_n = \frac{n v}{2 \Delta x} = \frac{n 343}{2(0.50)} = 343 n; n = 1, 3, 5, ...$$

The lowest frequency that gives minimum signal is (n = 0) $f_{min,1} = 343$ Hz.

(b) For constructive interference, the path difference is an integer number of wavelengths:

$$\Delta x = n \lambda; n = 0, 1, 2, 3, \dots$$
 where: $\lambda = \frac{v}{f}$ or:
$$f_n = \frac{n v}{\Delta x} = \frac{n 343}{0.50} = 686 n; n = 1, 2, 3 \dots$$

The lowest frequency that gives maximum signal is (n=1) $f_{max,1} = 686$ Hz.

Q3.

(17 Marks)

Solution:

For a melting phase transition, $Q = mL_f$.

The rate of heat conduction is $\frac{Q}{I} = \frac{kA(T_H - T_C)}{L}$.

The heat conducted by the rod in 10.0 min is

$$Q = mL_{\rm f} = (8.50 \times 10^{-3} \text{ kg})(3.34 \times 10^{5} \text{ J/kg}) = 2.84 \times 10^{3} \text{ J}.$$

$$\frac{Q}{t} = \frac{2.84 \times 10^3 \text{ J}}{600 \text{ s}} = 4.73 \text{ W}.$$

$$k = \frac{(Q/t)L}{A(T_{\rm H} - T_{\rm C})} = \frac{(4.73 \text{ W})(0.600 \text{ m})}{(1.25 \times 10^{-4} \text{ m}^2)(100 \text{ C}^\circ)} = 227 \text{ W/m} \cdot \text{K}.$$

مدرس المقرر د. يوسف أبو علي

2025/08/19